81 |
Millimeter Wave Radar as Navigation Sensor on Robotic Vacuum Cleaner / Millimetervågsradar som navigationssensor på robotdammsugareBlomqvist, Anneli January 2020 (has links)
Does millimeter-wave radar have the potential to be the navigational instrument of a robotic vacuum cleaner in a home? Electrolux robotic vacuum cleaner is currently using a light sensor to navigate through the home while cleaning. Recently Texas Instruments released a new mmWave radar sensor, operating in the frequency range 60-64 GHz. This study aims to answer if the mmWave radar sensor is useful for indoor navigation. The study tests the sensor on accuracy and resolution of angles and distances in ranges relevant to indoor navigation. It tests if various objects made out of plastic, fabric, paper, metal, and wood are detectable by the sensor. At last, it tests what the sensor can see when it is moving while measuring. The radar sensor can localize the robot, but the ability to detect objects around the robot is limited. The sensor’s absolute accuracy is within 3° for the majority of angles and around 1dm for most distances above 0.5 m. The resolution for a displacement of one object is 1°, respectively 5 cm, and two objects must be located at least 14° or 15 cm apart from each other to be recognized. Future tasks include removing noise due to antenna coupling to improve reflections from within 0.5 meter and figure out the best way to move around the sensor to improve the resolution. / Har radar med millimetervågor förutsättningar att vara navigationsutrustning för en robotdammsugare i ett hem? Electrolux robotdammsugare använder för närvarande en ljussensor för att navigera genom hemmet medan den städar. Nyligen släppte Texas Instruments en ny radarsensor med vågor i frekvensområdet 60-64 GHz. Denna studie syftar till att svara om radarsensorn är användbar för inomhusnavigering. Studien testar sensorn med avseende på noggrannhet och upplösning av vinklar och avstånd i områden som är relevanta för inomhusnavigering. Den testar om olika föremål tillverkade av plast, tyg, papper, metall och trä kan detekteras av sensorn. Slutligen testas vad sensorn kan se om den rör sig medan den mäter. Radarsensorn kan positionera roboten, men hinderdetektering omkring roboten är begränsad. För det mesta ligger sensorns absoluta noggrannhet inom 3° för vinklar och omkring 1dm för avstånd över 0,5 m. Upplösningen för en förflyttning av ett objekt är 1° respektive 5 cm, och två objekt måste placeras minst 14° eller 15 cm ifrån varandra för att båda kunna upptäckas. Kommande utmaningar är att ta bort antennstörningar som ger sämre reflektioner inom 0,5 meter och ta reda på det bästa sättet att förflytta sensorn för att förbättra upplösningen.
|
82 |
Comparison of autonomous waypoint navigation methods for an indoor blimp robot / Jämförelse av autonoma färdpunktnavigationsmetoder för en inomhus-blimpPrusakiewicz, Lukas, Tönnes, Simon January 2020 (has links)
The Unmanned Aerial Vehicle (UAV) has over the last years become an increasingly prevalent technology in several sectors of modern society. Many UAVs are today used in a wide series of applications, from disaster relief to surveillance. A recent initiative by the Swedish Sea Rescue Society (SSRS) aims to implement UAVs in their emergency response. By quickly deploying drones to an area of interest, an assessment can be made, prior to personnel getting there, thus saving time and increasing the likelihood of a successful rescue operation. An aircraft like this, that will travel great distances, have to rely on a navigation system that does not require an operator to continuously see the vehicle. To travel to its goal, or search an area, the operator should be able to define a travel route that the UAV follows, by feeding it a series of waypoints. As an initial step towards that kind of system, this thesis has developed and tested the concept of waypoint navigation on a small and slow airship/blimp, in a simulated indoor environment. Mainly, two commonly used navigation algorithms were tested and compared. One is inspired by a sub-category of machine learning: reinforcement learning (RL), and the other one is based on the rapidly exploring random tree (RRT) algorithm. Four experiments were conducted to compare the two methods in terms of travel distance, average speed, energy efficiency, as well as robustness towards