31 |
Elucidação estrutural de heterogalactanas parcialmente metiladas obtidas de Grifola frondosa (“Maitake”) e Pleurotus ostreatus (“Shimeji”)Oliveira, Gracy Kelly Faria 18 July 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-19T13:28:06Z
No. of bitstreams: 2
Dissertação - Gracy Kelly Faria Oliveira - 2013.pdf: 3056383 bytes, checksum: 704c745d35b0898a2ea697e0aebcc431 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-20T14:24:58Z (GMT) No. of bitstreams: 2
Dissertação - Gracy Kelly Faria Oliveira - 2013.pdf: 3056383 bytes, checksum: 704c745d35b0898a2ea697e0aebcc431 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-20T14:24:58Z (GMT). No. of bitstreams: 2
Dissertação - Gracy Kelly Faria Oliveira - 2013.pdf: 3056383 bytes, checksum: 704c745d35b0898a2ea697e0aebcc431 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-07-18 / Partially methylated heterogalactans were isolated from the fruiting bodies of
the medicinal mushroom Pleurotus ostreatus (mannogalactan) and Grifola
frondosa (mannofucogalactan), via successive cold aqueous extraction,
followed by fractionation through freeze-thawing, precipitation with Fehling
solution of soluble material, and dialysis using membranes with different
exclusion limits (MWCO 50, 100, and 500 kDa). Their chemical structures were
established based on monosaccharide composition, methylation analysis and
NMR studies. The mannogalactan (Mw = 50.7 x 103 g.mol-1) had a main chain of
(1→6)-linked α-D-galactopyranosyl and 3-O-methyl-α-D-galactopyranosyl units,
both of which are partially substituted at O-2 by -D-mannopyranosyl nonreducing
ends.The other was a mannofucogalactan (Mw = 15.9 x 103 g.mol-1),
which had a similar main-chain, being a part of the galactopyranosyl units
substituted at O-2 mainly by 3-O-α-D-mannopyranosyl-α-L-fucopyranosyl groups
and in a minor proportion with α-L-Fucp single-unit side chains. Recently, the
heterogalactans are also recognized for their relevant biological activities, such
as antitumor, immunomodulatory, anti-inflammatory and antinociceptive effects.
Thus, the heterogalactans obtained from G.frondosa and P. ostreatus could
present itself as a good candidate to be evaluated for its biological potential. / Heterogalactanas parcialmente metiladas foram isoladas dos basidiomas dos
cogumelos medicinais Pleurotus ostreatus (manogalactana) e Grifola frondosa
(manofucogalactana), através de sucessivas extrações aquosas a frio,
seguidas de fracionamento por congelamento e degelo, precipitação com
solução de Fehling e diálises em membranas com diferentes limites de
exclusão (MWCO 50, 100 e 500 kDa). As estruturas químicas foram
determinadas por meio das análises de composição monossacarídica,
metilação e RMN (mono e bidimensionais). A manogalactana (Mw = 50,7 x 103
g.mol-1) apresentou uma cadeia principal constituída por unidades de -D-Galp
e 3-O-Me--D-Galp (16) ligadas, sendo ambas parcialmente substituídas em
O-2 por terminais não redutores de -D-Manp. A outra foi uma
manofucogalactana (Mw = 15,9 x 103 g.mol-1), a qual apresentou uma cadeia
principal similar, sendo uma parte das unidades de -D-galactopiranosil
substituídas em O-2 pelo dissacarídeo 3-O-α-D-manopiranosil-α-L-fucopiranosil
e em menor proporção com terminais não redutores de α-L-Fucp.
Recentemente, as heterogalactanas têm sido reconhecidas pelas suas ações
biológicas relevantes, como a atividade antitumoral, imunomodulatória,
antinociceptiva e/ou anti-inflamatória. Sendo assim, as heterogalactanas
isoladas de G. frondosa e P. ostreatus podem apresentar-se como bons
candidatos a serem avaliados quanto ao seu potencial biológico.
|
32 |
Uticaj raličitih supstrata na morfološka,fiziološka i hemijska svojstva odabranih sojeva gljve bukovače Pleurotus ostreatus (Jacq.) P. Kumm. 1871 / Influence of Different Substrates on Morphological, Physiological and Chemical Properties of Selected Strains of Oyster Mushroom Pleurotus ostreatus (Jacq.) P. Kumm. 1871Bugarski Dušanka 19 September 2016 (has links)
<p>Tri soja gljive bukovače, P. ostreatus NS 77, P. ostreatus NS 355 i P. ostreatus 244,<br />gajena su na supstratima četiri biljne vrste, pšenica, kukuruz, soja i suncokret, kao<br />samostalni supstrati i u kombinaciji sa pšeničnom slamom. Nakon plodonošenja<br />vršena su ispitivanja odgajivačkih, morfoloških, hemijskih, svojstva gljiva, kao i<br />hemijske i mikrobiološke sirovim supstratima u odnosu na sadržaj celuloze u<br />supstratima nakon plodonošenja sojeva, dok je kod sadržaja pepela obrnuto, u sirovim<br />supstratima je niži u odnosu na supstrate nakon plodonošenja. Koncentracija ukupnog<br />broja mikroorganizama, brojnost amonifikatora i brojnost saprofitnih gljiva na<br />nesterilisanim supstratima je niža nego na iskorištenim supstratima. Dehidrogenazna<br />aktivnost je najviša na supstratima nakon plodonošenja soja NS 244, dok kod<br />enzimskog kompleksa celulaza varira u zavisnosti od soja i supstrata Kod sva tri soja<br />maksimalni prinosi su bili na supstratu Soja (S5), a minimlni na supstratu Pšenica<br />(S1). Na osnovu morfoloških osobine konstatovana je velika varijabilnist između<br />sojeva. Supstrat Kukuruz (S6) se pokazao kao najbolji, sa aspekta vodnog režima, dok<br />se Suncokret (S7) pokazao kao najlošiji. Na supstratu Kukuruz (S6) je najviši, a na<br />supstratu Pšenica (S1) je najniži sadržaj pepela. Sadržaj natrijuma u nožici je veći od<br />sadržaja u šeširu, što je obrnuto u odnosu na druge mikroelemente i makroelemente.<br />Sadržaj celuloze je viši u svim sirovim supstratima, dok je kod sadržaja pepela<br />obrnuto. Brojnost svih mikroorgnaizma na nesterilisanim supstratima je niža nego na<br />iskorištenim supstratima. Dehidrogenazna je najviša na supstratima nakon<br />plodonošenja soja NS 244, dok kod enzimskog kompleksa celulaza varira u zavisnosti<br />od soja i supstrata.</p> / <p>Three strains of oyster mushroom (P. ostreatus NS 77, NS 355, and 244) were grown on substrates made from four crops (wheat, maize, soybean, and sunflower), as individual substrates or in combination with wheat straw. After fruit maturity, mushroom growing, morphological, and chemical properties were analysed, as well as chemical and microbiological analyses of fresh and used substrates. All three strains showed maximum yields on soybean substrate (S5), and minimum yields on wheat substrate (S1). A large variability among the strains was observed based on the morphological properties. The strain NS 77 has caps of the smallest weight, width and length, the largest number of fruiting bodies, and the longest stalks. The strain NS 244 have caps of the largest weight, width and length, the lowest number of fruiting bodies and stalk length, but the largest width of the stalks. Regarding water regime, maize substrate (S6) was the best, while sunflower (S7) was the poorest. Ash content was the highest in maize substrate (S6) and the lowest in wheat substrate (S1). Potassium content in the stalk was higher than in the cap, which is opposite from other micro- and macro elements. Cellulose content was higher in all fresh substrates than in the used substrates after the strains have fruited, while ash content was higher in the used substrates. Concentration of total number of microorganisms, abundance of ammonifiers and saprophytic fungi in the unsterilized substrates were lower than in the used ones. Dehydrogenase activity was the highest in substrates after fruiting of NS 244, while cellulose enzyme complex varied regarding the strain and substrate.</p>
