• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 4
  • Tagged with
  • 28
  • 25
  • 25
  • 23
  • 16
  • 12
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Defektabhängige Transporteigenschaften von Praseodym-Kalzium-Manganat / Defect dependent transport properties of praseodymium-calcium-manganate

Moschkau, Peter 13 August 2009 (has links)
No description available.
12

Phase behaviour of random copolymers and crosslinked homopolymer blends / Phasenverhalten zufälliger Kopolymere und vernetzter Homopolymermischungen

Wald, Christian 08 November 2005 (has links)
No description available.
13

Einfluss des Zellkortex auf die Plasmamembran: Modulation von Mikrodomänen in Modellmembranen / Influence of the Cell Cortex on the Plasma Membrane: Modulation of Microdomains in Model Membranes

Orth, Alexander 10 April 2012 (has links)
Die Struktur der Plasmamembran ist von deren Lipid- und Proteinzusammensetzung abhängig und wird durch die Anbindung an das unterliegende Zytoskelett beeinflusst. Das Ziel der vorliegenden Arbeit war die Untersuchung eines neuen Modellsystems basierend auf po­ren­über­span­nen­den Membranen, welches sowohl die heterogene Lipidzusammensetzung als auch den Einfluss eines unterliegenden Netzwerks berücksichtigt. Lipidmembranen, zusammengesetzt aus der „raft“-ähnlichen Lipidmischung DOPC/Sphingo­myelin/Cho­les­terin (40:40:20), wurden auf porösen, hochgeordneten Siliziumsubstraten mit Po­ren­durch­messern von 0.8, 1.2 und 2.0 µm durch Spreiten und Fusion von Riesenvesikeln (giant unilamellar vesicles, GUVs) präpariert. Die mikroskopische Phasenseparation in koexistierenden flüssig-geordneten (liquid ordered, lo) und flüssig-ungeordneten (liquid disordered, ld) Domänen wurde stark durch das unterliegende poröse Substrat beeinflusst. Die Größe der lo-Domänen konnte durch die Porengröße des Siliziumsubstrats, die Temperatur und den Cholesteringehalt der Membran, welcher durch Zugabe von Methyl-β-Cyclodextrin moduliert wurde, kontrolliert werden. Die Bindung der Shiga Toxin B-Untereinheit (STxB) an po­ren­überspannende Membranen, dotiert mit 5 mol% des Rezeptorlipids Gb3, führte zu einem Anstieg des Anteils der lo-Phase. Außerdem wurde die Bildung von lo-Domänen in nicht-phasenseparierten Membranen, zusammengesetzt aus DOPC/Sphingomyelin/Cholesterin/Gb3 (65:10:20:5), durch die Shiga Toxin-Bindung induziert. Ein Anstieg des Anteils der lo-Phase konnte ebenfalls bei der Bindung der pentameren Cholera Toxin B-Untereinheit (CTxB) an po­ren­überspannende Membranen, dotiert mit 1 mol% des Rezeptorlipids GM1, beobachtet werden. Des Weiteren wurde der Einfluss der chemischen Struktur des Gb3-Moleküls auf die Shiga Toxin-Bindung und die Reorganisation von festkörperunterstützten Membranen (solid supported membranes, SSMs) untersucht. Die STxB-Bindung an α-hydroxyliertes Gb3 erhöhte signifikant den Anteil der lo-Phase, während eine cis-Doppelbindung zur Bildung einer weiteren lo-Phase führte, die vermutlich ungesättigte (Glyko-)Sphingolipide und Cholesterin enthält. Im Falles des ungesättigten Gb3 konnte außerdem eine Kondensation zu größeren Domänen nach der STxB-Bindung beobachtet werden. Die genaue Phasenzuordnung der eingesetzten Glykospingolipide vor der Proteinbindung ist bisher unbekannt. Daher wurde das Phasenverhalten eines fluoreszierenden Polyen-Ga­lac­to­ce­re­bro­sids untersucht, welches bevorzugt in der lo-Phase von GUVs angereichert war. Dieser neue, intrinsische Fluorophor vermag als Grundlage für weitere Studien zum Phasenverhalten von Glykosphingolipiden dienen.
14

Physical Description of Centrosomes as Active Droplets / Physikalische Beschreibung von Zentrosomen als Aktive Tropfen