changes in the waypoint configurations. Results show that when the blimp was controlled by the best performing RL-based version, it generally travelled a more optimal (distance-wise) path than the RRT-based method. It also, in most cases, proved to be more robust against changes in the test tracks, and performed more consistently over different waypoint configurations. However, the RRT approach usually resulted in a higher average speed and energy efficiency. Also, the RL algorithm had some trouble navigating tracks where a physical obstacle was present. To sum up, the choice of algorithm depends on which parameters are prioritized by the blimp operator for a certain track. If a high velocity and energy efficiency is desirable, the RRT-based method is recommended. However, if it is important that the blimp travels as short a distance as possible between waypoints, and a higher degree of consistency in its performance is wanted, then the RL-method should be used. Moving forward from this report, toward the future implementation of both methods in rescue operations, it would be reasonable to analyze their performance under more realistic conditions. This can be done using a real indoor airship. Looking at how hardware that do not exceed the payload of the blimp can execute both methods and how the blimp will determine its position and orientation is recommended. It would also be interesting to see how different reward function affect the performance of the blimp. / Den obemannade luftfarkosten (UAV) har under de senaste åren blivit en teknik vars användning blivit allt vanligare i flera sektorer av det moderna samhället. Olika sorters UAV robotar associeras idag med en omfattande serie användningsområden, från katastrofhjälp till övervakning. Ett nyligen påbörjat initiativ från svenska sjöräddningssällskapet (SSRS) syftar till att implementera drönare i deras utryckningar. Genom att snabbt sända drönare till platsen i fråga, kan en bedömning göras innan personal kommer dit, vilket sparar tid och ökar sannolikheten för en framgångsrik räddningsaktion. En farkost som denna, som kommer att resa långa sträckor, måste förlita sig på ett navigationssystem som inte kräver att en operatör kontinuerligt ser farkosten. För att resa till sitt mål, eller söka av ett område, bör operatören kunna definiera en resväg som drönaren följer genom att ge den en serie vägpunkter. Som ett inledande steg mot den typen av system har denna uppsats utvecklat och testat begreppet vägpunktsnavigering på ett litet och långsamt luftskepp/blimp, i en simulerad inomhusmiljö. Huvudsakligen testades och jämfördes två vanligt förekommande navigationsalgoritmer. En inspirerad av en underkategori till maskininlärning: förstärkningsinlärning (RL), och den andra baserad på rapidly exploring random tree (RRT) algoritmen. Fyra experiment utfördes för jämföra båda metoderna med avseende på färdsträcka, medelhastighet, energieffektivitet samt robusthet gentemot ändringar i färdpunktskonfigurationerna. Resultaten visar att när blimpen kontrollerades av den bästa RL-baserade versionen åkte den generellt en mer avståndsmässigt optimal väg än när den RRT-baserade metoden användes. I de flesta fallen visade sig även RL-metoden vara mer robust mot förändringar i testbanorna, och presterade mer konsekvent över olika vägpunktskonfigurationer. RRT-metoden resulterade dock vanligtvis i en högre medelhastighet och energieffektivitet. RL-algoritmen hade också problem med att navigera banor där den behövde ta sig runt ett hinder. Sammanfattningsvis beror valet av algoritm på vilka parametrar som prioriteras av blimpoperatören för en viss bana. Om en hög hastighet och energieffektivitet är önskvärd rekommenderas den RRT-baserade metoden. Men om det är viktigt att blimpen reser så kort avstånd som möjligt mellan färdpunkterna, och har en jämnare prestanda, bör RL-metoden användas. För att ta nästa steg, mot en framtida implementering av båda metoder i räddningsoperationer, vore det rimligt att analysera deras prestanda under mer realistiska förhållanden. Detta skulle kunna göras inomhus med ett riktigt luftskepp. Författarna rekommenderar att undersöka om hårdvara som inte överstiger blimpens maxlast kan utföra båda metodernas beräkningar och hur blimpen bestämmer sin position och orientering. Det skulle också vara intressant att se hur olika belöningsfunktioner påverkar blimpens prestanda.