|
33 |
Assessment of oyster mushroom production employing urban-based materials in Stockholm Stad / Undersökning av ostronskivlings produktion med användning av stadsbaserade material i Stockholm StadFagerström, Mio January 2023 (has links)
This thesis investigates the opportunities and challenges regarding urban oyster mushroomproduction (Pleurotus Ostreatus) employing urban-based materials in Stockholm Stad as agrowing medium. Additionally, the availability of the five most suitable substrates has beenfurther explored with the indicator’s availability in Stockholm Stad, and the Biologicalefficiency (BE%) for a suitable growing medium and the quantity of the substrates have beenmapped out. In response to climate change and an uncertain future, cities need to be resilientto disasters and meet essential needs like water, food, and energy. Due to the COVID-19pandemic, the Swedish government plans to increase self-sufficiency by developing the lawof public procurement to prioritize buying locally produced goods. However, imported foodis cheaper than Swedish goods, making it difficult for domestic products to compete.Moreover, a major part of Sweden’s waste management consists of the combustion of variouswaste, which is being on a lower priority on the Waste hierarchy. Therefore, assessing thepossible areas of use such as oyster mushroom cultivation could likely add further value tothe residual waste streams investigated. Using Material Flow Analysis (MFA), interviews,and literature review, relevant data and information was collected to locate the five mostsuitable substrates: (1) wood waste from arborists and wood workers, (2) paper waste, (3)cardboard waste, (4) Spent Coffee Grounds (SCG) from five of the biggest chains coffeeshops in Stockholm Stad, (5) garden waste collected from a collection company. Theestimated availability of each residual waste stream has been mapped out with paper wastebeing 15’805’567 kg, 20’560’580 kg (cardboard), 64’166’500 kg wood waste, 3’939’664,2kg garden waste, and 152’121,7 kg (SCG). The BE% is ranging from 18,61% for SCG, woodwaste to 64,69%, garden waste to 95,3%, paper to 112,4%, and cardboard with a BE% of117,5%. Moreover, the BE% will vary depending on the preparation of the substrate and thegrowing conditions of the mushrooms. The oyster mushroom's estimated kilo price is 245SEK/kg, with a potential yearly value of the oyster mushroom is estimated to beapproximately 128’333’000 SEK. This thesis highlights the potential of oyster mushroomcultivation potential where Stockholm Stad has the capacity to be locally self-sufficient whenlooking at the quantity of substrate available. Additionally, the results display the value ofusing residual waste streams as a resource in other ways than energy recovery. / Detta examensarbete undersöker möjligheterna och utmaningarna när det gäller urbanostronsvampproduktion (Pleurotus ostreatus) med stadsbaserade material i Stockholm Stad somodlingsmedium. Dessutom har tillgången på de fem mest lämpliga substraten undersökts ytterligaremed indikatorns tillgänglighet i Stockholm Stad och den biologiska effektiviteten (BE%) för ettlämpligt odlingsmedium och mängden av substraten har kartlagts. Som svar på klimatförändringaroch osäker framtid är det viktigt för städer att vara motståndskraftiga mot katastrofer och tillgodoseväsentliga behov som vatten, mat och energi. På grund av COVID-19 pandemin planerar den svenskaregeringen att öka självförsörjningen genom att utveckla lagen om offentlig upphandling för attprioritera köp av lokalt producerade varor. Den importerade maten är billigare än svenska varor, vilketgör det svårt för inhemska produkter att konkurrera. En stor del av Sveriges avfallshantering bestårdessutom av förbränning av olika avfall, vilket är lägre prioriterat i Avfallshierarkin. Därför kan enbedömning av möjliga användningsområden, såsom ostronsvampodling, sannolikt tillföra ytterligarevärde till de undersökta restavfallsströmmarna. Med hjälp av MFA, intervjuer och litteraturstudiersamlades relevant data och information in för att lokalisera de fem mest lämpliga substraten: (1)träavfall från arborister och träarbetare, (2) pappersavfall, (3) kartongavfall, (4) SCG från fem av destörsta kafékedjorna i Stockholm Stad, (5) Trädgårdsavfall som hämtas från ett insamlingsföretag.Den uppskattade tillgängligheten för varje restavfallsström har kartlagts med pappersavfall på15,805,567 kg, 20,560,580 kg (kartong), 64’166’500 kg träavfall, 3’939’664,2 kg trädgårdsavfall och152’121,7 kg (SCG). BE% varierar från 18,61% för SCG, träavfall till 64,69%, trädgårdsavfall95,3%, papper 112,4% och kartong med en BE% på 117,5%. Dessutom kommer BE procenttalet attvariera beroende på preparationen av substraten och svampens odlingsförhållanden. Ostronsvampensestimerade kilopris är 245 SEK/kg, med ett potentiellt årligt värde på ostronsvampen uppskattas tillcirka 128’333’000 SEK. Detta arbete belyser potentialen för ostronsvampsodlingspotential därStockholm Stad har kapacitet att vara lokalt självförsörjande när man tittar på mängden tillgängligtsubstrat. Dessutom visar resultaten värdet av att använda restavfallsströmmar som en resurs på andrasätt än energiåtervinning.
|
34 |
Tratamento da torta de semente de algodão por autoclavagem e macrofungos para degradação de gossipolAraújo, Ana Paula Fernandes 23 February 2018 (has links)
A torta de caroço de algodão (TCA) é um coproduto gerado após a extração de óleo
desta oleaginosa, que tem sido utilizada como uma das matérias-primas para a
produção de biodiesel. O uso de TCA na nutrição animal é restrito, sendo mais
utilizado em ruminantes, em função da elevada concentração do fator antinutricional
e tóxico, gossipol. O objetivo do presente estudo foi avaliar a capacidade de alguns
macrofungos em degradar o gossipol na forma livre, utilizando TCA como substrato
após serem esterilizadas por autoclavagem. Trinta e cinco macrofungos foram
avaliados quanto asua capacidade de crescimento em meio à base de TCA e redução
dos teores de gossipol livre (GL). Treze macrofungos apresentaram capacidade de
crescimento micelial em meios de cultura contendo TCA+Agar (placas) ou apenas
TCA (frascos de vidro) como fonte nutritiva. Os seis macrofungos com melhor
desempenho de crescimento foram avaliados quanto à capacidade degradação do GL
em sistema de cultivo por fermentação estado solido (FES). O processo de
esterilização por calor úmido (autoclavagem) do TCAapresentou degradação
significativa do gossipol, entretanto há níveis consideráveis de GL residual na
biomassa.Os seis macrofungos apresentaram capacidade de reduzir até 90% do valor
residual de GL após a autoclavagem das TCAs. O Pleutotus ostreatus CC389 foi
escolhido dentre os seis macrofungos para realização das atividades para
determinação de eficiência biológica e produtividadede cogumelos comestíveis.