Zwicker, David 14 November 2013 (has links) (PDF)
Biological cells consist of many subunits that form distinct compartments and work together to allow for life. These compartments are clearly separated from each other and their sizes are often strongly correlated with cell size. Examples for those structures are centrosomes, which we consider in this thesis. Centrosomes are essential for many processes inside cells, most importantly for organizing cell division, and they provide an interesting example of cellular compartments without a membrane. Experiments suggest that such compartments can be described as liquid-like droplets. In this thesis, we suggest a theoretical description of the growth phase of centrosomes. We identify a possible mechanism based on phase separation by which the centrosome may be organized. Specifically, we propose that the centrosome material exists in a soluble and in a phase separating form. Chemical reactions controlling the transitions between these forms then determine the temporal evolution of the system. We investigate various possible reaction schemes and generally find that droplet sizes and nucleation properties deviate from the known equilibrium results. Additionally, the non-equilibrium effects of the chemical reactions can stabilize multiple droplets and thus counteract the destabilizing effect of surface tension. Interestingly, only a reaction scheme with autocatalytic growth can account for the experimental data of centrosomes. Here, it is important that the centrioles found at the center of all centrosomes also catalyze the production of droplet material. This catalytic activity allows the centrioles to control the onset of centrosome growth, to stabilize multiple centrosomes, and to center themselves inside the centrosome. We also investigate a stochastic version of the model, where we find that the autocatalytic growth amplifies noise. Our theory explains the growth dynamics of the centrosomes of the round worm Caenorhabditis elegans for all embryonic cells down to the eight-cell stage. It also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with disturbed centrioles. Our example thus suggests a general picture of the organization of membrane-less organelles. / Biologische Zellen bestehen aus vielen Unterstrukturen, die zusammen arbeiten um Leben zu ermöglichen. Die Größe dieser meist klar voneinander abgegrenzten Strukturen korreliert oft mit der Zellgröße. In der vorliegenden Arbeit werden als Beispiel für solche Strukturen Zentrosomen untersucht. Zentrosomen sind für viele Prozesse innerhalb der Zelle, insbesondere für die Zellteilung, unverzichtbar und sie besitzen keine Membran, welche ihnen eine feste Struktur verleihen könnte. Experimentelle Untersuchungen legen nahe, dass solche membranlose Strukturen als Flüssigkeitstropfen beschrieben werden können. In dieser Arbeit wird eine theoretische Beschreibung der Wachstumsphase von Zentrosomen hergeleitet, welche auf Phasenseparation beruht. Im Modell wird angenommen, dass das Zentrosomenmaterial in einer löslichen und einer phasenseparierenden Form existiert, wobei der Übergang zwischen diesen Formen durch chemische Reaktionen gesteuert wird. Die drei verschiedenen in dieser Arbeit untersuchten Reaktionen führen unter anderem zu Tropfengrößen und Nukleationseigenschaften, welche von den bekannten Ergebnissen im thermodynamischen Gleichgewicht abweichen. Insbesondere verursachen die chemischen Reaktionen ein thermisches Nichtgleichgewicht, in dem mehrere Tropfen stabil sein können und der destabilisierende Effekt der Oberflächenspannung unterdrückt wird. Konkret kann die Wachstumsdynamik der Zentrosomen nur durch eine selbstverstärkende Produktion der phasenseparierenden Form des Zentrosomenmaterials erklärt werden. Hierbei ist zusätzlich wichtig, dass die Zentriolen, die im Inneren jedes Zentrosoms vorhanden sind, ebenfalls diese Produktion katalysieren. Dadurch können die Zentriolen den Beginn des Zentrosomwachstums kontrollieren, mehrere Zentrosomen stabilisieren und sich selbst im Zentrosom zentrieren. Des Weiteren führt das selbstverstärkende Wachstum zu einer Verstärkung von Fluktuationen der Zentrosomgröße. Unsere Theorie erklärt die Wachstumsdynamik der Zentrosomen des Fadenwurms Caenorhabditis elegans für alle Embryonalzellen bis zum Achtzellstadium und deckt dabei auch Fälle mit anormaler Zentrosomenanzahl und veränderter Zellgröße ab. Das Modell kann auch Situationen mit unterschiedlich großen Zentrosomen erklären, welche auftreten, wenn die Struktur der Zentriolen verändert wird. Unser Beispiel beschreibt damit eine generelle Möglichkeit, wie membranlose Zellstrukturen organisiert sein können.
15