|
83 |
Att täcka en obekant yta med Spanning Tree Covering, Topologisk Täckande Algoritm, Trilobite / Covering an unknown area with Spanning Tree Covering, Topologisk Täckande Algoritm, TrilobiteCarlsson, Josefin, Johansson, Madeleine January 2005 (has links)
Det har blivit mer och mer vanligt med ny, datoriserad teknik i hemmen. Fler människor har ett allt stressigare liv och inte längre samma tid att ta hand om det egna hemmet. Behovet av en hjälpande hand med hushållsarbete har blivit allt större. Tänk själv att komma hem från jobbet eller skolan och så har golvet blivit skinande rent utan att Ni knappt har behövt göra någonting! Det finns idag flera olika robotar på marknaden för detta ändamål. En av dessa är den autonoma dammsugaren, som är det vi inriktat vår uppsats på. I huvudsak är uppsatsen inriktad på mjukvaran, som kan användas i en autonom dammsugare. Vi har valt att titta närmare på två stycken sökalgoritmer, som kan användas av autonoma mobila robotar, exempelvis en autonom dammsugare, som har i uppdrag att täcka en hel obekant yta. Dessa algoritmer är Spanning Tree Covering (STC) och ”A Topological Coverage Algorithm”, också kallad ”Landmark-based World Model” (fritt översatt till Topologisk Täckande Algoritm, TTA). Vi har också undersökt hur ett av Sveriges största märken på marknaden för autonoma dammsugare, nämligen Electrolux Trilobite ZA1, klarar sig i test. Vi har även analyserat testet med Trilobiten och jämfört detta med antaget beteende hos Trilobiten ifall den hade varit implementerad med sökalgoritmerna STC eller TTA. Hur fungerar sökalgoritmerna? Hur kan en autonom dammsugare hitta på en hel obekant yta? Hur beter sig Electrolux Trilobite ZA1? Täcker de alla en obekant yta? Är de effektiva?
|
84 |
Deep Reinforcement Learning on Social Environment Aware Navigation based on MapsSanchez, Victor January 2023 (has links)
Reinforcement learning (RL) has seen a fast expansion in recent years of its successful application to a range of decision-making and complex control tasks. Moreover, deep learning offers RL the opportunity to enlarge its spectrum of complex fields. Social Robotics is a domain that involves challenges like Human-Robot Interaction which bears inspiration for development in deep RL. Autonomous systems demand a fast and efficient environment perception so as to guarantee safety. However, while being attentive to its surrounding, a robot needs to take decisions to navigate optimally and avoid potential obstacles. In this thesis, we investigate a deep RL method for mobile robot end-to-end navigation in a social environment. Using the observation collected in a simulation environment, a convolutional neural network is trained to predict an appropriate set of discrete angular and linear velocities for a robot based on its egocentric local occupancy grid map. We compare a random learning way to a curriculum learning approach to ameliorate speed convergence during training. We divide the main problem by analysing separately end-to-end navigation and obstacle avoidance in static and dynamic environments. For each problem, we propose an adaptation that aims to improve the surrounding awareness of the agent. The qualitative and quantitative evaluations of the investigated approach were performed in simulations. The results show that the end-to-end navigation map-based model is easy to set up and shows similar performance as a Model Predictive Control approach. However, we discern that obstacle avoidance is harder to translate to a deep RL framework. Despite this difficulty, using different RL methods and configurations will definitely help and bring ideas for improvement for future work. / Förstärkande Inlärning (RL) har sett en snabb expansion de senaste åren för sin fruktbara tillämpning på en rad beslutsfattande och komplexa kontrolluppgifter. Dessutom erbjuder djupinlärning RL möjligheten att utöka sitt spektrum till komplexa områden. Social Robotics är en domän som involverar utmaningar som människa-robot interaktion som bär inspiration för utveckling i djup RL. Autonoma system kräver en snabb och effektiv miljöuppfattning för att garantera säkerheten. Men samtidigt som den är uppmärksam på sin omgivning, måste en robot fatta beslut för att navigera optimalt och undvika potentiella hinder. I detta examensarbete undersöker vi en djup RL-metod för mobil robot-end-to-end-navigering i en social miljö. Med hjälp av observationen som samlats in i en simuleringsmiljö tränas ett faltningsneuralt nätverk för att förutsäga en lämplig uppsättning diskreta vinkel- och linjärhastigheter för en robot baserat på dess egocentriska rutnätskarta över lokala beläggningar. Vi jämför ett slumpmässigt inlärningssätt med läroplansinlärningsmetod för att förbättra hastighetskonvergensen. Vi delar upp huvudproblemet genom att separat analysera end-to-end-navigering och undvikande av hinder