311 |
Electronic Structures and Energy Level Alignment in Mesoscopic Solar Cells : A Hard and Soft X-ray Photoelectron Spectroscopy StudyLindblad, Rebecka January 2014 (has links)
Photoelectron spectroscopy is an experimental method to study the electronic structure in matter. In this thesis, a combination of soft and hard X-ray based photoelectron spectroscopy has been used to obtain atomic level understanding of electronic structures and energy level alignments in mesoscopic solar cells. The thesis describes how the method can be varied between being surface and bulk sensitive and how to follow the structure linked to particular elements. The results were discussed with respect to the material function in mesoscopic solar cell configurations. The heart of a solar cell is the charge separation of photoexcited electrons and holes, and in a mesoscopic solar cell, this occurs at interfaces between different materials. Understanding the energy level alignment between the materials is important for developing the function of the device. In this work, it is shown that photoelectron spectroscopy can be used to experimentally follow the energy level alignment at interfaces such as TiO2/metal sulfide/polymer, as well as TiO2/perovskite. The electronic structures of two perovskite materials, CH3NH3PbI3 and CH3NH3PbBr3 were characterized by photoelectron spectroscopy and the results were discussed with support from quantum chemical calculations. The outermost levels consisted mainly of lead and halide orbitals and due to a relatively higher cross section for heavier elements, hard X-ray excitation was shown useful to study the position as well as the orbital character of the valence band edge. Modifications of the energy level positions can be followed by core level shifts. Such studies showed that a commonly used additive in mesoscopic solar cells, Li-TFSI, affected molecular hole conductors in the same way as a p-dopant. A more controlled doping can also be achieved by redox active dopants such as Co(+III) complexes and can be studied quantitatively with photoelectron spectroscopy methods. Hard X-rays allow studies of hidden interfaces, which were used to follow the oxidation of Ti in stacks of thin films for conducting glass. By the use of soft X-rays, the interface structure and bonding of dye molecules to mesoporous TiO2 or ZnO could be studied in detail. A combination of the two methods can be used to obtain a depth profiling of the sample.
|
312 |
Aqueous Solutions as seen through an Electron Spectrometer : Surface Structure, Hydration Motifs and Ultrafast Charge Delocalization DynamicsOttosson, Niklas January 2011 (has links)
In spite of their high abundance and importance, aqueous systems are enigmatic on the microscopic scale. In order to obtain information about their geometrical and electronic structure, simple aqueous solutions have been studied experimentally by photo- and Auger electron spectroscopy using the novel liquid micro-jet technique in conjunction with synchrotron radiation. The thesis is thematically divided into three parts. In the first part we utilize the surface sensitivity of photoelectron spectroscopy to probe the distributions of solutes near the water surface. In agreement with recent theoretical predictions we find that large polarizable anions, such as I- and ClO4-, display enhanced surface propensities compared to smaller rigid ions. Surface effects arising from ion-ion interactions at higher electrolyte concentrations and as function of pH are investigated. Studies of linear mono-carboxylic acids and benzoic acid show that the neutral molecular forms of such weak acids are better stabilized at the water surface than their respective conjugate base forms. The second part examines what type of information core-electron spectra can yield about the chemical state and hydration structure of small organic molecules in water. We demonstrate that the method is sensitive to the protonation state of titratable functional groups and that core-level lineshapes are dependent on local water hydration configurations. Using a combination of photoelectron and X-ray absorption spectroscopy we also show that the electronic re-arrangement upon hydrolysis of aldehydes yields characteristic fingerprints in core-level spectra. In the last part of this thesis we study ultrafast charge delocalization dynamics in aqueous solutions using resonant and off-resonant Auger spectroscopy. Intermolecular Coulombic decay (ICD) is found to occur in a number of core-excited solutions where excess energy is transferred between the solvent and the solute. The rate of ultrafast electron delocalization between hydrogen bonded water molecules upon oxygen 1s resonant core-excitation is found to decrease upon solvation of inorganic ions. The presented work is illustrative of how core-level photoelectron spectroscopy can be valuable in the study of fundamental phenomena in aqueous solutions.