Physical Description of Centrosomes as Active Droplets

Zwicker, David 30 October 2013 (has links)
Biological cells consist of many subunits that form distinct compartments and work together to allow for life. These compartments are clearly separated from each other and their sizes are often strongly correlated with cell size. Examples for those structures are centrosomes, which we consider in this thesis. Centrosomes are essential for many processes inside cells, most importantly for organizing cell division, and they provide an interesting example of cellular compartments without a membrane. Experiments suggest that such compartments can be described as liquid-like droplets. In this thesis, we suggest a theoretical description of the growth phase of centrosomes. We identify a possible mechanism based on phase separation by which the centrosome may be organized. Specifically, we propose that the centrosome material exists in a soluble and in a phase separating form. Chemical reactions controlling the transitions between these forms then determine the temporal evolution of the system. We investigate various possible reaction schemes and generally find that droplet sizes and nucleation properties deviate from the known equilibrium results. Additionally, the non-equilibrium effects of the chemical reactions can stabilize multiple droplets and thus counteract the destabilizing effect of surface tension. Interestingly, only a reaction scheme with autocatalytic growth can account for the experimental data of centrosomes. Here, it is important that the centrioles found at the center of all centrosomes also catalyze the production of droplet material. This catalytic activity allows the centrioles to control the onset of centrosome growth, to stabilize multiple centrosomes, and to center themselves inside the centrosome. We also investigate a stochastic version of the model, where we find that the autocatalytic growth amplifies noise. Our theory explains the growth dynamics of the centrosomes of the round worm Caenorhabditis elegans for all embryonic cells down to the eight-cell stage. It also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with disturbed centrioles. Our example thus suggests a general picture of the organization of membrane-less organelles.:1 Introduction 1.1 Organization of the cell interior 1.2 Biology of centrosomes 1.2.1 The model organism Caenorhabditis elegans 1.2.2 Cellular functions of centrosomes 1.2.3 The centriole pair is the core structure of a centrosome 1.2.4 Pericentriolar material accumulates around the centrioles 1.3 Other membrane-less organelles and their organization 1.4 Phase separation as an organization principle 1.5 Equilibrium physics of liquid-liquid phase separation 1.5.1 Spinodal decomposition and droplet formation 1.5.2 Formation of a single droplet 1.5.3 Ostwald ripening destabilizes multiple droplets 1.6 Non-equilibrium phase separation caused by chemical reactions 1.7 Overview of this thesis 2 Physical Description of Centrosomes as Active Droplets 2.1 Physical description of centrosomes as liquid-like droplets 2.1.1 Pericentriolar material as a complex fluid 2.1.2 Reaction-diffusion kinetics of the components 2.1.3 Centrioles described as catalytic active cores 2.1.4 Droplet formation and growth kinetics 2.1.5 Complete set of the dynamical equations 2.2 Three simple growth scenarios 2.2.1 Scenario A: First-order kinetics 2.2.2 Scenario B: Autocatalytic growth 2.2.3 Scenario C: Incorporation at the centrioles 2.3 Diffusion-limited droplet growth 2.4 Discussion 3 Isolated Active Droplets 3.1 Compositional fluxes in the stationary state 3.2 Critical droplet size: Instability of small droplets 3.3 Droplet nucleation facilitated by the active core 3.4 Interplay of critical droplet size and nucleation 3.5 Perturbations of the spherical droplet shape 3.5.1 Linear stability analysis of the spherical droplet shape 3.5.2 Active cores can center themselves in droplets 3.5.3 Surface tension stabilizes the spherical shape 3.5.4 First-order kinetics destabilize large droplets 3.6 Discussion 4 Multiple Interacting Active Droplets 4.1 Approximate description of multiple droplets 4.2 Linear stability analysis of the symmetric state 4.3 Late stage droplet dynamics and Ostwald ripening 4.4 Active droplets can suppress Ostwald ripening 4.4.1 Perturbation growth rate in the simple growth scenarios 4.4.2 Parameter dependence of the stability of multiple droplets 4.4.3 Stability of more than two droplets 4.5 Discussion 5 Active Droplets with Fluctuations 5.1 Stochastic version of the active droplet model 5.1.1 Comparison with the deterministic model 5.1.2 Ensemble statistics and ergodicity 5.1.3 Quantification of fluctuations by the standard deviation 5.2 Noise amplification by the autocatalytic reaction 5.3 Transient growth regime of multiple droplets 5.4 Influence of the system geometry on the droplet growth 5.5 Discussion 6 Comparison Between Theory and Experiment 6.1 Summary of the experimental observations 6.2 Estimation of key model parameters 6.3 Fits to experimental data 6.4 Dependence of centrosome size on cell volume and centrosome count 6.5 Nucleation and stability of centrosomes 6.6 Multiple centrosomes with unequal sizes 6.7 Disintegration phase of centrosomes 7 Summary and Outlook Appendix A Coexistence conditions in a ternary fluid B Instability of multiple equilibrium droplets C Numerical solution of the droplet growth D Diffusion-limited growth of a single droplet E Approximate efflux of droplet material F Determining stationary states of single droplets G Droplet size including surface tension effects H Distortions of the spherical droplet shape H.1 Harmonic distortions of a sphere H.2 Physical description of the perturbed droplet H.3 Volume fraction profiles in the perturbed droplet H.4 Perturbation growth rates I Multiple droplets with gradients inside droplets J Numerical stability analysis of multiple droplets K Numerical implementation of the stochastic model / Biologische Zellen bestehen aus vielen Unterstrukturen, die zusammen arbeiten