i statisk och dynamisk miljö. För varje problem föreslår vi en anpassning som syftar till att agenten bättre förstår sin omgivning. De kvalitativa och kvantitativa utvärderingarna av det undersökta tillvägagångssättet utfördes endast i simuleringar. Resultaten visar att den heltäckande navigationskartbaserade modellen är lätt att distribuera och visar liknande prestanda som en modell för prediktiv kontroll. Vi ser dock att undvikande av hinder är svårare att översätta till ett djupt RL-ramverk. Trots denna svårighet kommer användning av olika RL-metoder och konfiguration definitivt att hjälpa och ge idéer om förbättringar för framtida arbete. / L’apprentissage par renforcement (RL) a connu une expansion rapide ces dernières années pour ses applications à une gamme de tâches de prise de décision et de contrôle complexes. Le deep learning offre au RL la possibilité d’élargir son spectre à des domaines complexes. La robotique sociale est un domaine qui implique des défis tels que l’interaction homme-robot, source d’inspiration pour le développement en RL profond. Les systèmes autonomes exigent une perception rapide et efficace de l’environnement afin de garantir la sécurité. Cependant, tout en étant attentif à son environnement, un robot doit prendre des décisions pour naviguer de manière optimale et éviter les obstacles potentiels. Dans cette thèse, nous étudions une méthode de RL profond pour la navigation de bout a bout de robots mobiles dans un environnement social. À l’aide de l’observation recueillie dans un environnement de simulation, un réseau neuronal convolutif prédit un ensemble adapté de vitesses angulaires et linéaires discrètes pour un robot en fonction de sa carte de grille d’occupation locale égocentrique. Nous comparons une méthode d’apprentissage aléatoire à une approche d’apprentissage du curriculum pour accelerer la convergence durant l’entrainement. Nous divisons le problème principal en analysant séparément la navigation de bout a bout et l’évitement d’obstacles dans un environnement statique et dynamique. Pour chaque problème, nous proposons une adaptation visant à ce que l’agent comprenne mieux son environnement. Les évaluations qualitatives et quantitatives de l’approche étudiée ont été effectuées uniquement dans des simulations. Les résultats montrent que le modèle basé sur la carte de navigation de bout en bout est facile à déployer et affiche des performances similaires à celles d’une approche de contrôle prédictif de modèle. Cependant, nous discernons que l’évitement d’obstacles est plus difficile à traduire dans un cadre RL profond. Malgré cette difficulté, l’utilisation de différentes méthodes et configurations RL aidera certainement et apportera une idée d’amélioration pour les travaux futurs.
|
85 |
Terrain Referenced Navigation with Path Optimization : Optimizing Navigation Accuracy by Path Planning / Banplanering för terrängbaserad navigering : Optimering av navigationsprecision genom banplaneringGelin, Martin January 2022 (has links)
Terrain referenced navigation is a method of navigation that uses measurements of altitude above ground to infer the position of the vehicle, mainly aerial or underwater. This method provides an alternative to the commonly used satellite-based navigation. Satellite-based navigation methods rely on positional information being sent from an external source, which can be jammed or tampered with, a problem terrain referenced navigation does not have. Both satellite-based and terrain based navigation methods often work in conjunction with inertial navigation systems, which are accurate for short periods of time but suffer from large errors due to accumulation of errors when used for longer missions. In this thesis, several state-of-the-art methods of terrain referenced navigation are studied and evaluated, with the main focus being the different estimation methods employed. Five of the studied estimators were implemented and tested on simulated flight data from a generic aerial vehicle, resulting in improved navigation accuracy compared to using inertial navigation on its own. For the terrain referenced navigation to work well, the ground needs to be relatively unique in order to contain useful information, thus making the estimation more uncertain when flying over flat regions. To deal with this, path planning was used to alter the flight path to increase the expected information gain. Using a grid based planning algorithm together with the original route yielded a modified path with more potential information. When following this new path, the terrain referenced navigation systems are shown to estimate the position more accurately compared to the original path. The study shows that terrain referenced navigation is a viable alternative to satellite based navigation. It also indicates that modifying the path to increase the expected