Também foram feitas análises das atividades enzimáticas e degradação do GL, nas
biomassas pós-colheita dos cogumelos (SMS, spent mushrom substrate). O P.
ostreatus CC389 quando cultivado em TCA como substrato por 20 dias secretou
enzimas lignolíticas como lacase (até 166,67 UI/mL) e manganês peroxidase (até
12,81 UI/mL). Também degradou o GL residual em até 94% ao final dosvinte dias de
cultivo. A atividade de manganês peroxidase apresentou correlação coma degradação
de GL. A produtividade de cogumelos de P. ostreatus CC389 foi de aproximadamente
20% em quatro formulações de substratos preparados a base de TCA (70%) e 30%
de outras fontes de biomassas vegetais (lignocelulósicos). A eficiência biológica foi
maior na combinação de TCA com serragem de eucalipto (acima de 67%). Os SMSs
e os cogumelos obtidos ao final do sistema de cultivo de P. ostreatusCC389 nas
diferentes formulações apresentaram redução de GL acima de 99%. Os resultados
obtidos nos ensaios com P. ostreatus CC 389 para degradação de GL presentes em
TCA e quando enriquecidas com outras fontes lignocelulosicas poderão servir de elo
para integração de cadeias produtivas de biocombustíveis (biodiesel), fungicultura
(cogumelos comestíveis) e nutrição animal (insumos – enzimas, bioativos, fontes
nutricionais – proteína bruta). / Cotton seed cake (TCA, in Portuguese) is a coproduct obtained after the extraction of
cottonseed oil, which has been used as one of the raw materials for biodiesel
production. TCA is restricted for animal nutrition, being more used for ruminants, due
to the high concentration of the antinutritional and toxic factor, gossypol. The objective
of the present study was to evaluate the ability of some macrofungi species to degrade
free gossypol using TCA as substrates after being sterilized by autoclaving process.
Thirty-five macrofungi were evaluated for their growth capacity in medium containing
TCA and reduction of free gossypol (GL, in Portuguese). Thirteen macrofungus
presented mycelial growth capacity in culture media containing TCA+Agar (Petri
plates) or only in TCA (glass bottles) as nutritional source. Six macrofungus with best
growth performance were selected and evaluated for GL degradation capacity during
solid state fermentation (FES, in Portuguese) system.The humid heat sterilization
(autoclaving) of the TCA showed significant degradation of free gossypol, however,
there were still considerable levels of residual GL in the biomass. The six macrofungus
presented capacity to reduce up to 90% of the residual value of GL in autoclaved TCA.
Pleurotus ostreatus CC389 was chosen from among the six macrofungus to
determination of biological efficiency and productivity of edible mushrooms. It was also
analyzed the enzymatic activities and degradation of GL in post-harvested mushroom
biomass (SMS, Spent Mushroom Substrate). P. ostreatus CC389, when cultured in
TCA as a substrate for 20 days, secreted lignolytic enzymes such as laccase (up to
166.67 IU/mL) and manganese peroxidase (up to 12.81 IU/mL). It also degraded the
residual GL by up to 94% at the end of the cultivation period. The activity of manganese
peroxidase showed correlation with the degradation of GL. Mushroom productivity of
P. ostreatus CC389 was approximately 20% in four different substrate formulations
based on TCA (70%) mixed with 30% of different lignocellulosic biomass sources. The
biological efficiency was higher when P. ostreatus CC389 was cultured in substrate
containing TCA and eucalyptus sawdust (up to 67%). The SMS and the mushrooms
obtained at the end of the P. ostreatus CC389 cultivation in the different formulations
presented reduction of GL up to 99%. The results obtained with P. ostreatus CC 389
assays for degradation of GL in TCA and when enriched with other lignocellulosic
biomass sources could represent an interesting link for the integration of biofuels
(biodiesel), fungiculture (edible mushrooms) and animal nutrition (inputs - enzymes,
bioactive molecules, nutritional sources - crude protein) production chains.
|
35 |
Removal of pentachlorophenol and methyl-parathion by spent mushroom compost of oyster mushroom.January 2001 (has links)
by Law Wing Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 192-206). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / List of Figures --- p.vi / List of Tables --- p.xii / Abbreviations --- p.xv / Chapter 1. --- Introduction / Chapter 1.1. --- Pesticides --- p.1 / Chapter 1.1.1. --- Types and uses --- p.1 / Chapter 1.1.2. --- Development of pesticides --- p.1 / Chapter 1.1.3. --- The case against pesticides --- p.3 / Chapter 1.2. --- Pentachlorophenol --- p.4 / Chapter 1.2.1. --- Production --- p.4 / Chapter 1.2.2. --- Toxicity --- p.4 / Chapter 1.2.3. --- Persistency --- p.6 / Chapter 1.3. --- Methyl-parathion --- p.9 / Chapter 1.3.1. --- Production --- p.9 / Chapter 1.3.2. --- Toxicity --- p.9 / Chapter 1.3.3. --- Environmental fate --- p.12 / Chapter 1.4. --- Conventional methods dealing with pesticides --- p.12 / Chapter 1.5. --- Bioremediation --- p.15 / Chapter 1.6. --- Spent mushroom compost --- p.17 / Chapter 1.6.1. --- Background --- p.17 / Chapter 1.6.2. --- "Physical, chemical and biological properties of SMC " --- p.19 / Chapter 1.6.3. --- Recycling of agricultural residuals --- p.21 / Chapter 1.6.3.1. --- Definition --- p.21 / Chapter 1.6.3.2. --- Types of recycling --- p.22 / Chapter 1.6.4. --- Potential uses of SMC as bioremediating agent --- p.23 / Chapter 1.6.4.1. --- Use of microorganisms in SMC --- p.23 / Chapter 1.6.4.2. --- Use of ligninolytic enzymes in SMC --- p.24 / Chapter 1.7. --- Ligninolytic enzymes --- p.28 / Chapter 1.7.1. --- Background --- p.28 / Chapter 1.7.2. --- What are white rot fungi? --- p.29 / Chapter 1.7.3. --- Why is lignin so difficult to degrade? --- p.29 / Chapter 1.7.4. --- Three main ligninolytic