|
313 |
Příprava a studium katalytického systému Cu(O)-CeO2 metodami povrchové analýzy / The preparation and study of catalytic system Cu(O)-CeO2 using surface analytical methodsŠmíd, Břetislav January 2013 (has links)
Title: The preparation and study of catalytic system Cu(O)-CeO2 using surface analytical methods Author: Břetislav Šmíd Department: Department of Surface and Plasma Science Supervisor of the doctoral thesis: Doc. Mgr. Iva Matolínová, Dr. Abstract: This work is concerned with a study of copper/copper oxide - cerium dioxide systems and their interaction with CO and H2O molecules. Investigated samples were prepared in the form of powder catalysts and also as very well defined model inverse systems. The low temperature CO oxidation powder catalysts were studied by means of XPS, XRD, SEM, TEM and in micro-reactor system allowing the CO oxidation examination. The study of H2O adsorption and co-adsorption of H2O with CO were carried out on model inverse systems CeOx(111)/Cu(111) in ultra-high vacuum conditions using X-ray, synchrotron radiation (SRPES), resonant (RPES) photoelectron spectroscopies and LEED. It was observed on the stoichiometric surface water adsorbs molecularly at 120 K while on the reduced surface and surface of CeO2 islands on Cu(111) the H2O adsorption is partially dissociative with formation of OH groups. The increase of Ce3+ species (i.e. surface reduction) observed after H2O adsorption was explained as an electronic effect of the Ce 4f charge accumulation and Ce 5d charge depletion....
|
314 |
Metal-loaded graphitic carbon nitride for photocatalytic hydrogen production and the development of an innovative photo-thermal reactorCaux, Marine January 2018 (has links)
The path towards mitigation of anthropogenic greenhouse gas emissions lies in the transition from conventional to sustainable energy resources. The Hydrogen Economy, a cyclic economy based on hydrogen as a fuel, is suggested as a tool in the necessary energy transition. Photocatalysis makes use of sunlight to promote thermodynamically non-favoured reactions such as water splitting, allowing for sustainable hydrogen production. Harvesting thermal energy along with photonic energy is an interesting concept to decrease the activation energy of water splitting (i.e. ΔG = + 237.2 kJ∙mol−1). This work aims to confront this hypothesis in a gas phase photo-thermal reactor designed specifically for this study. The photocatalyst chosen is graphitic carbon nitride (g-C3N4), an organic semiconductor possessing a narrow band gap (i.e. 2.7 eV) as well as a band structure which theoretically permits water splitting. The photocatalytic performance of Pt/g-C3N4 for hydrogen evolution was tuned by altering its synthetic temperature. Electron paramagnetic resonance was used to gain insight on the evolution of the photocatalyst activity with synthesis temperature. Then, gold nanoparticles were deposited on g-C3N4 surface. Localized surface plasmon resonance properties of gold nanoparticles are reported in the literature to be influenced by temperature. Therefore Au/g-C3N4 appeared as a promising candidate for photo-thermal water splitting. X-ray spectroscopy unveiled interesting observations on the gold oxidation state. Moreover, under specific reduction conditions, gold nanoparticles with a wide variety of shapes characterized by sharp edges were formed. Finally, the development of the photo-thermal reactor is presented. The design process and the implementation of this innovative reactor are discussed. The reactor was successfully utilized to probe photoreactions. Then, the highly energy-demanding photocatalytic water splitting was proven not to be activated by temperature in the photo-thermal apparatus.
|
315 |
Charge Carrier Trap Spectroscopy on Organic Hole Transport MaterialsPahner, Paul 25 January 2017 (has links) (PDF)
Electronic circuits comprising organic semiconductor thin-films are part of promising technologies for a renewable power generation and an energy-efficient information technology. Whereas TV and mobile phone applications of organic light emitting diodes (OLEDs) got ready for the market awhile ago, organic photovoltaics still lack in power conversion efficiencies, especially in relation to their current fabrication costs. A major reason for the low efficiencies are losses due to the large number of charge carrier traps in organic semiconductors as compared to silicon. It is the aim of this thesis to identify and quantify charge carrier traps in vacuum-deposited organic semiconductor thin-films and comprehend the reasons for the trap formation. For that, the techniques impedance spectroscopy (IS), thermally stimulated currents (TSC), and photoelectron spectroscopy are utilized.
In order to assess the absolute energy of charge carrier traps, the charge carrier transport levels are computed for various hole transport materials such as MeO-TPD, pentacene, and ZnPc. Unlike inorganics, organic semiconductors possess in first-order approximation Gaussian distributed densities of states and temperaturedependent transport levels. The latter shift by up to 300 meV towards the energy gap-mid when changing from room temperature to 10 K as it is done for TSC examinations.
