• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 386
  • 346
  • 91
  • 46
  • 19
  • 17
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1048
  • 568
  • 543
  • 282
  • 149
  • 86
  • 81
  • 77
  • 71
  • 69
  • 68
  • 62
  • 59
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Functional Characterization of Serine Hydrolases Mediating Lipid Metabolism and Protein Depalmitoylation in Asexual Stage Plasmodium Falciparum

Liu, Jiapeng 05 June 2023 (has links)
Malaria is an infectious disease caused by Plasmodium parasites and transferred by Anopheles mosquitos. Due to Artemisinin resistance, new druggable targets identification and new drug development are urgently needed. Serine hydrolases (SHs) are one of the largest classes of enzymes having important roles in life processes. The deadliest malaria parasite, P. falciparum, encodes more than 50 SHs including proteases, lipases, esterase and others, while only several of them have been characterized. The study of uncharacterized SHs will shed light on future drug development to treat malaria. In this study, we applied chemical biology and genetic approaches to identify SHs important for the pathogenic asexual stage growth of P. falciparum parasites. We mainly focused on a depalmitoylase essential for merozoite invasion and lysophospholipases (LPLs) essential for acquiring fatty acids (FAs) from the host. Identifying essential metabolic enzymes will benefit the treatment to malaria. We focused on metabolic SHs and identified two SHs were refractory to knock out. We studied a likely essential SH named PfABHD17A, which is a human depalmitoylase homolog. PfABHD17A is localized on the rhoptry, an organelle essential for invasion. We expressed the recombinant PfABHD17A, conducted inhibitor screen and discovered that human depalmitoylase inhibitor ML211 inhibits PfABHD17A in vitro. ML211 inhibits merozoite invasion but not egress, which together with the localization of PfABHD17A on the rhoptries, suggested that PfABHD17A is essential in merozoite invasion. We also purified PfABHD17A and verified that PfABHD17A may exhibit depalmitoylase activity in vitro. LPLs are important for asexual stage parasites acquiring FAs from the host. The P. falciparum genome includes 17 putative LPLs while LPLs responsible for hydrolyzing FA from lysophosphatidylcholine (LPC) in the asexual stage are currently unknown. Using a chemical biology approach, we identified serine hydrolase inhibitor AKU-010 inhibits LPC hydrolysis effectively. Using activity-based protein profiling (ABPP) and genetic approaches, we identified that AKU-010 inhibits a series of SHs including Exported Lipases (XLs), Exported Lipases Homolog (XLH) and Plasmodium falciparum prodrug activation and resistance esterase (PfPARE). We generated a series of knockout parasite lines on the AKU-010 targets and identified that red blood cell (RBC)-localized XL2 and cytosolic XLH4 contribute to most LPC hydrolysis activity in the asexual stage. XLs and XLHs are important for parasites using LPC for growth and contribute to detoxification from accumulated LPC. XL2 and XL4 together are essential for parasite growth under high LPC concentration medium, such as human serum. XL/XLH-deficient parasites could still acquire FA from LPC, which is mainly contributed by parasite membrane- localized PfPARE. PfPARE has little impact on parasite growth and LPC metabolism with the existence of XLs and XLHs but is important after the loss of XLs and XLHs. Parasites deficient in PfPARE, XLs and XLHs have little ability to release FA from LPC and cannot use LPC as FAs source for growth. In summary, we identified metabolic SHs mediating protein depalmitoylation and lipid metabolism and in asexual stage Plasmodium falciparum, which may benefit future drug development to treat malaria. / Doctor of Philosophy / Malaria is an infectious disease caused by Plasmodium parasites and transferred by mosquitos. New druggable target identification and drug development are urgently needed to deal with the malaria issue. We focused on an understudied enzyme superfamily termed serine hydrolase (SHs), which includes more than 50 members in the deadliest malaria parasite, P. falciparum. We identified that several druggable enzymes, which can mediate protein depalmitoylation and lipid metabolism, are important for parasite growth in the pathogenic stage. Identifying essential metabolic enzymes will benefit the treatment to malaria. We screened eleven SHs and discovered that two of them are likely essential in the pathogenic stage. We focused on one human depalmitoylase homolog termed PfABHD17A. We screened the inhibitors on PfABHD17A and used the inhibitor to suggest that PfABHD17A is essential for the growth of pathogenic stage parasites. We also identified lipases important for acquiring fatty acids (FAs) from the host. Using chemical biology and genetic approaches, we discovered that three lipases are important for acquiring FAs form the host in the pathogenic stage. Inhibiting these enzymes may kill the parasite in the host.
272