um Leben zu ermöglichen. Die Größe dieser meist klar voneinander abgegrenzten Strukturen korreliert oft mit der Zellgröße. In der vorliegenden Arbeit werden als Beispiel für solche Strukturen Zentrosomen untersucht. Zentrosomen sind für viele Prozesse innerhalb der Zelle, insbesondere für die Zellteilung, unverzichtbar und sie besitzen keine Membran, welche ihnen eine feste Struktur verleihen könnte. Experimentelle Untersuchungen legen nahe, dass solche membranlose Strukturen als Flüssigkeitstropfen beschrieben werden können. In dieser Arbeit wird eine theoretische Beschreibung der Wachstumsphase von Zentrosomen hergeleitet, welche auf Phasenseparation beruht. Im Modell wird angenommen, dass das Zentrosomenmaterial in einer löslichen und einer phasenseparierenden Form existiert, wobei der Übergang zwischen diesen Formen durch chemische Reaktionen gesteuert wird. Die drei verschiedenen in dieser Arbeit untersuchten Reaktionen führen unter anderem zu Tropfengrößen und Nukleationseigenschaften, welche von den bekannten Ergebnissen im thermodynamischen Gleichgewicht abweichen. Insbesondere verursachen die chemischen Reaktionen ein thermisches Nichtgleichgewicht, in dem mehrere Tropfen stabil sein können und der destabilisierende Effekt der Oberflächenspannung unterdrückt wird. Konkret kann die Wachstumsdynamik der Zentrosomen nur durch eine selbstverstärkende Produktion der phasenseparierenden Form des Zentrosomenmaterials erklärt werden. Hierbei ist zusätzlich wichtig, dass die Zentriolen, die im Inneren jedes Zentrosoms vorhanden sind, ebenfalls diese Produktion katalysieren. Dadurch können die Zentriolen den Beginn des Zentrosomwachstums kontrollieren, mehrere Zentrosomen stabilisieren und sich selbst im Zentrosom zentrieren. Des Weiteren führt das selbstverstärkende Wachstum zu einer Verstärkung von Fluktuationen der Zentrosomgröße. Unsere Theorie erklärt die Wachstumsdynamik der Zentrosomen des Fadenwurms Caenorhabditis elegans für alle Embryonalzellen bis zum Achtzellstadium und deckt dabei auch Fälle mit anormaler Zentrosomenanzahl und veränderter Zellgröße ab. Das Modell kann auch Situationen mit unterschiedlich großen Zentrosomen erklären, welche auftreten, wenn die Struktur der Zentriolen verändert wird. Unser Beispiel beschreibt damit eine generelle Möglichkeit, wie membranlose Zellstrukturen organisiert sein können.:1 Introduction 1.1 Organization of the cell interior 1.2 Biology of centrosomes 1.2.1 The model organism Caenorhabditis elegans 1.2.2 Cellular functions of centrosomes 1.2.3 The centriole pair is the core structure of a centrosome 1.2.4 Pericentriolar material accumulates around the centrioles 1.3 Other membrane-less organelles and their organization 1.4 Phase separation as an organization principle 1.5 Equilibrium physics of liquid-liquid phase separation 1.5.1 Spinodal decomposition and droplet formation 1.5.2 Formation of a single droplet 1.5.3 Ostwald ripening destabilizes multiple droplets 1.6 Non-equilibrium phase separation caused by chemical reactions 1.7 Overview of this thesis 2 Physical Description of Centrosomes as Active Droplets 2.1 Physical description of centrosomes as liquid-like droplets 2.1.1 Pericentriolar material as a complex fluid 2.1.2 Reaction-diffusion kinetics of the components 2.1.3 Centrioles described as catalytic active cores 2.1.4 Droplet formation and growth kinetics 2.1.5 Complete set of the dynamical equations 2.2 Three simple growth scenarios 2.2.1 Scenario A: First-order kinetics 2.2.2 Scenario B: Autocatalytic growth 2.2.3 Scenario C: Incorporation at the centrioles 2.3 Diffusion-limited droplet growth 2.4 Discussion 3 Isolated Active Droplets 3.1 Compositional fluxes in the stationary state 3.2 Critical droplet size: Instability of small droplets 3.3 Droplet nucleation facilitated by the active core 3.4 Interplay of critical droplet size and nucleation 3.5 Perturbations of the spherical droplet shape 3.5.1 Linear stability analysis of the spherical droplet shape 3.5.2 Active cores can center themselves in droplets 3.5.3 Surface tension stabilizes the spherical shape 3.5.4 First-order kinetics destabilize large droplets 3.6 Discussion 4 Multiple Interacting Active Droplets 4.1 Approximate description of multiple droplets 4.2 Linear stability analysis of the symmetric state 4.3 Late stage droplet dynamics and Ostwald ripening 4.4 Active droplets can suppress Ostwald ripening 4.4.1 Perturbation growth rate in the simple growth scenarios 4.4.2 Parameter dependence of the stability of multiple droplets 4.4.3 Stability of more than two droplets 4.5 Discussion 5 Active Droplets with Fluctuations 5.1 Stochastic version of the active droplet model 5.1.1 Comparison with the deterministic model 5.1.2 Ensemble statistics and ergodicity 5.1.3 Quantification of fluctuations by the standard deviation 5.2 Noise amplification by the autocatalytic reaction 5.3 Transient growth regime of multiple droplets 5.4 Influence of the system geometry on the droplet growth 5.5 Discussion 6 Comparison Between Theory and Experiment 6.1 Summary of the experimental observations 6.2 Estimation of key model parameters 6.3 Fits to experimental data 6.4 Dependence of centrosome size on cell volume and centrosome count 6.5 Nucleation and stability of centrosomes 6.6 Multiple centrosomes with unequal sizes 6.7 Disintegration phase of centrosomes 7 Summary and Outlook Appendix A Coexistence conditions in a ternary fluid B Instability of multiple equilibrium droplets C Numerical solution of the droplet growth D Diffusion-limited growth of a single droplet E Approximate efflux of droplet material F Determining stationary states of single droplets G Droplet size including surface tension effects H Distortions of the spherical droplet shape H.1 Harmonic distortions of a sphere H.2 Physical description of the perturbed droplet H.3 Volume fraction profiles in the perturbed droplet H.4 Perturbation growth rates I Multiple droplets with gradients inside droplets J Numerical stability analysis of multiple droplets K Numerical implementation of the stochastic model
16