The frequency-dependent capacitance response of charge carrier traps in organic Schottky diodes of pentacene and ZnPc are studied via impedance spectroscopy. In undoped systems, deep traps with depths of approx. 0.6 eV and densities in the order of 1016...1017 cm−3 are prevailing. For pentacene, the deep trap density is reduced when the material undergoes an additional purification step. Utilizing p-doping, the Fermi level is tuned in a way that deep traps are saturated. Vice versa, the freeze-out of p-doped ZnPc provides further insight into the influence of trap-filling, impurity saturation and reserve on the Fermi level position in organic semiconductors. Furthermore, charge carrier traps are investigated via thermally stimulated currents. It is shown that the trap depths are obtained correctly only if the dispersive transport of the released charge carriers until their extraction is considered.
For the first time, the polarity of charge carrier traps in MeO-TPD, ZnPc, and m-MTDATA is identified from TSC’s differences in release time when spacer layers are introduced in the TSC samples. Simultaneously, tiny hole mobilities in the order of 10−13 cm2 Vs−1 are detected for low-temperature thin-films of the hole transporter material Spiro-TTB. It is shown for Spiro-TTB co-evaporated with the acceptor molecule F6-TCNNQ and a p-doped ZnPc:C60 absorber blend that the doping process creates shallow trap levels. Finally, various organic hole transport materials are examined upon their stability in water and oxygen atmosphere during sample fabrication and storage of the organic electronics. In case of pentacene, ZnPc, MeO-TPD, and m-MTDATA, hole traps are already present in unexposed thin-films, which increase in trap density upon oxygen exposure. A global trap level caused by oxygen impurities is found at energies of 4.7...4.8 eV that is detrimental to hole transport in organic semiconductors. / Elektronische Bauelemente aus Dünnschichten organischer Halbleiter sind Teil möglicher Schlüsseltechnologien zur regenerativen Energiegewinnung und energieeffizienten Informationstechnik. Während Fernseh- und Mobilfunkanwendungen organischer Leuchtdioden (OLEDs) bereits vor einiger Zeit Marktreife erlangt haben, ist die organische Photovoltaik (OPV) noch durch zu hohe Fertigungskosten in Relation zu unzureichenden Effizienzen unrentabel. Ein wesentlicher Grund für die niedrigen Wirkungsgrade sind Verluste durch die im Vergleich zu Silizium hohe Zahl an Ladungsträgerfallen in organischen Halbleitern. Ziel dieser Arbeit ist es, mittels Impedanz-Spektroskopie (IS), thermisch stimulierten Strömen (TSC) und Photoelektronenspektroskopie methodenübergreifend Ladungsträgerfallen in vakuumverdampften organischen Dünnschichten zu identifizieren, zu quantifizieren und ihre Ursachen zu ergründen.
Um die Energie von Ladungsträgerfallen absolut beziffern zu können, wird zunächst für verschiedene Lochtransportmaterialien wie z.B. MeO-TPD, Pentazen und ZnPc die Transportenergie aus den in erster Ordnung gaußförmigen Zustandsdichten berechnet. Im Gegensatz zu anorganischen Halbleitern ist die Transportenergie in organischen Halbleitern temperaturabhängig. Sie verschiebt sich beim Übergang von Raumtemperatur zu 10 K, wie für TSC Untersuchungen bedeutsam, um bis zu 300 meV in Richtung der Bandlückenmitte.
Mittels Impedanz-Spektroskopie wird die frequenzabhängige Kapazitätsantwort von Ladungsträgerfallen in organischen Schottky-Dioden aus Pentazen und ZnPc untersucht. In undotierten Systemen dominieren Defekte mit Tiefen um 0.6 eV, deren Dichte in der Größenordnung von 1016...1017 cm−3 liegt, sich aber im Fall von Pentazen durch einen zusätzlichen Materialaufreinigungsschritt halbieren lässt. Über p-Dotierung wird das Fermi-Level so eingestellt, dass tiefe Fallen abgesättigt werden können. Umgekehrt liefert das Ausfrieren von p-dotiertem ZnPc weitere Belege für den Einfluss von Fallenzuständen, Störstellen-Erschöpfung und Reserve auf das Fermi-Level in dotierten organischen Halbleitern.
Im Weiteren werden Ladungsträgerfallen über thermisch stimulierte Ströme untersucht. Es wird gezeigt, dass die Fallentiefen nur dann konsistent bestimmt werden, wenn der dispersive Transport von freigesetzten Ladungsträgern zur Extraktionsstelle berücksichtigt wird. Durch Einführung von ’Abstandshalterschichten’ werden erstmalig über TSC die Polaritäten von Ladungsträgerfallen in MeO-TPD, ZnPc und m-MTDATA per Laufzeitunterschied bestimmt.