Un niveau minimal d'un homologue potentiel de la phosphoinositide-phosphatase SAC1 chez "Plasmodium falciparum" semble requis pour assurer la survie durant le stade érythrocytaire asexué

Thériault, Catherine. 24 April 2018 (has links)
La malaria, endémique dans 91 pays tropicaux et sub-tropicaux, est l’une des maladies infectieuses les plus mortelles chez l’humain. Le fardeau de cette maladie porte principalement sur l’Afrique, qui compte plus de 90% des cas d’infections ainsi que des morts enregistrés, la majorité étant des enfants en bas âge. Des cinq espèces de parasites du genre Plasmodium qui peuvent causer la maladie chez l’humain, Plasmodium falciparum est de loin la plus mortelle et la plus étudiée. La résistance aux médicaments actuels et l’absence d’un vaccin préventif procurant une immunité de longue durée démontrent l’urgent besoin de trouver de nouvelles cibles thérapeutiques. Chez les cellules eucaryotes, l’identité des organites cellulaires est définie par les phosphoinositides, des composants mineurs des membranes cellulaires, et maintenue grâce aux kinases et aux phosphatases impliquées dans leur métabolisme. Les rôles de certaines phospholipides-kinases dans plusieurs étapes critiques du cycle de vie de Plasmodium ont récemment été découverts, toutefois, rien n’est connu quant aux fonctions des phosphoinositides phosphatases de cet organisme. Les travaux décrits ci-dessous présentent une première caractérisation d’une protéine homologue à la famille des phosphoinositides phosphatases SAC1. Les résultats montrent que cette protéine est exprimée durant tout le cycle érythrocytaire asexué et qu’elle se localise au réticulum endoplasmique ainsi que potentiellement à l’appareil de Golgi. L’étude de lignées conditionnelles et knockout suggèrent qu’un niveau minimal de la protéine est nécessaire pour la survie du parasite durant le cycle érythrocytaire. En somme, la combinaison des résultats obtenus laisse penser que cette protéine pourrait avoir une fonction dans le système de sécrétion du parasite P. falciparum et qu’elle pourrait donc constituer une cible thérapeutique intéressante pour le développement de nouveaux antimalariaux. / Malaria is endemic in 91 tropical and sub-tropical countries and is one of the deadliest infectious human diseases. Africa has the highest burden with more than 90% of cases and malaria deaths registered yearly, mostly in children under 5 years-old. Despite the fact that infection in human can be caused by five Plamsodium species, infection by Plasmodium falciparum is the most severe and therefore the most studied. Resistance to antimalarials and the absence of a preventive vaccine show the urgent need of new therapeutic targets. In eukaryotic cells, organelles identity is defined by phosphoinositides, minor membranes components, and maintained by the kinases and phosphatases involved in their metabolism. The fact that certain kinases have roles in critical steps of Plasmodium life cycle has recently been acknowledged. However, the roles of the phosphatases are still unknown. My work presents a first characterization of a putative phosphoinositide phosphatase of the SAC1 family. Results provided show that the protein is expressed throughout the asexual blood stages and that it localizes to endoplasmic reticulum and potentially to the Golgi apparatus. Studies on knockdown and knockout strains suggest that a minimal amount of the protein is required during the asexual blood stages. In summary, the combination of the results presented suggests that the protein has an important function in the parasite P. falciparum secretion system and therefore, may represent an interesting potential target for drug development.
273