Scenarios of Structure Stabilization and the Emergence of Transport Properties in AlMnCu - alloys

Gillani, Syed Sajid Ali 13 June 2016 (has links) (PDF)
Thin films of a ternary alloys between aluminum, manganese and copper (AlMnCu), prepared at low temperature, are reported in the present work. It is a study along two binary edges (Al100−xMnx and Al100−xCux (from literature)), the first almost along the entire range of concentrations, and two different cuts through the ternary system. The first cut begins at amorphous Al50Mn50 and adds Cu step by step (from literature). The second cut begins at amorphous Al60Cu40 and varies Al and Mn such that the Cu-content stays constant. There is a wide amorphous range, purely amorphous or with additional quasi-crystalline local features, and there are ranges where mixtures between amorphous and nano- or partially crystalline phases with a high content of lattice defects exist. The work exclusively deals with the development of the static structure and its thermal stability, as well as the development of its electronic transport properties. The ternary AlMnCu is a model for a deeper understanding of different scenarios of structure stabilization and their interaction, with consequences on the emergence of physical properties. The analysis focuses on self-organizing spherical-periodic, global resonance effects between two global subsystems of the alloy under consideration, the Fermi gas as one and the forming static structure of ions as the other. The global resonances are self organizing by i.e. an exchange of characteristic momenta and energy between the subsystems and trigger, besides a particular structure, particle-density anomalies and/or hybridization effects. The work shows strong evidence of a combined action of the particle-density anomalies with the effective valence of the atoms involved, in order to maintain the resonance condition under all circumstances. Whereas at high Al-content, additionally, local features of quasi-crystallinity arise, closer to pure Mn phase separations arise, causing mixtures of amorphous with nano-crystalline phases or crystals with a high content of lattice distortions. Reports on density anomalies, hybridization effects, and angular correlations, have been published quite often. In the present work, besides similar effects in a ternary system, first indications for phase separations and lattice defects as additional scenarios of stabilizing condensed matter are reported. The resonance, seen as spherical-periodic-order at short- and medium-range distances in real space, causes in reciprocal space a resonance maximum (analogous to a Bragg peak in crystals). Its location on the axis of the scattering vector is defined by the electron system and a pseudo-gap in the electronic density of states arise at the Fermi energy. The origin of the structural order and its thermal stability, the pseudo-gap at the Fermi energy, as well as the transport properties with its anomalies, all are attributed to the resonance. The spherically-periodic atomic order in an amorphous phase is analogous to the planar order in a crystal. The interatomic distances between the nearest neighboring shells at short- and medium range distances coincide with half the Fermi wavelength, also called Friedel-wavelength. / In der vorliegenden Arbeit wird über bei niedriger Temperatur hergestellte dünne Schichten aus einem ternären Legierungssystem zwischen Aluminium, Mangan und Kupfer (AlMnCu) berichtet, über zwei binäre Randlegierungen (Al100−xMnx und Al100−xCux (aus der Literatur)) und über zwei verschiedene Schnitte durch den ternären Bereich. Ein Schnitt durch den ternären Bereich beginnt bei amorphem Al50Mn50 und fügt schrittweise Cu zur Legierung (aus der Literatur). Der zweite Schnitt beginnt bei amorphem Al60Cu40 und fügt schrittweise Al und Mn so zu, dass der Cu-Gehalt konstant bleibt. Es gibt amorphe Bereiche, teilweise mit weiteren lokal quasi-kristallinen zusätzlichen Merkmalen, sowie Bereiche, in denen Mischungen aus amorphen mit nano oder teilkristallinen Phasen auftreten. Die Arbeit behandelt die Entwicklung der statischen Struktur und deren thermische Stabilität, sowie die Entwicklung elektronischer Transporteigenschaften. Das ternäre AlMnCu ist ein Modellsystem für ein tieferes Verständnis der verschiedenen Szenarien struktureller Stabilisierung und deren Interaktion, mit Auswirkungen auf ein tieferes Verständnis der mit der Struktur sich entwicklenden physikalischen Eigenschaften. Die Analyse konzentriert sich auf sich selbstorganisierende sphärisch-periodische, globale Resonanzeffekte zwischen zwei globalen Untersystemen des gewählten Materialsystems, der Fermi-Kugel als einem und der sich bildenden statischen Struktur der Ionen als dem anderen. Die globalen Resonanzen bilden sich u.a. durch einen Austausch von charakteristischen Impulsen und Energie zwischen den Untersystemen, die neben einer bestimmten Struktur zunächst auch Teilchendichteanomalien und/oder Hybridisierungseffekte erzeugen. Die vorliegende Arbeit zeigt dabei starke Anzeichen für eine kombinierte Wirkung dieser Effekte um die Resonanzbedingung unter allen Umständen beizubehalten. Bei hohen Al-Anteilen treten zusätzlich lokale Merkmale von quasi-Kristallinität, mit 5-facher Winkelkorrelation auf, um auch diesen Bereich strukturell zu stabilisieren. Bei hohen Mn-Anteilen sind es lokale Phasentrennung in amorphe und nano-kristalline Phasen oder hohe Anteile von Gitterdeffekten, die zusätzlich auftreten. Über Dichteanomalien, Hybridisierungseffekte und Winkelkorrelationen wurde in der Vergangenheit bereits mehrfach berichtet. In der vorliegenden Arbeit sind es, neben der modellhaften Behandlung dieser im ternären System, die Hinweise zu Phasentrennung und Gitterdeffekten als zusätzliche Szenarien zur Stabilisierung kondensierter Materie, über die erstmalig berichtet wird. Die auf dem Austausch von Impuls beruhende Resonanz, als sphärisch-periodische-Ordnung im nahen und mittleren Abstandsbereich des Ortsraumes zu sehen, verursacht im reziproken Raum ein Resonanzmaximum (analog zu einem Bragg-peak in kristallinen Systemen), dessen Lage auf der Achse der Streuvektoren vom Elektronensystem definiert wird, und eine Pseudolücke in der elektronischen Zustandsdichte der Elektronen an der Fermi-Energie. Letztendlich werden die Entstehung der strukturellen Ordnung selbst, ihre thermische Stabilität, als auch die Transporteigenschaften mit ihren Anomalien auf diese Pseudolücke und demzufolge auf die Resonanz zurückgeführt. Die sphärisch-periodische Ordnung der Atome in einer amorphen Phase ist analog zur planaren Ordnung in einem Kristall. Die Atomabstände zwischen den Nächstnachbarschalen im mittleren, aber auch nahen Abstandsbereich, stimmen über große Distanzen mit der halben Fermi-Wellenlänge überein, die man auch als Friedel-Wellenlänge bezeichnet.
17