Gleichzeitig werden geringste Löcherbeweglichkeiten in der Größenordnung von 10−13 cm2 Vs−1 für stark gekühlte Dünnschichten des Lochtransporters Spiro-TTB gemessen. Wie für Spiro-TTB koverdampft mit dem Akzeptormolekül F6-TCNNQ und p-dotierte Mischschichten der Absorbermaterialien ZnPc und C60 gezeigt, erzeugt Dotierung relativ flache Störstellen. Abschließend werden verschiedene organische Lochtransporter-Materialien auf ihre Stabilität in Wasser- und Sauerstoffatmosphären während der Prozessierung und der Lagerung fertiger elektronischer Bauelemente untersucht. Für Pentazen, ZnPc, MeO-TPD und m-MTDATA werden Löcherfallen in intrinsischen Dünnschichten nachgewiesen. Bei Kontakt mit Sauerstoff nimmt deren Defektdichte zu. Es findet sich ein universales Fallenniveau bei rund 4.7...4.8 eV, verursacht durch Sauerstoffverunreinigungen, welches den Lochtransport in organischen Halbleitern limitiert.
|
316 |
Self-assembly of monolayers of aromatic carboxylic acid molecules on silver and copper modified gold surfaces at the liquid-solid interfaceAitchison, Hannah January 2015 (has links)
Exploiting coordination bonding of aromatic carboxylic acids at metal surfaces, this thesis explores new directions in the design and application of self-assembled monolayers (SAMs). The SAMs are investigated using a multi-technique approach comprising of a complementary combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, the X-ray standing wave technique (XSW) was used to characterise the substrates. The process of layer formation and the final structures of the SAMs are found to be strikingly dependent on the combination of molecule and substrate, which is discussed in terms of the intermolecular and molecule-substrate interactions, bonding geometries and symmetry of the organic molecules. This is illustrated by the dramatic difference between molecular adsorption on Ag and Cu for molecules such as biphenyl-3,4',5-tricarboxylic acid and biphenyl-4-acetic acid. In the case of self-assembly on Cu, the molecule-substrate interactions play a decisive role in the resulting SAM structure, whereas on Ag, the intermolecular interactions dominate over the weaker molecule-substrate binding. This exploration of the balance of interactions that lead to the formation of these SAM structures lays the foundation for a systematic design of the structures and properties of aromatic carboxylic acid based monolayers. Finally, different applications and properties of some SAMs were investigated, namely coordination of a Pd(II) complex to a pyridine/pyrazole terminated molecule adsorbed on Ag. Evidence of coordination of Pd(II) to single molecules was provided by STM, XPS and NEXAFS spectroscopy. Additionally, controlled STM tip induced modification of local areas of a 1,3,5-tris(4-carboxyphenyl)benzene SAM on Ag was performed, opening an exciting prospect for nanoscale molecular manipulation.
|
317 |
Semiconductor composites for solid-state lighting / Composites semi-conducteurs pour l'éclairageJama, Mariel Grace 27 October 2015 (has links)
Phases organiques luminescentes qui sont incorporés dans une matrice inorganique conductrice est proposé dans cette étude pour la couche active d'une diode émettant de la lumière hybride. Dans ce composite, le colorant organique joue le rôle de site de recombinaison radiative de porteurs de charge qui sont injectées dans la matrice de transport ambipolaire inorganique. Comme l'un des combinaisons de matériaux de candidat, bicouche et des films minces composites de ZnSe et un complexe d'iridium rouge (Ir(BPA)) émetteur de lumière organique ont été préparé in situ par UHV technique d'évaporation thermique. Les alignements de bande d'énergie mesurée par spectroscopie de photoélectrons (PES) pour le ZnSe/Ir(BPA)et deux couches de ZnSe+Ir(BPA) révèlent que le