Rôle du trafic endocytaire dans la biogenèse des organites du complexe apical de l'agent de la malaria, Plasmodium falciparum

Galaup, Thomas 12 November 2023 (has links)
En 2020, la malaria a provoqué 241 millions de cas d'infections et 627 000 morts. La faible efficacité du vaccin disponible et la résistance aux traitements rendent indispensable l'identification de cibles thérapeutiques. Plasmodium falciparum (Pf) envahit les érythrocytes pour s'y répliquer. Pour cela, de protéines contenues dans des organites d'invasion, tels que les micronèmes et les rhoptries rassemblés à un complexe apical, sont sécrétées. Le trafic des protéines entre l'appareil de Golgi et les organites d'invasion est médié par la PfSortiline. Dans les organismes modèles, la sortiline est recyclée entre les organites cibles et l'appareil de Golgi via le complexe protéique rétromère composé des protéines de tri vacuolaire (Vps) Vps26-29-35. Ce complexe est recruté via les complexes VpsC, composé de Vps11-16-18-33, CORVET composé de Vps3-8 et HOPS, composé de Vps39-41. Chez Pf, l'ensemble des composants des complexes VpsC et rétromère sont conservés. Seulement PfVps3 du complexe CORVET est retrouvée et le complexe HOPS est absent. L'hypothèse du projet est que ces protéines conservées sont impliquées dans la biogenèse des organites du complexe apical via le recyclage de la PfSortiline vers l'appareil de Golgi. Pour vérifier cela, des souches de parasites exprimant les protéines de fusion PfVps3-11-16-18-29 étiquetées à un domaine GFP ont été construites. Des techniques de Western Blot et de microscopie à fluorescence ont montré que ces protéines de fusion sont exprimées lors du cycle érythrocytaire. Il semble que PfVps29-GFP localise à des structures semblables aux endosomes et partiellement aux micronèmes. Les protéines PfVps16-18-GFP semblent localiser aux micronèmes et partiellement aux rhoptries et à l'appareil de Golgi. Finalement, des souches dans lesquelles les protéines PfVps3-16-29-GFP peuvent être délocalisées de façon conditionnelle ont été construites. Il a été montré que PfVps16-GFP semble essentielle à la survie de Pf. Ce projet participe à la caractérisation de nouvelles pistes thérapeutiques antipaludiques. / Malaria was responsible for 627,000 deaths and 241 million infections in 2020 alone. Drug resistance, and the poor efficacy of the only available vaccine, are strong arguments supporting the need to identify therapeutic targets. The malaria parasite Plasmodium falciparum (Pf) invades erythrocytes and multiplies inside them. To do so, it secretes invasion proteins located inside organelles, like micronemes and rhoptries, which are localised at an apical complex. Protein trafficking from the Golgi apparatus to these organelles is dependent on PfSortilin. In model organisms, this protein is recycled between the target organelles and the Golgi Apparatus by a protein complex called retromer. This complex is composed of Vacuolar Sorting Proteins (Vps)-26-29-35. The retromer complex is recruited by complexes, composed of Vps11-16-18-33, CORVET, composed of Vps3-8, and HOPS, composed of Vps39-41. In Pf, all components of the retromer and the VpsC complexes are conserved. However, only PfVps3 of the CORVET complex is conserved and the HOPS complex is absent. We hypothesized that conserved proteins play a key role in apical complex biogenesis by recycling PfSortilin to the Golgi apparatus. To verify the hypothesis, parasite strains coding the fusion proteins PfVps3-11-16-18-29 tagged with a GFP were generated. Western Blot and fluorescence microscopy showed that those proteins are expressed during the erythrocyte life cycle. PfVps29-GFP seemed to localize at endosome-like structures and partially at micronemes. PfVps16-18 seemed to localise at micronemes too and partially at rhoptries and at the Golgi apparatus. Finally, strains where PfVps3-16-29 could be functionally mislocalized have been generated. This technique showed that PfVps16-GFP were essential for Pf survival. Our work could lead to the characterization of new antimalarial drug targets.
274