Co-deposited films of rod-like conjugated molecules

Vogel, Jörn-Oliver 20 August 2009 (has links)
In dieser Arbeit wird die Phasenseparation und Mischung zwischen konjugierten Stäb-chenmolekülen in dünnen Filmen untersucht. Hauptaugenmerk liegt darauf zu ergrün-den welche molekularen Eigenschaften zu Mischung und/ oder Phasenseparation füh-ren. Mit den 5 Molekülen Pentacen (PEN), Quaterthiophen (4T), Sexithiophen (6T), p-Sexiphenylen (6P), alpha,omega-Dihexylsexithiophen (DH6T) werden Materialpaare zusammen gestellt, die sich in den Parametern „optische und elektrische Eigenschaf-ten“, „Länge des konjugierten Kerns“ und Alkylkettensubstitution unterscheiden. Alle Schichten werden mittels organischer Molekularstrahlabscheidung auf die Substrate Siliziumoxid und Mylar, einer PET Folie, simultan von zwei Quellen aufgedampft. Das Mischungsverhältnis wird mittels der individuellen Aufdampfraten eingestellt und eine Gesamtrate von 0.5 nm/min eingehalten. Es wird Phasenseparation für Materialpaare mit ungleicher konjugierter Kernlänge, z.B. [4T/6T], beobachtet. Erstaunlicherweise führt die Co-Verdampfung von Molekülpaaren mit ähnlicher konjugierter Kernlänge [4T/PEN] und [6T/6P] zu wohlgeordneten Fil-men, in denen die Moleküle in gemischten Lagen parallel zur Substratoberfläche auf-wachsen und die Längsachse der Moleküle fast senkrecht zur Substratoberfläche orien-tiert ist. Molekülpaare mit ähnlicher konjugierter Kernlänge und Alkylsubstitution [6T/DH6T] und [6P/DH6T] zeigten ebenfalls geordneten Schichten, wobei als Besonderheit eine lineare Abhängigkeit des Lagenabstandes vom DH6T-Gehalt zu beobachten ist. Dies wird mit einer Phasenseparation in eine aromatische und eine alkyl Domäne erklärt. Mit abnehmendem DH6T-Gehalt im Film ist die Alkyldomäne weniger dicht gepackt, was auf Grund der Flexibilität der Alkylketten zu einer Abnahme des gesamten Lagenab-standes führt. Die besonders geringe Oberflächenrauhigkeit und die miteinander verbundenen Inseln der [DH6T/6T] Filme prädestinieren sie zur Verwendung in Feldeffekttransistoren. Es wird gezeigt, dass es möglich ist, die Ladungsträgerdichte im Kanal durch Änderung des Verhältnisses zwischen DH6T und 6T so zu verändern, dass der Transistor im Verar-mungs- oder Anreicherungsregime betrieben werden kann. Dabei bleibt die Ladungsträ-germobilität auf gleich bleibend hohem Niveau. Dies entspricht dem Dotieren eines anorganischen Halbleiters. / This thesis is centered on studies of phase separation and mixing in co-deposited thin films of rod-like conjugated molecules. The main focus is to determine which molecular properties lead to phase separation and/or mixing of two materials. To address this question I used five materials, of importance in the context of “organic electronics”: pentacene (PEN), quaterthiophene (4T), sexithiophene (6T), p-sexiphenylene (6P), alpha,omega-dihexylsexithiophene (DH6T). With these it was possible to form material pairs which differ in the parameters: energy levels, length of the conjugated core, and alkyl-end-chain-substitution. All films were deposited by organic molecular beam deposition onto the chemically inert substrates silicon oxide and Mylar, a polyethylene terephthalate (PET) foil. The material pairs were deposited simultaneously from two thermal sublima-tion sources. The mixing ratio was controlled by the individual deposition rates, which were measured online by a microbalance. The total deposition rate was 0.5 nm/min, and the film thicknesses ranged from 4 nm to 40 nm. Phase separation is observed for material pairs with dissimilar conjugated core sizes, i.e. [4T/6T]. Noteworthy, the co-deposition of material pairs with similarly sized conju-gated cores [4T/PEN] and [6T/6P] lead to well ordered layered structures. The mole-cules show mixing within layers on a molecular scale and the long molecular axis is ori-ented almost perpendicular to the substrate surface. Material pairs with similarly sized conjugated core and alkyl-end-chain-substitution [6T/DH6T] and [6P/DH6T] show also growth in mixed layered structures. An especially appealing fact is that the interlayer distance increases proportional to the DH6T content in the film. This can be explained with a phase separation into an aromatic and an alkyl domain vertically to the substrate surface. A decrease of the DH6T content in the film leads to a less dense packing in the alkyl domain. This leads, due to the flexibility of the alkyl chains, to a decrease of the overall interlayer distance. The low surface corrugation and the interconnected islands render the material pair [6T/DH6T] well suitable for the use as active layer in organic field effect transistors. It is shown that it is possible to tune the charge carrier density in the channel by changing the ratio between 6T and DH6T. This effect enables switching the transistor from en-hancement to depletion mode, while maintaining a high charge carrier mobility. This is comparable to p-type doping of inorganic semiconductors.
18