enzymes --- p.32 / Chapter 1.7.4.1. --- Lignin peroxidases (LiP) --- p.32 / Chapter 1.7.4.2. --- Manganese peroxidase (MnP) --- p.36 / Chapter 1.7.4.3. --- Laccase --- p.37 / Chapter 1.8. --- Why SMC was chosen to be the bioremediating agent in my project? --- p.40 / Chapter 1.9. --- Bioremediation of chlorophenols and PCP --- p.44 / Chapter 1.9.1. --- Bacterial system --- p.44 / Chapter 1.9.2. --- Fungal system --- p.45 / Chapter 1.10. --- Bioremediation of methyl-parathion --- p.49 / Chapter 1.10.1. --- Bacterial system --- p.49 / Chapter 1.10.2. --- Fungal system --- p.51 / Chapter 1.11. --- Proposal and experimental plan of the project --- p.51 / Chapter 1.11.1. --- Study the removal of pesticides in both aquatic and soil system --- p.52 / Chapter 1.11.2. --- Research strategy --- p.52 / Chapter 1.11.3. --- Optimization of pesticide removal --- p.53 / Chapter 1.11.4. --- Identification of breakdown products --- p.54 / Chapter 1.11.5. --- Toxicity assay --- p.54 / Chapter 1.11.6. --- Isotherm plot --- p.55 / Chapter 1.12. --- Objectives of the study --- p.56 / Chapter 2. --- Material and Methods --- p.58 / Chapter 2.1. --- Material --- p.59 / Chapter 2.2. --- Production of Spent Mushroom Compost (SMC) --- p.59 / Chapter 2.3. --- Characterization of SMC --- p.60 / Chapter 2.3.1. --- PH --- p.60 / Chapter 2.3.2. --- Electrical conductivity --- p.60 / Chapter 2.3.3. --- "Carbon, hydrogen, nitrogen and sulphur contents " --- p.60 / Chapter 2.3.4. --- Ash content --- p.61 / Chapter 2.3.5. --- Metal analysis --- p.61 / Chapter 2.3.6. --- Anion content --- p.62 / Chapter 2.3.7. --- Chitin assay --- p.62 / Chapter 2.4. --- Characterization of soil --- p.63 / Chapter 2.4.1. --- Soil texture --- p.63 / Chapter 2.4.2. --- Moisture content --- p.64 / Chapter 2.5. --- Basic studies on the removal capacity of pesticides by SMC --- p.65 / Chapter 2.5.1. --- Preparation of pentachlorophenol and methyl- parathion stock solution --- p.66 / Chapter 2.6. --- Experimental design --- p.65 / Chapter 2.6.1. --- In aquatic system --- p.65 / Chapter 2.6.2. --- In soil system --- p.68 / Chapter 2.7. --- Extraction of pesticides --- p.68 / Chapter 2.7.1. --- In aquatic system --- p.68 / Chapter 2.7.2. --- In soil system --- p.69 / Chapter 2.8. --- Quantification of pesticides --- p.69 / Chapter 2.8.1. --- By high performance liquid chromatography --- p.69 / Chapter 2.8.2. --- By gas chromatography-mass spectrometry --- p.71 / Chapter 2.9. --- Optimization of pesticides degradation by SMC in both aquatic and soil systems --- p.72 / Chapter 2.9.1. --- Effect of initial pesticide concentrations on the removal of pesticides --- p.72 / Chapter 2.9.2. --- Effect of amount of SMC used on the removal of pesticides --- p.73 / Chapter 2.9.3. --- Effect of incubatoin time on the removal of pesticides --- p.73 / Chapter 2.9.4. --- Effect of initial pH on the removal of pesticides --- p.73 / Chapter 2.9.5. --- Effect of incubation of temperature on the removal of pesticides --- p.74 / Chapter 2.10. --- The study of breakdown process of pesticides --- p.74 / Chapter 2.10.1. --- GC/MS --- p.74 / Chapter 2.10.2. --- Ion chmatography --- p.74 / Chapter 2.11. --- Microtox® assay --- p.75 / Chapter 2.12. --- Assessment criteria --- p.75 / Chapter 2.12.1. --- In aquatic system --- p.75 / Chapter 2.12.2. --- In soil system --- p.76 / Chapter 2.13. --- Statistical analysis --- p.77 / Chapter 3. --- Results / Chapter 3.1. --- Characterization of SMC and soil --- p.78 / Chapter 3.2. --- Quantification of pesticides by HPLC and GC/MS --- p.82 / Chapter 3.3. --- Extraction efficiencies of pesticides with hexane --- p.82 / Chapter 3.4. --- Stability of pesticides against time --- p.82 / Chapter 3.5. --- Effect of sterilization of soil in the removal abilities of pesticides…… --- p.88 / Chapter 3.6. --- Optimization of removal of pentachlorophnol --- p.88 / Chapter 3.6.1. --- Effect of incubation time --- p.88 / Chapter 3.6.1.1. --- In aquatic system --- p.88 / Chapter 3.6.1.2. --- In soil system --- p.88 / Chapter 3.6.2. --- Effect of initial PCP concentrations and amout of SMC used --- p.91 / Chapter 3.6.2.1. --- In aquatic system --- p.91 / Chapter 3.6.2.2. --- In soil system --- p.94 / Chapter 3.6.3. --- Effect of pH --- p.97 / Chapter 3.6.3.1. --- In aquatic system --- p.97 / Chapter 3.6.3.2. --- In soil system --- p.97 / Chapter 3.6.4. --- Effect of incubation temperature --- p.97 / Chapter 3.6.4.1. --- In aquatic system --- p.97 / Chapter 3.6.4.2. --- In soil system --- p.101 / Chapter 3.6.5. --- Potential breakdown intermediates and products --- p.101 / Chapter 3.6.5.1. --- In aquatic system --- p.101 / Chapter 3.6.5.2. --- In soil system --- p.104 / Chapter 3.7. --- Microtox® assay of PCP --- p.110 / Chapter 3.7.1. --- In aquatic system --- p.110 / Chapter 3.7.2. --- In soil system --- p.110 / Chapter 3.8. --- Optimization of removal of methyl-parathion --- p.113 / Chapter 3.8.1. --- Effect of incubation time --- p.113 / Chapter 3.8.1.1. --- In aquatic system --- p.113 / Chapter 3.8.1.2. --- In soil system --- p.113 / Chapter 3.8.2. --- Effect of initial concentration and amount of SMC --- p.115 / Chapter 3.8.2.1. --- In aquatic system --- p.115 / Chapter 3.8.2.2. --- In soil system --- p.117 / Chapter 3.8.3. --- Effect of incubation temperature --- p.120 / Chapter 3.8.3.1. --- In aquatic system --- p.120 / Chapter 3.8.3.2. --- In soil system --- p.120 / Chapter 3.8.4. --- Potential breakdown intermediates and products --- p.121 / Chapter 3.8.4.1. --- In aquatic system --- p.121 / Chapter 3.8.4.2. --- In soil system --- p.124 / Chapter 3.9. --- Microtox ® assay of methyl-parathion --- p.133 / Chapter 3.9.1. --- In aquatic system --- p.133 / Chapter 3.9.2. --- In soil system --- p.133 / Chapter 4. --- Discussion / Chapter 4.1. --- Characterization of SMC and soil --- p.137 / Chapter 4.2. --- Stability