Analysis of Plasmodium falciparum pre-replication complex and search for new antimalarials

Moe, David Jason 01 July 2002 (has links)
No description available.
275

Caractérisation d'un effecteur de phosphoinositides chez le parasite de la malaria Plasmodium falciparum

Gaumond, David 24 April 2018 (has links)
La malaria est une maladie infectieuse causant plus de 500 000 morts chaque année. La maladie est causée par un protozoaire de la famille Plasmodium. L’apparition de souches résistantes aux traitements actuels et l’absence de vaccin efficace rendent la découverte de nouvelles cibles thérapeutiques urgente. Le parasite possède un complexe apical, un groupement de vacuoles sécrétoires spécialisées contenant les protéines responsables de l’invasion du globule rouge. Nous nous intéressons aux mécanismes gouvernant le transport intracellulaire de ces protéines et à la biogenèse du complexe apical lors de la formation des nouveaux parasites. Plus particulièrement, nous nous intéressons au rôle des phosphoinositides dans le recrutement des protéines à la membrane de l’appareil de Golgi. Par analyse bio-informatique du génome de P. falciparum, nous avons identifié plusieurs protéines effectrices liant potentiellement les phosphoinositides. Les travaux présentés dans ce mémoire concernent Mal13P1.188, une protéine possédant un domaine Pleckstrin homology. Nous proposons que Mal13P1.188 ait un rôle dans la génération du complexe apical en recrutant les protéines le constituant à la membrane du Golgi par la liaison avec les phosphoinositides. Afin de vérifier nos hypothèses, nous avons généré une lignée de parasite dont le gène de Mal13P1.188 est fusionné avec une GFP et une hémagglutinine. À l’aide de cette lignée de parasite, nous avons pu identifier Mal13P1.188 à proximité de l’appareil de Golgi lorsque les parasites étaient sous la forme schizont du cycle érythrocytaire. D’autres expériences ont permis de confirmer que le domaine Pleckstrin homology de Mal13P1.188 était capable de reconnaître les différentes formes de phosphoinositides. Finalement, d’autres travaux devront être faits sur Mal13P1.188 afin de déterminer si elle est essentielle à la survie du parasite. / Malaria is a deadly infectious disease taking more than 500,000 lives each year. The disease is caused by a protozoan of the Plasmodium family. Resistant strains beginning to spread and the inexistence of an efficient vaccine make the discovery of new targets urgent. The parasite secretes proteins to invade the red blood cell. Those proteins are regrouped in the apical complex, a group of organelles used for the invasion. Our research team focus on the transport mechanisms that drive the formation of the apical complex during the cellular division of new parasite. In other terms, we are interested on the role of phosphoinositide in the recruitment of protein inside the Golgi apparatus. After a bioinformatics analyse the P. falciparum genome, we identified many effectors protein that can bind phosphoinositides. Among them, we focused our work on Mal13P1.188, a protein with a Pleckstrin homology domain. We propose that Mal13P1.188 has a role in the recruitment of the apical proteins to the Golgi membrane using phosphoinositide as a marker on the membrane. To verify that hypothesis, we generated a strain of parasite with endogenous Mal13P1.188 tagged to a GFP and a hemagglutinin. With those parasites, we identified Mal13P1.188 near the Golgi apparatus during the Schizont stage of the blood cycle. Other experiment confirmed that the Pleckstrin homology domain of Mal13P1.188 is able to bind different form of phosphoinositides. Finally, more work has to be done to confirm if Mal13P1.188 is essential to the parasite survival.
276

Repurposing of Human Protein Kinase Inhibitors Identifies Dual Stage Active Antimalarials