Ladungs- und Orbitalordnungsphänomene in Übergangsmetalloxidverbindungen unter hydrostatischem Druck / Diffraktometrische Studien mit Synchrotronstrahlung / Charge and orbital order phenomena in transition metal oxide compounds under hydrostatic pressure

Kiele, Sven 27 March 2006 (has links) (PDF)
The thesis is dealing with the investigation of charge and orbital order and their behaviour under external pressure. Therefore, a new pressure cell has been developed which allows the observation of superlattice reflections corresponding to the order phenomena under pressure using scattering of high-energy synchrotron radiation. The maximum pressure that can be reached is 1.25 GPa. Until today there has been no possibility to conduct such studies of charge and orbital order superlattice reflections under pressure using x-ray scattering. The intensities of the reflections of the single crystalline samples are quite weak compared to fundamental peaks. Therefore the measurements are strongly affected by the absorption of the radiation in the pressure cell itself. Further difficulties result from the facts that low temperatures are needed and the sample has to be oriented in reciprocal space after being mounted into the cell. Therefore, the design of a compact clamp-type piston pressure cell was chosen here. The cell is made from a copper-beryllium alloy with the wall thickness reduced in the height of the sample volume. This allows the usage inside a closed-cycle cryostat mounted on a three-axis-diffractometer. Absorption effects are minimized due to the combination of reduced wall thickness and the usage of high energy synchrotron radiation (E = 100 keV at the beamline BW5 at HASYLAB/DESY). The new experimental technique was established and used for a study of two representatives of the transition metal oxide compounds, i.e. doped cuprates and manganites, which belong to the class of strongly correlated electron systems. The 1/8-doped cuprate La_{2-x}Ba_{x}CuO_{4} reveals an ordered state at low temperatures. Inside the CuO_{2} planes a combined order of charge stripes and antiferromagnetic spin stripes is observed. The ordering results from the interaction between charge, spin and lattice degrees of freedom. Here the lattice degrees of freedom play a major role. Particularly, a structural transition from an orthorhombic to a tetragonal symmetry is prerequisite for the observation of the ordered state. The cell constructed in this work allows a more exact analysis of the coupling between the crystal lattice and the formation of the charge and spin ordered phase. The manganite system Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3} shows a strong magnetoresistive effect, called colossal magnetoresistance (CMR). In this system, several ordered phases can be found, which exhibit charge, spin and - since the orbital degree of freedom is also present in the manganites - additionally orbital ordering phenomena. In particular, an antiferromagnetically spin ordered insulating phase, which is connected to a charge- and orbital ordered state competes with a ferromagnetic metallic phase. This competition leads to a phase separation, which determines the properties of the sample. Both phases are strongly coupled to the lattice degrees of freedom, so that application of external pressure drastically affects the interplay between the different phases and allows a detailed study of the relation between the charge and orbital ordered phase and the crystal structure. / Die vorliegende Arbeit befaßt sich mit dem Studium der Ordnungszustände von Ladungen und Orbitalen und deren Beeinflußung durch externen Druck. Als experimentelle Neuentwicklung wurde dafür eine Druckzelle entworfen, mit deren Hilfe die Beobachtung der jeweiligen