information gain can result in better robustness and precision. / Terrängbaserad navigering är en navigeringsmetod där mätningar av höjd över mark används för att fastställa fordonets position, huvudsakligen från luften eller under vattnet. Denna metod är ett alternativ till den allmänt använda satellitbaserade navigeringen. Satellitbaserad navigering är beroende av att positionsinformation skickas från en extern källa, som kan störas eller manipuleras, vilket är ett problem som terrängbaserad navigering inte har. Både satellitbaserade och terrängbaserade navigeringsmetoder används ofta tillsammans med tröghetsnavigeringssystem, som är noggranna under kortare tid, men som lider av stora fel på grund av ackumulering av fel när de används under längre uppdrag. I denna rapport studeras och utvärderas flera moderna metoder för terrängbaserad navigering, med huvudfokus på de olika skattningsmetoder som används. Fem av de studerade skattningsmetoderna implementerades och testades på simulerade flygdata från ett generiskt flygfarkost, vilket resulterade i förbättrad navigeringsnoggrannhet jämfört med att använda tröghetsnavigering på egen hand. För att den terrängbaserade navigeringen ska fungera bra måste marken vara relativt unik för att innehålla användbar information, vilket gör uppskattningen mer osäker när man flyger över plana områden. För att hantera detta användes banplanering för att välja en flygbana som ger maximalt informations innehåll. Genom att använda en rutnätsbaserad planeringsalgoritm tillsammans med den ursprungliga rutten erhölls en modifierad bana med mer potentiell information. Genom att följa denna nya bana uppskattas positionen bättre av de terrängbaserade navigationssystemen jämfört med den ursprungliga banan. Studien visar att terrängbaserad navigering är ett gångbart alternativ till satellitbaserad navigering. Den visar också att en ändring av banan för att öka den förväntade informationsvinsten kan leda till bättre robusthet och precision.
|
86 |
Skyline Delineation for Localization in Occluded Environments : Improved Skyline Delineation using Environmental Context from Deep Learning-based Semantic Segmentation / Horisont Avgränsning för Lokalisering i Occluded Miljöer : Förbättrad Horisont Avgränsning med hjälp av Miljökontext från Djupet Inlärningsbaserad Semantisk SegmenteringWilliam Coble, Kyle January 2023 (has links)
This thesis addresses the problem of improving the delineation of skylines, also referred to as skyline detection, in occluded and challenging environments where existing skyline delineation methods may struggle or fail. Delineated skylines can be used in monocular camera localization methods by comparing delineated skylines to digital elevation model data to estimate a position based on known terrain. This is particularly useful in GPS-denied environments in which active sensing is either impractical or undesirable for various reasons, so that passive sensing using monocular cameras is necessary and/or strategically advantageous. This thesis presents a novel method of skyline delineation using deep learning-based semantic segmentation of monocular camera images to detect natural skylines of distant landscapes in the presence of occlusions. Skylines are extracted from semantic segmentation predictions as the boundary between pixel clusters labeled as terrain to those labeled as sky, with additional segmentation classes representing the known set of potential occlusions in a given environment. Additionally, each pixel in the detected skyline contours are assigned a confidence score based on local intensity gradients to reduce the potential impacts of erroneous skyline contours on position estimation. The utility of these delineated skylines is demonstrated by obtaining orientation and position estimates using existing methods of skyline-based localization. In these methods, the delineated natural skyline is compared to rendered skylines using digital elevation model data and the position estimate is obtained by finding the closest match. Results from the proposed skyline delineation method using semantic segmentation, with accompanying localization demonstration, is presented on two distinct data sets. The first is obtained from the Perseverance Rover operating in the Jezero Crater region of Mars, and the second is obtained from an uncrewed surface vessel operating in the Gulf of Koper, Slovenia. / Denna avhandling tar upp problemet med att förbättra avgränsningen av skylines, även kallad skylinedetektion, i tilltäppta och utmanande miljöer där befintliga skylineavgränsningsmetoder kan kämpa eller misslyckas. Avgränsade skylines kan användas i monokulära kameralokaliseringsmetoder genom att jämföra avgränsade skylines med digitala höjdmodelldata för att uppskatta en position baserat på känd terräng. Detta är särskilt användbart i GPS-nekas miljöer där aktiv