Bohmer, Monica J 01 January 2023 (has links) (PDF)
Malaria, a disease caused by members of the Plasmodium genus, remains a threat to global health. Despite the availability of therapeutics, Plasmodium's propensity for generating resistance-conferring mutations threatens the efficacy of these drugs. Therefore, it is essential to develop novel therapeutics, and one approach to discover such compounds is to repurpose current drugs as antimalarials. Human kinase inhibitors, most of which are developed as antineoplastics, are a valuable source of such novel compounds. Human kinase inhibitor research spans over twenty years, generating a wellspring of knowledge regarding compound design, mechanism, and tolerability that can be leveraged in the quest to develop new antiplasmodial drugs. Furthermore, the plasmodial kinome differs substantially from the human kinome, providing opportunities for selectivity and minimization of off-target effects in the host. To this end, we sought to identify and characterize compounds within human kinase inhibitor collections that have antiplasmodial effects. One library yielded a potent polo-like kinase 1 (PLK1) kinase inhibitor, BI-2536, which possessed potent antiplasmodial activity in both the asexual blood stage and liver stage and likely acts through involvement of amino acid starvation. Another library comprised exclusively of type II kinase inhibitors, designed to target kinases in the inactive conformation, produced several interesting lead compounds – TL5-135, YLIU-06-026-1, and the analog pair XMD13-99 and WZ9-034-2. These compounds were highly active against asexual blood stage parasites, killing rapidly while also possessing favorable selectivity and liver stage activity. In vivo, TL5-135 and YLIU-06-026-1 acted prophylactically by preventing infection, and therapeutically by resolving an established infection. Currently, investigations are underway to determine the mechanism of action of the lead compounds and to improve their druglike properties. In whole, this effort has not only yielded promising antiplasmodial compounds, but it also underscores the value of the repurposing approach in the quest for novel antimalarial drugs.
277

Une protéine à domaine PHOX de liaison aux phosphoinositides impliquée dans le transport de l'hémoglobine chez le parasite de la malaria Plasmodium falciparum

Crochetière, Marie-Ève 06 September 2019 (has links)
La malaria est un des fléaux les plus dévastateurs dans les pays en voie de développement. L’absence d’un vaccin et la résistance aux agents antimalariaux disponibles démontrent le besoin urgent d’identifier de nouvelles cibles thérapeutiques. Les phosphoinositides (PIP) sont des composants essentiels des membranes cellulaires chez les eucaryotes jouant un rôle important dans la signalisation intracellulaire, la synthèse d’ADN et le trafic protéique, par exemple. Malgré leur importance chez les eucaryotes, on en connaît peu sur leurs fonctions chez le parasite de la malaria Plasmodium falciparum. Dans notre laboratoire, nous avons réalisé un criblage par inactivation génique de 36 effecteurs potentiels de la voie métabolique PIP pour identifier les gènes qui sont essentiels à la prolifération chez P. falciparum. Notre étude a montré que 72% des gènes potentiellement impliqués dans la voie métabolique des PIP ne pouvaient être inactivés et sont donc potentiellement essentiels pour la survie du parasite. L’analyse d’une souche knock-out pour la protéine PfPX, ayant un domaine de liaison aux PIP de type Phox, a démontré un ralentissement sévère de la croissance du parasite. La caractérisation de la protéine PfPX a révélé qu’elle se localisait à la membrane de la vacuole digestive, le site où le parasite digère l'hémoglobine (Hb) de l'hôte afin de subvenir à ses besoins en acides aminés. Nous avons montré que les parasites dépourvus de la protéine Phox accumulaient plus d'Hb et que celle-ci était piégée dans des vésicules à proximité de la vacuole digestive, suggérant un rôle pour cette protéine dans la fusion des vésicules d’Hb avec la membrane de la vacuole digestive. Globalement, nos résultats ont révélé que les PIP ont un rôle important dans le transport de l'Hb chez P. falciparum / Malaria is one of the most devastating curses in developing countries. The absence of a vaccine and resistance to available antimalarial agents demonstrate the urgent need to identify new therapeutic targets. Phosphoinositides (PIPs) are essential components of cell membranes in eukaryotes, playing an important role in intracellular signaling, DNA synthesis and protein trafficking, for example. Despite their importance in eukaryotes, little is known about their functions in the malaria parasite Plasmodium falciparum. In our laboratory, we screened 36 putative effectors of the PIP pathway by gene inactivation to identify the genes that are essential for proliferation in P. falciparum. Our studies showed that 72% of genes possibly involved in the PIP pathway could not be inactivated and are therefore potentially essential for parasite survival. Analysis of a knockout strain for PfPX protein, having a Phox-like PIP binding domain, demonstrated a severe slowdown in parasite growth. Characterization of the PfPX protein revealed that it was localized to the food vacuole membrane, the site where the parasite digests the hemoglobin (Hb) of the host in order to meet his needs in amino acids, and in vesicular type structures. We have shown that parasites lacking the Phox protein accumulate more Hb and that it is trapped in vesicles near the digestive vacuole, suggesting a role for this protein in the fusion of Hb vesicles with the membrane of the digestive vacuole. Overall, our results revealed that PIPs play an important role in the transport of P. falciparum Hb
278