Ordnungsphänomene unter Druck mittels der Streuung hochenergetischer Synchtrotronstrahlung möglich ist. Die Zelle erlaubt die Messung der orbitalen und Ladungsüberstrukturreflexe, welche aus den geordneten Zuständen resultieren, in einem Druckbereich bis 1.25 GPa. Die experimentelle Herausforderung ergibt sich hierbei aus der Tatsache, dass die Überstrukturreflexe im Vergleich zu den fundamentalen Reflexen der einkristallinen Proben sehr schwach sind und zusätzlich durch die Absorption im Mantelmaterial der Druckzelle stark beeinträchtigt werden. Darüber hinaus soll die Zelle bei tiefen Temperaturen einsetzbar und die Probe auch innerhalb der Zelle im reziproken Raum orientierbar sein. Bei dem hier realisierten Ansatz wurde für das Design daher der Typ einer kompakten Klemmdruckzelle aus einer Kupfer-Beryllium-Legierung gewählt, deren Zellwände im Bereich des Probenvolumens reduziert wurden. Dadurch ist der Einsatz der Zelle im Inneren eines Closed-Cycle-Kryostaten auf einem Einkristall-Diffraktometer möglich. Aufgrund der geringen Wandstärke der Zelle und der Nutzung von hochenergetischer Röntgenstrahlung (E = 100 keV am Messplatz BW5 des HASYLAB/DESY) werden Absorptionseffekte minimiert. Die neue Messmethode wurde im Rahmen der Arbeit etabliert und zur Untersuchung zweier wichtiger Übergangsmetalloxidverbindungen (dotierte Kuprate, Manganate), die zur Klasse der stark korrelierten Elektronensysteme gehören, eingesetzt. Das 1/8-dotierte Kupratsystem La_{2-x}Ba_{x}CuO_{4}, weist bei tiefen Temperaturen einen statisch geordneten Zustand auf. Innerhalb der CuO_{2}-Schichten des Kristalls ergibt sich eine Ordnung, bei der sich Streifen lokalisierter Löcher und antiferromagnetische Bereiche abwechseln. Ursache dieses Zustands ist das Wechselspiel von Ladungen, Spins und strukturellen Freiheitsgraden. Dabei spielen letztere eine herausgehobene Rolle. So ist insbesondere ein struktureller Übergang von einer orthorhombischen zu einer tetragonalen Phase Voraussetzung für die Beobachtung der Ordnung. Die in dieser Arbeit aufgebaute Druckzelle erlaubt eine genauere Analyse des Zusammenhangs zwischen Struktur des Kristalls und der Ausbildung der ladungs- und spingeordneten Phase. Das Manganatsystem Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3}, zeichnet sich durch einen sehr starken magnetoresistiven Effekt aus, der auch als kolossaler Magnetowiderstand (CMR) bezeichnet wird. Auch hier kann bei tiefen Temperaturen eine geordnete Phase beobachtet werden. Allerdings spielt in diesem System zusätzlich der orbitale Freiheitsgrad der Elektronen eine entscheidende Rolle, so dass sich eine kombinierte Ladungs- und Orbitalordnung ergibt. Diese Phase, die isolierend und zusätzlich antiferromagnetisch geordnet ist, steht im direkten Wettbewerb zu einer ferromagnetischen Phase. Aus dieser Konkurrenz ergibt sich eine Tendenz zur Phasenseparation, deren Effekte die Eigenschaften des Kristalls dominieren. Da beide Phasen stark an die strukturellen Freiheitsgrade gekoppelt sind, läßt sich das Gleichgewicht zwischen ihnen durch externen Druck beeinflussen und die Abhängigkeit der ladungs- und orbitalgeordneten Phase von den strukturellen Eigenschaften des Kristalls im Detail untersuchen.
19

Structural and Magnetic Properties of the Glass-Forming Alloy Nd60Fe30Al10 / Mikrostrukturelle und magnetische Eigenschaften der glasbildenden Legierung Nd60Fe30Al10

Bracchi, Alberto 18 November 2004 (has links)
No description available.
20

Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance / Kleine organische Moleküle: Zusammenhang zwischen Molekülstruktur, Dünnschichtwachstum und Solarzelleneffizienz

Schünemann, Christoph 18 February 2013 (has links) (PDF)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.

Page generated in 0.1024 seconds