of pesticides against time in aquatic and soil system --- p.141 / Chapter 4.3. --- Effect of sterilization of soil in the removal abilities of pesticides --- p.142 / Chapter 4.4. --- Optimization of removal of PCP --- p.142 / Chapter 4.4.1. --- Effect of incubation time --- p.142 / Chapter 4.4.1.1. --- In aquatic system --- p.142 / Chapter 4.4.1.2. --- In soil system --- p.143 / Chapter 4.4.2. --- Effect of initial PCP concentrations and amount of SMC --- p.144 / Chapter 4.4.2.1. --- In aquatic system --- p.144 / Chapter 4.4.2.2. --- In soil system --- p.147 / Chapter 4.4.3. --- Effect of pH --- p.149 / Chapter 4.4.3.1. --- In aquatic system --- p.149 / Chapter 4.4.3.2. --- In soil system --- p.150 / Chapter 4.4.4. --- Effect of incubation temperature --- p.150 / Chapter 4.4.4.1. --- In aquatic system --- p.150 / Chapter 4.4.4.2. --- In soil system --- p.152 / Chapter 4.4.5. --- Potential breakdown intermediates and products --- p.152 / Chapter 4.4.5.1. --- In aquatic system --- p.152 / Chapter 4.4.5.2. --- In soil system --- p.158 / Chapter 4.5. --- Microtox® assay of PCP --- p.159 / Chapter 4.5.1. --- In aquatic system --- p.159 / Chapter 4.5.2. --- In soil system --- p.160 / Chapter 4.6. --- Removal of PCP by the aqueous extract of SMC --- p.162 / Chapter 4.7. --- Optimization of removal of methyl-parathion --- p.164 / Chapter 4.7.1. --- Effect of incubation time --- p.164 / Chapter 4.7.1.1. --- In aquatic system --- p.164 / Chapter 4.7.1.2. --- In soil system --- p.165 / Chapter 4.7.2. --- Effect of initial methyl-paration concentrations and amount of SMC used --- p.165 / Chapter 4.7.2.1. --- In aquatic system --- p.165 / Chapter 4.7.2.2. --- I in soil system --- p.166 / Chapter 4.7.3. --- Effect of incubation temperature --- p.168 / Chapter 4.7.3.1. --- In aquatic system --- p.168 / Chapter 4.7.3.2. --- In soil system --- p.169 / Chapter 4.7.4. --- Potential breakdown intermediates and products --- p.169 / Chapter 4.7.4.1. --- In aquatic system --- p.169 / Chapter 4.7.4.2. --- In soil system --- p.170 / Chapter 4.8. --- Microtox® assay of Methyl-parathion --- p.173 / Chapter 4.8.1. --- In aquatic system --- p.173 / Chapter 4.8.2. --- In soil system --- p.174 / Chapter 4.9. --- Removal of methyl-parathion by the aqueous extract of SMC --- p.174 / Chapter 4.10. --- The ability of different types of SMC in the removal of organic pollutants --- p.176 / Chapter 4.11. --- The storage of SMC --- p.178 / Chapter 4.12. --- The effect of scale in the removal of pesticides --- p.180 / Chapter 4.13. --- Cost-effectiveness of using SMC as crude enzymes sources --- p.180 / Chapter 4.14. --- The effect of surfactant on the removal of PCP --- p.182 / Chapter 4.15. --- Prospects for employment SMC in removal of pollutants --- p.185 / Chapter 5. --- Conclusions --- p.186 / Chapter 6. --- Future investigation --- p.190 / Chapter 7. --- References --- p.192
|
36 |
Removal of polycyclic aromatic hydrocarbons by spent mushroom compost of oyster mushroom pleurotus pulmonarius.January 2002 (has links)
Lau Kan Lung. / Thesis submitted in: November 2001. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 286-312). / Abstracts in English and Chinese. / List of Symbols and Abbreviations --- p.I / List of Figures --- p.III / List of Tables --- p.XII / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Polycyclic aromatic hydrocarbons (PAHs) --- p.1 / Chapter 1.1.1 --- Physical and chemical properties of PAHs --- p.1 / Chapter 1.1.2 --- Formation of PAHs --- p.5 / Chapter 1.1.3 --- Sources of PAHs --- p.9 / Chapter 1.1.4 --- Regulations for contamination of PAHs --- p.13 / Chapter 1.1.5 --- Pollution of PAHs in environments of Hong Kong --- p.17 / Chapter 1.1.6 --- Toxicity of PAHs --- p.18 / Chapter 1.1.7 --- Fate of PAHs --- p.22 / Chapter 1.1.7.1 --- Sorption --- p.24 / Chapter 1.1.7.2 --- Volatilization --- p.25 / Chapter 1.1.7.3 --- Photooxidation --- p.25 / Chapter 1.1.7.4 --- Chemical oxidation --- p.27 / Chapter 1.1.7.5 --- Microbial degradation --- p.28 / Chapter 1.1.8 --- General principles of metabolism of PAHs --- p.30 / Chapter 1.2 --- Spent mushroom compost (SMC) --- p.35 / Chapter 1.2.1 --- Production of SMC --- p.35 / Chapter 1.2.2 --- Physical and chemical properties of SMC --- p.36 / Chapter 1.2.3 --- Availability of SMC --- p.40 / Chapter 1.2.4 --- Conventional applications of SMC --- p.43 / Chapter 1.2.5 --- Alternate use of SMC --- p.44 / Chapter 1.3 --- Objectives of the study --- p.48 / Chapter 1.4 --- Research strategy --- p.51 / Chapter 1.4.1 --- Effect of initial PAH concentration --- p.51 / Chapter 1.4.2 --- Effect of initial pH --- p.52 / Chapter 1.4.3 --- Effect of incubation time --- p.53 / Chapter 1.4.4 --- Effect of incubation temperature --- p.54 / Chapter 1.4.5 --- Putative identification of intermediates and/or breakdown products --- p.54 / Chapter 1.4.6 --- Isotherm plots and fitting into monolayer models --- p.55 / Chapter 1.4.6.1 --- Langmuir isotherm --- p.56 / Chapter 1.4.6.2 --- Freundlich isotherm --- p.58 / Chapter 1.4.7 --- Toxicological study by Microtox test --- p.59 / Chapter 1.4.8 --- Removal of PAH mixtures --- p.60 / Chapter 1.4.9 --- Specific goals of the study --- p.61 / Chapter 2 --- Materials and Methods --- p.62 / Chapter 2.1 --- Materials --- p.62 / Chapter 2.2 --- Physical and chemical analysis of SMC --- p.62 / Chapter 2.2.1 --- pH --- p.63 / Chapter 2.2.2 --- Electrical conductivity --- p.63 / Chapter 2.2.3 --- Salinity --- p.63 / Chapter 2.2.4 --- Ash content --- p.63 / Chapter 2.2.5 --- Metal contents --- p.64 / Chapter 2.2.6 --- Water-soluble anion contents --- p.65 / Chapter 2.2.7 --- "Carbon, hydrogen, nitrogen and sulfur contents" --- p.65 / Chapter 2.2.8 --- Infrared spectroscopic study --- p.66 / Chapter 2.2.9 --- Chitin content --- p.66 / Chapter 2.3 --- Soil collection and characterization --- p.67 / Chapter 2.4 --- Optimization for extraction --- p.67 / Chapter 2.5 --- Removal of PAHs --- p.68 / Chapter 2.5.1 --- Experimental design --- p.68 / Chapter 2.5.1.1 --- Pretreatment and incubation --- p.68 / Chapter 2.5.1.2 --- Extraction of sorbed PAHs in soil system or in SMC --- p.69 / Chapter 2.5.1.3 --- Extraction of PAHs in water system --- p.70 / Chapter 2.5.1.4 --- Putative identification and quantification of PAHs --- p.71 / Chapter 2.5.2 --- Assessment criteria --- p.72 / Chapter 2.5.3 --- Stability of PAHs --- p.77 / Chapter 2.5.4 --- Optimization for removal of PAHs --- p.78 / Chapter 2.5.4.1 --- Effects of initial PAH concentration and amount of SMC --- p.78 / Chapter 2.5.4.2 --- Effect of initial pH --- p.79 / Chapter 2.5.4.3 --- Effect of incubation time --- p.79 / Chapter 2.5.4.4 --- Effect of incubation temperature --- p.79 / Chapter 2.5.5 --- Putative identification of intermediates and/or breakdown products --- p.80 / Chapter 2.5.6 --- Isotherm plots and fitting into monolayer models --- p.80 / Chapter 2.5.6.1 --- Langmuir isotherm --- p.80 / Chapter 2.5.6.2 --- Freundlich isotherm --- p.81 / Chapter 2.5.7 --- Toxicological study of Microtox® test --- p.82 / Chapter 2.5.8 --- Removal ability of SMC towards PAHs in single and in a mixture --- p.82 / Chapter 2.5.9 --- Removal abilities of different sorbents towards PAHs in water --- p.83 / Chapter 2.5.10 --- Removal abilities of raw and autoclaved SMC towards PAHs in water --- p.83 / Chapter 2.5.11 --- Statistical validation --- p.83 / Chapter 3 --- Results --- p.85 / Chapter 3.1 --- Characterization of soil --- p.85 / Chapter 3.1.1 --- Physical and chemical properties of soil --- p.85 / Chapter 3.1.2 --- GC-MS analysis of soil --- p.85 / Chapter 3.2 --- Calibration curves of PAHs --- p.85 / Chapter 3.3 --- Optimization for extraction --- p.91 / Chapter 3.4 --- Stability of PAHs --- p.101 / Chapter 3.4.1 --- Soil system --- p.101 / Chapter 3.4.1.1 --- Effect of incubation time --- p.101 / Chapter 3.4.1.2 --- Effect of incubation temperature --- p.101 / Chapter 3.4.2 --- Water system --- p.103 / Chapter 3.4.2.1 --- Effect of incubation time --- p.103 / Chapter 3.4.2.2 --- Effect of incubation temperature --- p.103 / Chapter 3.5 --- Characterization of SMC --- p.103 / Chapter 3.5.1 --- Physical and chemical properties of SMC --- p.103 / Chapter 3.5.2 --- GC-MS analysis of SMC --- p.106 / Chapter 3.5.3 --- Infrared spectroscopic study and chitin content --- p.106 / Chapter 3.5.4 --- Removal abilities of different sorbents towards PAHs in water --- p.121 / Chapter 3.5.5 --- Removal abilities of raw and autoclaved SMC towards PAHs in water --- p.121 / Chapter 3.6 --- Optimization for removal of PAHs --- p.124 / Chapter 3.6.1 --- Naphthalene --- p.124 / Chapter 3.6.1.1 --- Soil system --- p.124 / Chapter 3.6.1.1.1 --- Effects of initial naphthalene concentration and amount of straw SMC on removal efficiency --- p.124 / Chapter 3.6.1.1.2 --- Effects of initial naphthalene concentration and amount of straw SMC on removal capacity --- p.128 / Chapter 3.6.1.1.3 --- Effect of initial pH --- p.128 / Chapter 3.6.1.1.4 --- Effect of incubation time --- p.128 / Chapter 3.6.1.1.5 --- Effect of incubation temperature --- p.131 / Chapter 3.6.1.1.6 --- Putative identification of intermediates and/or breakdown products --- p.131 / Chapter 3.6.1.2 --- Water system --- p.134 / Chapter 3.6.1.2.1 --- Effects of initial naphthalene concentration and amount of straw SMC on removal efficiency --- p.134 / Chapter 3.6.1.2.2 --- Effects of initial naphthalene concentration and amount of straw SMC on removal capacity --- p.137 / Chapter 3.6.1.2.3 --- Effect of initial pH --- p.137 / Chapter 3.6.1.2.4 --- Effect of incubation time --- p.139 / Chapter 3.6.1.2.5 --- Effect of incubation temperature --- p.139 / Chapter 3.6.1.2.6 --- Putative identification of intermediates and/or breakdown products --- p.143 / Chapter 3.6.2 --- Phenanthrene --- p.145 / Chapter 3.6.2.1 --- Soil system --- p.145 / Chapter 3.6.2.1.1 --- Effects of initial phenanthrene concentration and amount of straw SMC on removal efficiency --- p.145 / Chapter 3.6.2.1.2 --- Effects of initial phenanthrene concentration and amount of straw SMC on removal capacity --- p.145 / Chapter 3.6.2.1.3 --- Effect of initial pH --- p.148 / Chapter 3.6.2.1.4 --- Effect of incubation time --- p.148 / Chapter 3.6.2.1.5 --- Effect of incubation temperature --- p.151 / Chapter 3.6.2.1.6 --- Putative identification of intermediates and/or breakdown products --- p.151 / Chapter 3.6.2.2 --- Water system --- p.155 / Chapter 3.6.2.2.1 --- Effects of initial phenanthrene concentration and amount of straw SMC on removal efficiency --- p.155 / Chapter 3.6.2.2.2 --- Effects of initial phenanthrene concentration and amount of straw SMC on removal capacity --- p.155 / Chapter 3.6.2.2.3 --- Effect of initial pH --- p.157 / Chapter 3.6.2.2.4 --- Effect of incubation time --- p.157 / Chapter 3.6.2.2.5 --- Effect of incubation temperature --- p.161 / Chapter 3.6.2.2.6 --- Putative identification of intermediates and/or breakdown products --- p.163 / Chapter 3.6.3 --- Benzo[a]pyrene --- p.163 / Chapter 3.6.3.1 --- Soil system --- p.163 / Chapter 3.6.3.1.1 --- Effects of initial benzo[a]pyrene concentration and amount of straw SMC on removal efficiency --- p.163 / Chapter 3.6.3.1.2 --- Effects of initial benzo[a]pyrene concentration and amount of straw SMC on removal capacity --- p.167 / Chapter 3.6.3.1.3 --- Effect of initial pH --- p.167 / Chapter 3.6.3.1.4 --- Effect of incubation time --- p.168 / Chapter 3.6.3.1.5 --- Effect of incubation temperature --- p.168 / Chapter 3.6.3.1.6 --- Putative identification of intermediates and/or breakdown products --- p.172 / Chapter 3.6.3.2 --- Water system --- p.172 / Chapter 3.6.3.2.1 --- Effects of initial benzo[a]pyrene concentration and