The genease activity of mung bean nuclease: fact or fiction?

Kula, Nothemba January 2004 (has links)
<p>The action of Mung Bean Nuclease (MBN) on DNA makes it possible to clone intact gene fragments from genes of the malaria parasite, Plasmodium. This &ldquo / genease&rdquo / activity has provided a foundation for further investigation of the coding elements of the Plasmodium genome. MBN has been reported to cleave genomic DNA of Plasmodium preferentially at positions before and after genes, but not within gene coding regions. This mechanism has overcome the difficulty encountered in obtaining genes with low expression levels because the cleavage mechanism of the enzyme yields sequences of genes from genomic DNA rather than mRNA. However, as potentially useful as MBN may be, evidence to support its genease activity comes from analysis of a limited number of genes. It is not clear whether this mechanism is specific to certain genes or species of Plasmodia or whether it is a general cleavage mechanism for Plasmodium DNA .There have also been some projects (Nomura et al., 2001 / van Lin, Janse, and Waters, 2000) which have identified MBN generated fragments which contain fragments of genes with both introns and exons, rather than the intact genes expected from MBN-digestion of genomic DNA, which raises concerns about the efficiency of the MBN mechanism in generating complete genes.</p> <p><br /> Using a large-scale, whole genome mapping approach, 7242 MBN generated genome survey sequences (GSSs) have been mapped to determine their position relative to coding sequences within the complete genome sequences of the human malaria parasite Plasmodium falciparum and the incomplete genome of a rodent malaria parasite Plasmodium berghei. The location of MBN cleavage sites was determined with respect to coding regions in orthologous genes, non-coding /intergenic regions and exon-intron boundaries in these two species of Plasmodium. The survey illustrates that for P. falciparum 79% of GSSs had at least one terminal mapping within an ortholog coding sequence and 85% of GSSs which overlapped coding sequence boundaries mapped within 50 bp of the start or end of the gene. Similarly, despite the partial nature of P.berghei genome sequence information, 73% of P.berghei GSSs had at least one terminal mapping within an ortholog coding sequence and 37% of these mapped between 0-50 bp of the start or end of the gene. This indicates that a larger percentage of cleavage sites in both P.falciparum and P.berghei were found proximal to coding regions. Furthermore, 86% of P.falciparum GSSs had at least one terminal mapping within a coding exon and 85% of GSSs which overlapped exon-intron boundaries mapped within 50bp of the exon start and end site. The fact that 11% of GSSs mapped completely to intronic regions, suggests that some introns contain specific cleavage sites sensitive to cleavage and this also indicates that MBN cleavage of Plasmodium DNA does not always yield complete exons.</p> <p><br /> Finally, the results presented herein were obtained from analysis of several thousand Plasmodium genes which have different coding sequences, in different locations on individual chromosomes/contigs in two different species of Plasmodium. Therefore it appears that the MBN mechanism is neither species specific nor is it limited to specific genes.</p>
279

Propriétés et mécanisme d'action des analogues de choline, une nouvelle classe d'antipaludiques. Etude de l'albitiazolium, candidat clinique. / Properties and mechanism of action of choline analogues, a new class of antimalarials. Study of the clinical candidate albitiazolium.