composite HOMO et LUMO du colorant organique sont positionnées dans la largeur de bande interdite de ZnSe. Cette gamme offre les forces motrices énergiques nécessaires pour les transferts d'électrons et de trous de ZnSe à Ir(BPA). Par l'interprétation des données du PES,la composition chimique des interfaces ont également été déterminés. Le ZnSe/Ir(BPA) interface est réactive, même si elle est d'une pureté de matériaux de haute.Pendant ce temps, l'Ir (BPA)/ZnSe interface ne présente pas la pureté matériel. Ceci est représenté à la nature de ZnSe évaporation comme Zn particuliers et des fluxSE2, associée à des interactions chimiques avec le Ir(BPA) substrat. L'interface est,de ce fait, composé d'une multitude de phases, les phases de Se0, ZnSe rares, réduit Se et oxydé molécules de colorant, et de Zn qui sont intercalées atomes dans leIr(BPA) substrat. PES des composites ZnSe+Ir(BPA) révèle des tendances similaires à l'Ir(BPA)/ZnSe interface. A des émissions de lumière rouge surfaciques et intermittents fanées ont été observés à partir de dispositifs qui incorporent couches alternées séquences de ZnSe et Ir(BPA) pour la couche active. / Luminescent organic phases that are embedded in a conductive inorganicmatrix is proposed in this study for the active layer of a hybrid light-emitting diode. Inthis composite, the organic dye acts as the radiative recombination site for chargecarriers that are injected into the inorganic ambipolar transporting matrix. As one ofthe candidate material combinations, bilayer and composite thin films of ZnSe and ared iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHVthermal evaporation technique. The energy band alignments measured byphotoelectron spectroscopy (PES) for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA)composite reveal that the HOMO and LUMO of the organic dye are positioned in theZnSe bandgap. This lineup provides the required energetic driving forces for electronand hole transfers from ZnSe to Ir(BPA). By interpreting PES data, the chemicalcomposition of the interfaces were also determined. The ZnSe/Ir(BPA) interface isreactive even though it is of high material purity. Meanwhile, the Ir(BPA)/ZnSeinterface does not exhibit material purity. This is accounted to the nature of ZnSeevaporation as individual Zn and Se2 fluxes, coupled with chemical interactions withthe Ir(BPA) substrate. The interface is, thereby, composed of an abundance of Se0phases, sparse ZnSe phases, reduced Se and oxidized dye molecules, and Znatoms that are intercalated into the Ir(BPA) substrate. PES of the ZnSe+Ir(BPA)composites reveals similar trends to the Ir(BPA)/ZnSe interface. A faded areal andintermittent red light emissions were observed from devices that incorporatedalternating layer sequences of ZnSe and Ir(BPA) for the active layer.
|
318 |
Charakterizace elektronických vlastností nanodrátů pro elektrochemii / Characterization of electronic properties of nanowires for electrochemistryKovařík, Martin January 2019 (has links)
Elektrochemické metody nacházejí využití v mnoha aplikacích (např. senzorice, skladování el. energie nebo katalýze). Jejich nespornou výhodou je nízká finanční náročnost na přístrojové vybavení. Abychom lépe porozuměli procesům probíhajícím na elektrodách, je dobré znát elektronickou pásovou strukturu materiálu elektrody. Úkolem této práce je vyhodnotit výstupní práci a pozici hrany valenčního pásu nových materiálů pro elektrody, konkrétně cínem dopovaného oxidu india pokrytého nanotrubicemi sulfidu wolframičitého. Ultrafialová fotoelektronová spektroskopie a Kelvinova silová mikroskopie jsou metody použité pro tuto analýzu. Zvláštní důraz je kladen na přípravu vzorků elektrod pro měření, aby nedošlo k nesprávné interpretaci výsledků vlivem vnějších efektů jako je např. kontaminace nebo modifikace povrchu.