amount of straw SMC on removal efficiency --- p.172 / Chapter 3.6.3.2.2 --- Effects of initial benzo[a]pyrene concentration and amount of straw SMC on removal capacity --- p.176 / Chapter 3.6.3.2.3 --- Effect of initial pH --- p.178 / Chapter 3.6.3.2.4 --- Effect of incubation time --- p.178 / Chapter 3.6.3.2.5 --- Effect of incubation temperature --- p.181 / Chapter 3.6.3.2.6 --- Putative identification of intermediates and/or breakdown products --- p.183 / Chapter 3.6.4 --- "Benzo[g,h,i]perylene" --- p.183 / Chapter 3.6.4.1 --- Soil system --- p.183 / Chapter 3.6.4.1.1 --- "Effects of initial benzo[g,h,i]perylene concentration and amount of straw SMC on removal efficiency" --- p.183 / Chapter 3.6.4.1.2 --- "Effects of initial benzo[g,h,i]perylene concentration and amount of straw SMC on removal capacity" --- p.187 / Chapter 3.6.4.1.3 --- Effect of initial pH --- p.187 / Chapter 3.6.4.1.4 --- Effect of incubation time --- p.187 / Chapter 3.6.4.1.5 --- Effect of incubation temperature --- p.189 / Chapter 3.6.4.1.6 --- Putative identification of intermediates and/or breakdown products --- p.189 / Chapter 3.6.4.2 --- Water system --- p.192 / Chapter 3.6.4.2.1 --- "Effects of initial benzo[g,h,i]perylene concentration and amount of straw SMC on removal efficiency" --- p.192 / Chapter 3.6.4.2.2 --- "Effects of initial benzo[g,h,i]perylene concentration and amount of straw SMC on removal capacity" --- p.196 / Chapter 3.6.4.2.3 --- Effect of initial pH --- p.198 / Chapter 3.6.4.2.4 --- Effect of incubation time --- p.198 / Chapter 3.6.4.2.5 --- Effect of incubation temperature --- p.198 / Chapter 3.6.4.2.6 --- Putative identification of intermediates and/or breakdown products --- p.201 / Chapter 3.7 --- Isotherm plots and fitting into monolayer models --- p.205 / Chapter 3.7.1 --- Sorption of naphthalene --- p.205 / Chapter 3.7.2 --- Sorption of phenanthrene --- p.205 / Chapter 3.7.3 --- Sorption of benzo[a]pyrene --- p.208 / Chapter 3.7.4 --- "Sorption of benzo[g,h,i]perylene" --- p.208 / Chapter 3.8 --- Toxicological study of Microtox test --- p.208 / Chapter 3.8.1 --- Soil system --- p.214 / Chapter 3.8.2 --- Water system --- p.214 / Chapter 3.9 --- Operable conditions of SMC for removal of PAHs --- p.214 / Chapter 3.10 --- Removal ability of SMC towards PAHs in single and in a mixture --- p.214 / Chapter 3.10.1 --- Soil system --- p.216 / Chapter 3.10.2 --- Water system --- p.216 / Chapter 4 --- Discussion --- p.221 / Chapter 4.1 --- Characterization of SMC --- p.221 / Chapter 4.2 --- Removal abilities of different sorbents towards PAHs in water --- p.223 / Chapter 4.3 --- Removal abilities of raw and autoclaved SMC towards PAHs in water --- p.226 / Chapter 4.4 --- Extraction efficiencies of PAHs --- p.227 / Chapter 4.5 --- Factors affecting removal of PAHs by SMC --- p.229 / Chapter 4.5.1 --- Initial PAH concentration and amount of straw SMC --- p.229 / Chapter 4.5.2 --- Initial pH --- p.237 / Chapter 4.5.3 --- Incubation time --- p.237 / Chapter 4.5.4 --- Incubation temperature --- p.242 / Chapter 4.6 --- Putative identification of intermediates and/or breakdown products --- p.247 / Chapter 4.7 --- Isotherm plots and fitting into monolayer models --- p.257 / Chapter 4.8 --- Toxicological study of Microtox® test --- p.258 / Chapter 4.9 --- Removal ability of SMC towards PAHs in single and in a mixture --- p.261 / Chapter 4.10 --- Comparison of removal efficiencies of benzo[a]pyrene by layering and mixing of straw SMC with soil --- p.265 / Chapter 4.11 --- Comparison of removal efficiencies of benzo[a]pyrene in different scales of experiment setup --- p.267 / Chapter 4.12 --- Effect of age of straw SMC on removal of PAHs --- p.270 / Chapter 4.13 --- Removal of benzo[a]pyrene by an aqueous extract of SMC --- p.270 / Chapter 4.14 --- Advantages of using SMC in removal of PAHs --- p.273 / Chapter 4.15 --- Limitations of the study --- p.278 / Chapter 4.16 --- Further investigation --- p.280 / Chapter 5 --- Summary --- p.282 / Chapter 6 --- Conclusion --- p.285 / Chapter 7 --- References --- p.286
|
37 |
Ett språk för svamp : Beskrivande sensorisk analys av tre matsvamparJonesund, Paulina, Toverland, Erik January 2019 (has links)
No description available.
|
38 |
Atividade nematicida do fungo Pleurotus ostreatus e de suas proteases / Nematicidal activity of the fungus Pleurotus ostreatus and its proteasesGenier, Hugo Leonardo André 08 June 2015 (has links)
Submitted by Patricia Barros (patricia.barros@ufes.br) on 2016-07-12T13:14:28Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação versão biblioteca final pos publicada Hugo Genier.pdf: 671423 bytes, checksum: 3d49ee23a16cc7bfb324104dc12607fd (MD5) / Approved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2016-07-12T13:14:45Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação versão biblioteca final pos publicada Hugo Genier.pdf: 671423 bytes, checksum: 3d49ee23a16cc7bfb324104dc12607fd (MD5) / Made available in DSpace on 2016-07-12T13:14:45Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
dissertação versão biblioteca final pos publicada Hugo Genier.pdf: 671423 bytes, checksum: 3d49ee23a16cc7bfb324104dc12607fd (MD5) / Dentre as possíveis aplicações biotecnológicas de fungos e suas proteases, o
controle biológico tem mostrado ser eficiente. O objetivo deste estudo foi
avaliar a atividade nematicida do fungo Pleurotus ostreatus e suas proteases
sobre larvas de Panagrellus sp. A atividade proteolítica de Pleurotus ostreatus
(PLO 06) foi medida e caracterizada com pHs e temperaturas diferentes e na
presença de um inibidor (PMSF). O tempo de produção máxima da enzima foi
determinado coletando-se amostras a cada 24h durante 7 dias. O perfil das
proteases foi observado através de zimograma. A atividade predatória do fungo
Pleurotus ostreatus (PLO 06) foi avaliada sobre larvas de Panagrellus sp.