avkänning är antingen opraktisk eller oönskad av olika skäl, så att passiv avkänning med användning av monokulära kameror är nödvändig och/eller strategiskt fördelaktig. Denna avhandling presenterar en ny metod för skylineavgränsning med användning av djupinlärningsbaserad semantisk segmentering av monokulära kamerabilder för att detektera naturliga skylines av avlägsna landskap i närvaro av ocklusioner. Horisonter extraheras från semantiska segmenteringsförutsägelser som gränsen mellan pixelkluster märkta som terräng till de märkta som himmel, med ytterligare segmenteringsklasser som representerar den kända uppsättningen potentiella ocklusioner i en given miljö. Dessutom tilldelas varje pixel i de detekterade skylinekonturerna ett konfidenspoäng baserat på lokala intensitetsgradienter för att minska den potentiella påverkan av felaktiga skylinekonturer på positionsuppskattning. Användbarheten av dessa avgränsade skylines demonstreras genom att erhålla orienterings- och positionsuppskattningar med hjälp av befintliga metoder för skylinebaserad lokalisering. I dessa metoder jämförs den avgränsade naturliga horisonten med renderade silhuetter med hjälp av digitala höjdmodelldata och positionsuppskattningen erhålls genom att hitta den närmaste matchningen. Resultat från den föreslagna metoden för skylineavgränsning med semantisk segmentering, med tillhörande lokaliseringsdemonstration, presenteras på två distinkta datamängder. Den första kommer från Perseverance Rover som verkar i Jezero Crater-regionen på Mars, och den andra erhålls från ett obemannat ytfartyg som verkar i Koperbukten, Slovenien.
|
87 |
Robust Booster Landing Guidance/Control / Robust Booster Landnings Ledning/StyrningÇelik, Ugurcan January 2020 (has links)
The space industry and the technological developments regarding space exploration hasn’t been this popular since the first moon landing. The privatization of space exploration and the vertical landing rockets made rocket science mainstream again. While being able to reuse rockets is efficient both in terms of profitability and popularity, these developments are still in their early stages. Vertical landing has challenges that, if neglected, can cause disastrous consequences. The existing studies on the matter usually don’t account for aerodynamics forces and corresponding controls, which results in higher fuel consumption thus lessening the economical benefits of vertical landing. Similar problems have been tackled in studies not regarding booster landings but regarding planetary landings. And while multiple solutions have been proposed for these problems regarding planetary landings, the fact that the reinforcement learning concepts work well and provide robustness made them a valid candidate for applying to booster landings. In this study, we focus on developing a vertical booster descent guidance and control law that’s robust by applying reinforcement learning concept. Since reinforcement learning method that is chosen requires solving Optimal Control Problems (OCP), we also designed and developed an OCP solver software. The robustness of resulting hybrid guidance and control policy will be examined against various different uncertainties including but not limited to wind, delay and aerodynamic uncertainty. / Rymdindustrin och den tekniska utvecklingen av rymdutforskningen har inte varit så populär sedan den första månlandningen. Privatiseringen av utforskningen av rymden och de vertikala landningsraketerna medförde att raketvetenskapen återkom som en viktig huvudfråga igen. Även om det är effektivt att återanvända raketer i form av lönsamhet och popularitet, är denna utveckling fortfarande i sina tidiga stadier. Vertikal landning har utmaningar som, om de försummas, kan orsaka katastrofala konsekvenser. De befintliga studierna i frågan redovisar vanligtvis inte aerodynamikkrafter och motsvarande regulatorer, vilket resulterar i högre bränsleförbrukning som minskar de ekonomiska fördelarna med vertikal landning. Liknande problem har hanterats i studier som inte avsåg boosterlandningar utan om planetariska landningar. Även om flera lösningar har föreslagits för dessa problem beträffande planetariska landningar, det faktum att förstärkningsinlärningskonceptet fungerar bra och ger robusthet gjorde dem till en giltig kandidat för att ansöka om boosterlandningar. I den här studien fokuserar vi på att utveckla en lagstiftning för styrning av vertikala booster-nedstigningar som är robust genom att tillämpa koncepten inom förstärkningsinlärning. Ef- tersom förstärkt inlärningsmetod som väljs kräver lösning av optimala kontrollproblem (OCP), designade och utvecklade vi också en OCP-lösningsmjukvara. Robustheten för resulterande hybridstyrning och kontrollpolicy kommer att undersökas mot olika osäkerheter inklusive, men inte begränsat till vind, fördröjning och aerodynamisk osäkerhet.