Wein, Sharon 26 November 2012 (has links)
Les analogues de choline constituent une nouvelle classe d'antipaludiques qui inhibent la biosynthèse de la phosphatidylcholine (PC) de Plasmodium, parasite responsable du paludisme. Les études conduites ont mis en relief des particularités uniques de ces composés. Nous avons élucidé le mécanisme d'action biochimique de l'albitiazolium, actuel candidat clinique, caractérisant chacune des 5 étapes conduisant à la biosynthèse de PC. L'albitiazolium affecte en premier lieu l'entrée de choline dans le parasite intraerythrocytaire, choline et albitiazolium utilisant le même transporteur et affecte de façon différentielle les autres étapes de synthèse. L'activité antipaludique est fortement antagonisée par la choline indiquant que le mécanisme d'action primaire est bien l'inhibition de la synthèse de PC. L'accumulation des analogues de choline dans le parasite intracellulaire leur permet de restreindre leur toxicité aux seuls érythrocytes infectés. Des études comparatives réalisées chez Plasmodium et Babesia montrent une double compartimentation de l'albitiazolium uniquement chez Plasmodium, l'une d'elles correspondant à la vacuole digestive. L'accumulation chez Plasmodium est glucose-dépendante et exige aussi le maintien des gradients ioniques dans la cellule. Bien que les analogues de choline exercent leur effet antiparasitaire dès les premières heures de contact, l'effet dit « cheval de Troie » exige des conditions particulières pour les mesures d'activités pharmacologiques, nous amenant à comparer différents tests d'activité. Seuls les tests isotopiques basés sur l'incorporation d'hypoxanthine ou d'éthanolamine après un cycle parasitaire entier et le test fluorescent au SYBR green appliqué après 72h obtiennent des résultats fiables quel que soit le mécanisme d'action des antipaludiques. Enfin, des études de pharmacocinétique / pharmacodynamie montrent une exposition plasmatique supérieure chez les souris infectées par Plasmodium, due au recyclage de l'albitiazolium après son accumulation dans l'érythrocyte infecté. / Choline analogues form a new class of antimalarial drugs that inhibit the biosynthesis of phosphatidylcholine (PC) in Plasmodium, the malaria-causing parasite. The studies presented here highlighted the unique features of these compounds. We elucidated the biochemical mechanism of action of albitiazolium, the current clinical candidate, characterizing each of the 5 steps leading to the biosynthesis of PC. Albitiazolium primarily affects the entry of choline into the intraerythrocytic parasite and choline and albitiazolium use the same carrier. The other steps of synthesis are differentially affected. Antimalarial activity is strongly antagonized by choline indicating that the primary mechanism of action is the inhibition of PC synthesis Accumulation of choline analogs in the intracellular parasite allows them to restrict their toxicity to infected erythrocytes. Comparative studies in Plasmodium and Babesia show a double compartmentalization of albitiazolium only in Plasmodium, one of them corresponding to the food vacuole. Accumulation in Plasmodium is glucose-dependent and requires maintaining ionic gradients in the cell.Although choline analogues exert their antiparasitic effect in the first hours of contact, the “Trojan horse effect” requires specific conditions for the determination of pharmacological activity, leading us to evaluate various tests of activity. Only the isotopic tests based on hypoxanthine or ethanolamine incorporation after one parasite cycle and the fluorescent SYBR green assay applied after 72 hours give reliable results regardless of the mode of action of the tested antimalarials. Finally, pharmacokinetics/pharmacodynamics studies in Plasmodium-infected mice revealed that albitiazolium is recycled after its accumulation in the infected erythrocyte leading to increased plasma levels.
280

Impact de facteurs environnementaux et génétiques sur le développement de P. falciparum chez An. gambiae en conditions naturelles de transmission. / Impact of the environmental and genetic factors on the development of P. falciparum into An. gambiae in natural settings.