(ensaio A), bem como a atividade nematicida de proteases de PLO 06 sobre as
mesmas larvas (ensaio B). A atividade das proteases foi máxima em pH 9 e
temperatura de 60 °C. Na presença de inibidor, não houve nenhuma atividade
proteolítica. A maior atividade enzimática de P. ostreatus foi obtida com seis dias de incubação (71,6 U/mL). Os valores de redução das larvas (Ensaio A) foram: dia 1 (65,6%); dia 2 (77,4%); dia 3 (95,2%). A redução das larvas
(Ensaio B) foi de 42%. P. ostreatus (PLO 06) e suas proteases mostraram
eficácia contra larvas de Panagrellus sp., demonstrando ter potencial para aplicação no controle biológico integrado. / Among the possible biotechnological applications of fungi and their proteases biological control has proved to be efficient. The objective of this study was to evaluate the nematicidal activity of the fungus Pleurotus ostreatus and its proteases on Panagrellus sp. larvae. Proteolytic activity of P. ostreatus (PLO 06) was measured and characterized at different pHs, temperatures and in the presence of a inhibitor (PMSF). The time of maximum production of the enzyme was determined collecting samples every 24 hours for 7 days. A zymogram showed the profile of several proteases. Predatory activity of the fungus P. ostreatus (PLO 06) was evaluated on Panagrellus sp. larvae (assay A) as well
as the nematicidal activity of PLO 06 proteases on the same larvae (assay B). At pH 9 and 60°C, the activity of the proteases reached the maximum. In the presence of inhibitor, there was no proteolytic activity. A sample collected on
the sixth day of incubation showed the highest enzyme activity (71, 6 U/mL). The values of the reduction of the larvae (Assay A) were: day 1 (65.6%); day 2 (77.4%); day 3 (95.2%). The reduction of the larvae (Assay B) was 42%. P.
ostreatus (PLO 06) and its proteases were very effective against Panagrellus
sp. larvae, demonstrating great potential for use in integrated biological control.
|
39 |
Secagem e resfriamento a vácuo de cogumelos comestíveis da espécie Pleurotus ostreatus DSM 1833Apati, Giannini Pasiznick January 2004 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Alimentos. / Made available in DSpace on 2012-10-21T10:55:29Z (GMT). No. of bitstreams: 1
222491.pdf: 2249540 bytes, checksum: ff69580ad4235c8853f60a6a059043f3 (MD5) / Cogumelos do gênero Pleurotus são muito saborosos e são considerados uma boa opção de dieta devido ao seu elevado valor nutricional, sendo ricos em proteínas, fibras, carboidratos, vitaminas e minerais. Sendo constituídos por cerca de 90% de umidade, os cogumelos frescos são extremamente perecíveis, pois a água que compõe sua estrutura gera um ambiente favorável aos processos biológicos, bioquímicos e biofísicos que degradam alimentos. Sendo assim, os processos de desidratação e de resfriamento a vácuo dos cogumelos da espécie Pleurotus ostreatus DSM 1833 foram avaliados neste trabalho. Os cogumelos foram desidratados em estufa com circulação de ar nas temperaturas de 40, 50 e 60ºC, com umidade relativa do ar de 75%. Os parâmetros de reidratação foram avaliados utilizando-se um planejamento experimental fracionado 33-1, onde as variáveis estudadas foram a temperatura de secagem (40, 50 e 60ºC), a temperatura da água de reidratação (25, 55 e 85ºC) e o tempo de imersão na água (30, 75 e 120 minutos). As isotermas de sorção de umidade foram determinadas a 30, 40 e 50ºC. Foi avaliada a influência da taxa de redução de pressão no resfriamento a vácuo e a minimização da perda de massa no processo através da aspersão de água antes do resfriamento a vácuo. A melhor temperatura de secagem obtida foi de 40ºC, levando em consideração a melhor reidratação dos cogumelos desidratados nesta temperatura. A reidratação dos cogumelos desse gênero pode ser feita em água na temperatura ambiente por 30 minutos. Tanto o modelo de GAB quanto o modelo de BET representaram adequadamente os dados experimentais de sorção de umidade. A aspersão de água nos cogumelos antes do resfriamento diminuiu consideravelmente a perda de massa durante o processo. Assim, desenvolveu-se conhecimentos básicos para dois processos de conservação dos cogumelos do gênero Pleurotus.
|
40 |
Cultivo de Lentinula edodes e Pleurotus ostreatus em bagaço de cana-de-açúcar /Souza, Letícia Gomes de. January 2016 (has links)
Orientadora: Dejanira de Franceschi de Angelis / Banca: Daiane Cristina Sass / Banca: Octavio Antonio Valsechi / Resumo: O constante crescimento na produção de etanol acarreta em aumento da produção de bagaço de cana-de-açúcar, surgindo necessidade de desenvolver novas formas de aproveitamento deste produto. Sendo assim, o acréscimo de valor agregado no bagaço afim de que seja utilizado em ração animal pode ser uma alternativa economicamente interessante. Este trabalho utilizou Lentinula edodes (shiitake) e o Pleurotus ostreatus (shimeji) na biotranformação e enriquecimento do bagaço de cana-de-açúcar termo hidrolisado, considerando-se tempo e aditivos nutricionais, para obtenção de biomassa com melhores condições nutricionais e proteicas. Na primeira etapa do projeto foram testadas diversas combinações de meio a fim de se encontrar aquele mais adequado para o desenvolvimento fungico. Concluiu-se que o 1% carbonato de cálcio e 1% levedura seca são essenciais para o desenvolvimento dos microrganismos neste substrato. Com relação à quantidade de inóculo, para P. ostreatus assumiu-se 3% como ideal e para L. edodes, assumiu-se 8% como a quantidade ideal. Foram quantificados proteína bruta, lipídios, valor nutricional relativo (VNR) pelo método com Enterococcus zymogenes, toxicidade aguda realizado com Daphinia similis, DQO e DBO das amostras. Quanto a quantidade de proteína, houve um aumento significativo quando comparado ao bagaço original passando de aproximadamente 1% para 3,43% e 3,20% para L.edodes e P.ostreatus respectivamente com 45 dias de incubação as 25+/- 20C. Os valores de lipídeos foram baixos mesmo após a colonização. O valor nutricional relativo do bagaço de cana termo hidrolisado antes do tratamento microbiológico apresentava valores de 23,07% passando para 84,61% para L.edodes e para 73,07% para P.ostreatus. A toxicidade aguda apresentou uma diminuição após o desenvolvimento fúngico sendo que L.edodes apresentou-se ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The constantly growing in ethanol production will lead to consequent increased production of sugarcane bagasse emerging need to develop new ways to use this product, Therefore the increase in value in order that residue to be used as forage for animal feed can be an economically interesting alternative. This paper used Lentinula edodes (shiitake) and Pleurotus ostreatus (shimeji) in biotranformação and enrichment of sugarcane bagasse term hydrolyzate, considering time and nutritional additives, to obtain biomass with better nutritional and protein conditions. In the first stage of the project were tested several combinations of substrate in order to find the most suitable for fungal development. It was concluded that 1% calcium carbonate and 1% dried yeast are essential for the development of microorganisms in the substrate. About the amount of inoculum, P. ostreatus assumed as an ideal 3% and L. edodes, 8% was assumed as the ideal amount. The following were quantified crude protein, lipids, nutritional value relative (NVR) by method with Enterococcus zymogenes, acute toxicity performed with Daphinia similis,, COD and BOD of amostras.susbstrato As the amount of protein, there was significant increase when compared to the original bagasse which has approximately 1% to 3.43% and 3.20% for L.edodes and P.ostreatus respectively 45 days incubaçõa the 25 +/- 20C . Lipid values were low even after colonization. The nutritional value of the term hydrolyzate sugarcane bagasse before the microbiological treatment had values of 23.07% and grows to 84.61 to 73.07 for L.edodes and to P.ostreat. The acute toxicity is decreasing after fungal growth and L.edodes presented more efficient in the detoxification. The results of COD and BOD also point to an improvement in the biodegradation of solubilized sugarcane bagasse for the two species of fungi when compared to the original substrate / Mestre
|
Page generated in 0.0761 seconds