|
88 |
Semantic segmentation of off-road scenery on embedded hardware using transfer learning / Semantisk segmentering av terränglandskap på inbyggda system med överförd lärandeElander, Filip January 2021 (has links)
Real-time semantic scene understanding is a challenging computer vision task for autonomous vehicles. A limited amount of research has been done regarding forestry and off-road scene understanding, as the industry focuses on urban and on-road applications. Studies have shown that Deep Convolutional Neural Network architectures, using parameters trained on large datasets, can be re-trained and customized with smaller off-road datasets, using a method called transfer learning and yield state-of-the-art classification performance. This master’s thesis served as an extension of such existing off-road semantic segmentation studies. The thesis focused on detecting and visualizing the general trade-offs between classification performance, classification time, and the network’s number of available classes. The results showed that the classification performance declined for every class that got added to the network. Misclassification mainly occurred in the class boundary areas, which increased when more classes got added to the network. However, the number of classes did not affect the network’s classification time. Further, there was a nonlinear trade-off between classification time and classification performance. The classification performance improved with an increased number of network layers and a larger data type resolution. However, the layer depth increased the number of calculations and the larger data type resolution required a longer calculation time. The network’s classification performance increased by 0.5% when using a 16-bit data type resolution instead of an 8-bit resolution. But, its classification time considerably worsened as it segmented about 20 camera frames less per second with the larger data type. Also, tests showed that a 101-layered network slightly degraded in classification performance compared to a 50-layered network, which indicated the nonlinearity to the trade-off regarding classification time and classification performance. Moreover, the class constellations considerably impacted the network’s classification performance and continuity. It was essential that the class’s content and objects were visually similar and shared the same features. Mixing visually ambiguous objects into the same class could drop the inference performance by almost 30%. There are several directions for future work, including writing a new and customized source code for the ResNet50 network. A customized and pruned network could enhance both the application’s classification performance and classification speed. Further, procuring a task-specific forestry dataset and transferring weights pre-trained for autonomous navigation instead of generic object segmentation could lead to even better classification performance. / Se filen
|
89 |
Benchmarking VisualInertial Odometry Filterbased Methods for VehiclesZahid, Muhammad January 2021 (has links)
Autonomous navigation has the opportunity to make roads safer and help perform search and rescue missions by reducing human error. Odometry methods are essential to allow for autonomous navigation because they estimate how the robot will move based on the available sensors. This thesis aims to compare and evaluate the Cubature Kalman filter (CKF) based approach for visual-inertial odometry (VIO) to traditional Extended Kalman Filter (EKF) based methods on criteria such as the accuracy of the results. VIO methods use camera and IMU sensor for the predictions. The Multi-State-Constraint Kalman filter (MSCKF) was utilized as the foundation VIO approach to evaluate the underlying filter between EKF and CKF while maintaining the background conditions like visual tracking pipeline, IMU model, and measurement model constant. Evaluation metrics of absolute trajectory error (ATE) and relative error (RE) was used after tuning the filters on EuRoC and KAIST datasets. It is shown that, based on the existing implementation, the filters have no statistically significant difference in performance when predicting motion estimates, despite the fact that the absolute trajectory error of position for EKF estimation is lower. It is further shown that as the length of the trajectory increases, the estimation error for both filters rises unboundedly. Under the visual inertial framework of MSCKF, the CKF filter, which does not linearize the system, works equally as well as the well-established EKF filter and has the potential