|
319 |
Diagnostika plazmochemických depozičních procesů s využitím organokovových sloučenin / Diagnostics of plasma chemical deposition processes using organometallic precursorsSahánková, Hana January 2011 (has links)
The aim of this work is diagnostic of plasma chemical deposition thin films based on organometallic precursors. Thin layers have recently become one of the most used methods for surface treatment of materials. They are used as a protective, functional layer, they improve surface properties of materials or increase or reduce the adhesion to various compounds. Plasma polymers are a modern trend in surface treatment technology. Their structure is different from classical polymers. The titanium (IV)isopropoxide was chosen as a monomer example, which is frequently used as a monomer for photocatalytic TiO2 films plasma deposition. These thin films are very promising for the removal of various air and water pollutants and thus they can significantly help in the increase of the environmental quality. Measurements took place on a commercial device Plasmatreater AS 400. The theoretical part describes the background needed for the study and diagnostics of plasma processes and technologies. The optical emission spectroscopy was chosen as a diagnostic method, and thus its principles are outlined in the theoretical part. Infrared spectroscopy and X-ray photoelectron spectroscopy were applied for the diagnostics of prepared thin films and they are also described in the theoretical part. The experimental part contains two sections. The first section is dedicated to the plasma diagnostics by optical emission spectroscopy. Discharge was generated in nitrogen or in the air. Measurements were performed at seven different duty cycles and at two different flow rates for each of the working gases. The molecular bands of nitrogen first negative and second systems, CN violet bands, and atomic lines of oxygen and nozzle elements (Cu, Cr) were identified in the spectra. The titanium lines, and bands of TiO were determined if the precursor was added. Electron temperature was calculated using chromium lines, and electron temperature maps were obtained for continuous mode and pulse mode with duty cycle 70% for nitrogen plasma with 500 sccm precursor flow. Similar discharge maps were also processed using the selected line of titanium (520 nm) TiO band (625 nm) again for the same discharge conditions. Furthermore, the dependences of the same quantities were obtained along the discharge axis as a function of duty cycle in both gases with precursor flow of 1000 sccm. The second part of results brings material analyzes of the deposited samples. The peaks of anatase and rutile have been identified by infrared spectroscopy. Using X-ray photoelectron spectroscopy, we found that our layers contain a significant amount of non-dissociated precursor. Moreover, a large number of radicals, which can interact with atmospheric gases, was determined on the surface. These radicals are removable by annealing or by ion etching. All results obtained during this research can significantly help us to improve the quality of deposited layers and allow us also some prediction of the thin film properties at given plasma conditions. Of course, further experimental as well as theoretical studies should be completed to obtain complete knowledge needed for the wide applications of these layers.
|
320 |
Spectroscopic ellipsometry for the in-situ investigation of atomic layer depositionsSharma, Varun 15 May 2014 (has links)
Aim of this student research project was to develop an Aluminium Oxide (Al2O3 ) ALD process from trimethylaluminum (TMA) and Ozone in comparison of two shower head designs. Then studying the detailed characteristics of Al2O3 ALD process using various measurement techniques such as Spectroscopic Ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). The real-time ALD growth was studied by in-situ SE. In-situ SE is very promising technique that allows the time-continuous as well as time-discrete measurement of the actual growth over an ALD process time. The following ALD process parameters were varied and their inter-dependencies
were studied in detail: exposure times of precursor and co-reactant as well as Argon purge times, the deposition temperature, total process pressure, flow dynamics of two different shower head designs. The effect of varying these ALD process parameters was studied by looking upon ALD cycle attributes. Various ALD cycle attributes are: TMA molecule adsorption (Mads ), Ligand removal (Lrem ), growth kinetics (KO3 ) and growth per cycle (GPC).:List of abbreviations and Symbols ........................XII
Lists of Figures and Tables ...................................XVIII
1 Introduction .......................................................1
I Theoretical Part ..................................................3
2 Alumina in electronic industry ............................5
3 Atomic Layer Deposition ....................................7
3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Process definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Benefits and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 ALD growth mechanism of Aluminium oxide from TMA/O 3 . . . . . . . . 9
3.5 Growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Comparison of TMA/O3 and TMA/H2O – A literature survey . . . . 14
4 Spectroscopic Ellipsometry .....................................................17
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Measuring Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Fitting and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Advantages and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 X-Ray Photoelectron Spectroscopy ..............................................25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 XPS mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 XPS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Advantages and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Atomic Force Microscopy .............................................................29
II Experimental Part ......................................................................31
7 Methodologies ............................................................................33
7 .1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 .2 ALD process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 .3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 .4 Spectroscopic Ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 .4.1 Tool and software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 .4.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 .4.3 Data evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7 .4.4 Post processing of data . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 .4.5 Sources of errors in SE . . . . . . . . . . . . . . . . . . . . . . . . . 43
8 Results and discussion ..........................................................47
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Kinetic ALD characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.1 TMA exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.2 Argon purging after TMA exposure . . . . . . . . . . . . . . . . . . . 50
8.2.3 Ozone exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.4 Argon purging after ozone exposure . . . . . . . . . . . . . . . . . . 52
8.3 Impact of process parameters on characteristic ALD growth attributes and film properties . . . . . . . . . .. . . . . . . . . . . . . . . . 53
8.3.1 Total process pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3.2 Ozone flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3.3 Deposition temperature . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9 Conclusions and outlook .......................................................63
References ...............................................................................68
III Appendix .............................................................................77
A Reference temperatures and ozone flow.............................. 79
B Process parameters ..............................................................81
|
Page generated in 0.0961 seconds