Boissière, Anne 21 December 2012 (has links)
Anopheles gambiae est le vecteur le plus redoutable de Plasmodium falciparum, l'agent principal responsable du paludisme en Afrique Sub-saharienne. Les nouvelles stratégies de lutte contre la maladie visent à limiter ou interrompre le développement du parasite au cours de son cycle de vie chez le moustique vecteur, ce qui nécessite une bonne connaissance des interactions vecteur*parasite. L'objectif principal de cette thèse a été d'évaluer l'impact de facteurs environnementaux et génétiques sur le développement de P. falciparum chez An. gambiae en conditions naturelles de transmission. Pour la réalisation de ce projet, nous avons utilisé un système d'infections expérimentales, où des populations sauvages d'anophèles provenant de différentes localités ont été infectées avec des isolats naturels de P. falciparum. Notre étude a révélé que les moustiques provenant des zones urbaines étaient plus infectés que ceux des zones péri-urbaines, démontrant que la compétence vectorielle est dépendante des interactions vecteur*parasite*environnement. Nous avons ensuite mesuré l'impact de l'environnement aquatique sur la capacité des moustiques adultes à transmettre le parasite en corrélant la composition de la flore bactérienne intestinale des moustiques femelles avec leur statut d'infection à P. falciparum. Nous avons mis en évidence que la flore bactérienne intestinale de moustique différait en fonction du gîte aquatique et qu'une communauté bactérienne, les Enterobacteriaceae, jouait un rôle dans la susceptibilité du moustique à l'infection. Enfin, le polymorphisme génétique de deux gènes de l'immunité ayant un rôle démontré dans l'infection par Plasmodium, TEP1 et APL1A, a été étudié chez nos moustiques sauvages. Nous avons montré que les différents allèles étaient répartis différemment au sein des différentes populations de vecteurs et qu'ils étaient soumis à des forces évolutives. Le rôle des interactions génome*environnement et leurs implications dans la compétence vectorielle seront discutées. En conclusion, les résultats de ce travail de thèse soulignent la complexité des interactions vecteur*parasite qui sous-tendent la compétence vectorielle et montrent l'importance de prendre en compte les facteurs environnementaux pour l'élaboration de nouvelles stratégies de lutte. / Anopheles gambiae is the most tremendous vector of Plasmodium falciparum, the major agent of malaria in sub-Saharan Africa. New malaria control approaches envision interrupting transmission cycle in the mosquito, however this will require a better knowledge of vector*parasite interactions. The main objective of this PhD work was to investigate the impact of the environmental and genetic factors on the development of P. falciparum into An. gambiae in natural settings. To carry out this project, we used experimental infection system; wild anopheline mosquito populations from different localities were infected with natural isolates of P. falciparum. Our study revealed that mosquitoes from urban area were more infected than those from sub-urban areas, demonstrating that vector competence depends on vector*parasite*environment interactions. We then measured the impact of the aquatic environment on the adult mosquito capacity to transmit parasites. Correlation analysis between the mosquito gut microbiota and P. falciparum infection status was performed. We showed that mosquito bacterial flora differed according to the aquatic breeding site and that Enterobacteriaceae community was involved in the mosquito susceptibility. Genetic polymorphisms of two immune genes involved in parasitic defense, TEP1 and APL1A, were then studied. We showed that the different alleles were differentially spread into wild vector populations and evolutive forces were acting. Genome*environment interactions and their involvement in vector competence will be discussed. Finally, this thesis highlights the complexity of vector*parasite interactions underlying vectorial competence and pinpoints the importance to take into account environmental factors to elaborate new malaria control strategies.

Page generated in 0.0723 seconds