to perform better with more accurate nonlinear system and measurement models. / Autonom navigering har möjlighet att göra vägar säkrare och hjälpa till att utföra räddningsuppdrag genom att minska mänskliga fel. Odometrimetoder är viktiga för att möjliggöra autonom navigering eftersom de skattar hur roboten rör sig baserat på tillgängliga sensorer. Detta examensarbete syftar till att utvärdera Cubature Kalman filter (CKF) för visuell tröghetsodometri (VIO) och jämföra med traditionella Extended Kalman Filter (EKF) gällande bland annat noggrannhet. VIO-metoder använder kamera och IMU-sensor för skattningarna. MultiState Constraint Kalmanfiltret (MSCKF) användes som grund VIO-metoden för att utvärdera filteralgoritmerna EKF och CKF, samtidigt som de VIO-specifika delarna så som IMU-modell och mätmodell kunde förbli desamma. Utvärderingen gjordes baserat på absolut banfel (ATE) och relativa fel (RE) på EuRoC- och KAIST-datauppsättningar. Det visas att, baserat på den befintliga implementeringen, har filtren ingen statistiskt signifikant skillnad i prestanda när de förutsäger rörelsen, trots att det absoluta banafelet för positionen för EKF-uppskattning är lägre. Det visas vidare att när längden på banan ökar, ökar uppskattningsfelet för båda filtren obegränsat. Under MSCKFs visuella tröghetsramverk fungerar CKF-filtret, som inte linjäriserar systemet, lika bra som det väletablerade EKF-filtret och har potential att prestera bättre med mer exakta olinjära system och mätmodeller.
|
90 |
Optical Navigation for Autonomous Approach of Unexplored Small Bodies / Autonomt visionsbaserat navigationssystem för att närma sig en outforskad liten himlakroppVilla, Jacopo January 2020 (has links)
This thesis presents an autonomous vision-based navigation strategy applicable to the approach phase of a small body mission, developed within the Robotics Section at NASA Jet Propulsion Laboratory. Today, the operations performed to approach small planetary bodies are largely dependent on ground support and human decision-making, which demand operational complexity and restrict the spectrum of achievable activities throughout the mission. In contrast, the autonomous pipeline presented here could be run onboard, without ground intervention. Using optical data only, the pipeline estimates the target body's rotation, pole, shape, and performs identification and tracking of surface landmarks, for terrain relative navigation. An end-to-end simulation is performed to validate the pipeline, starting from input synthetic images and ending with an orbit determination solution. As a case study, the approach phase of the Rosetta mission is reproduced, and it is concluded that navigation performance is in line with the ground-based state-of-the-art. Such results are presented in detail in the paper attached in the appendix, which presents the pipeline architecture and navigation analysis. This thesis manuscript aims to provide additional context to the appended paper, further describing some implementation details used for the approach simulations. / Detta examensarbete presenterar en strategi för ett autonomt visionsbaserat navigationssystem för att närma sig en liten himlakropp. Strategin har utvecklats av robotikavdelningen vid NASA Jet Propulsion Laboratory i USA. Nuvarande system som används för att närma sig en liten himlakropp bygger till största delen på markstationer och mänskligt beslutsfattande, vilka utgör komplexa rutiner och begränsar spektrumet av möjliga aktiviteter under rymduppdraget. I jämförelse, det autonoma system presenterat i denna rapport är utformat för att köras helt från rymdfarkosten och utan krav på kontakt med markstationer. Genom att använda enbart optisk information uppskattar systemet himlakroppens rotation, poler och form samt genomför en identifiering och spårning av landmärken på himlakroppens yta för relativ terrängnavigering. En simulering har genomförts för att validera det autonoma navigationssystemet. Simuleringen utgick ifrån bilder av himlakroppen och avslutades med en lösning på banbestämningsproblemet. Fasen då rymdfarkosten i ESA:s Rosetta-rymduppdrag närmar sig kometen valdes som fallstudie för simuleringen och slutsatsen från denna fallstudie var att systemets autonoma navigationsprestanda var i linje med toppmoderna system. Den detaljerade beskrivningen av det autonoma systemet och resultaten från studien har presenterats i ett konferensbidrag, som ingår som bilaga till rapporten. Inledningen av rapporten syftar till att förtydliga bakgrunden och implementering som komplement till innehållet i bilagan.
|
Page generated in 0.0792 seconds