• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • Tagged with
  • 28
  • 13
  • 11
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The static quark potential and scaling behavior of SU(3) lattice Yang-Mills theory

Necco, Silvia 15 May 2003 (has links)
Das Potential zwischen einem statischen Quark und Antiquark in der reinen SU(3) Yang-Mills Theorie wird auf dem Gitter in der Region von kurzen bis mittleren Abstaenden (0.05 fm < r < 0.8fm) nichtperturbativ ausgewertet. Renormalisierte dimensionslose Observablen werden zum Kontinuumslimes extrapoliert und bestaetigen damit die theoretische Erwartung, dass die fuehrenden Gitterartifakte quadratisch im Gitterabstand sind. Bei hohen Energien werden die Resultate mit der parameterfreien Vorhersage der Stoerungtheorie verglichen; diese wird erreicht, indem man die Renormierungsgruppengleichung in zwei- und drei-Loop-Ordnung loest. Die Wahl des Renormierungschemas fuer die Definition der laufenden Kopplung ist wichtig fuer die Genauigkeit der perturbativen Vorhersage. Wenn man die laufende Kopplung durch die Kraft definiert, ist Stoerungstheorie bis zu alpha ~ 0.3 anwendbar, waehrend mit dem statischen Potential nur bis zu alpha ~ 0.15. In der Region, in der Stoerungstheorie zuverlaessig sein sollte, wird kein grosser unerwarteter nichtperturbativer Term beobachtet: im Gegenteil, man findet eine gute uebereinstimmung zwischen Stoerungtheorie und unseren nicht-perturbativen Daten. Fuer grosse Quark-Antiquark Abstaende werden unsere Ergebnisse mit den Vorhersagen einer effektiven bosonischen Stringtheorie verglichen, und man findet bereits eine ueberraschend gute Uebereinstimmung fuer Abstaende > 0.5 fm. Im zweiten Teil dieser Arbeit sind Universalitaet und Skalierungsverhalten von unterschiedlichen Formulierungen der Yang-Mills Theorie auf dem Gitter diskutiert. Insbesondere werden Iwasaki- und DBW2- Wirkungen untersucht, die durch Renormierungsgruppe (RG) Argumente formuliert wurden. Die Laengenskala r_0 ~ 0.5 fm wird bei einigen Gitterabstaenden ausgewertet und die Skalierung der kritischen Deconfinement Temperatur T_c * r_0 wird mit den Resultaten analysiert und konfrontiert, die mit der ueblichen Wilson Plaquette Wirkung erreicht werden. Da sie im Kontinuumslimes uebereinstimmen, wird die Universalitaet bestaetigt. Die Groesse die man benutzt, um die Skala einzustellen, muss mit Vorsicht gewaehlt werden, um grosse systematische Ungenauigkeiten zu vermeiden. Fuer diesen Zweck zeigt sich r_0 als angebracht. Fuer die kritische Temperatur zeigen die Daten, die mit RG Wirkungen erhalten werden, verringerte Gitterartifakte, vor allem mit der Iwasaki Wirkung. Schliesslich wird die Masse der 0^{++}- und 2^{++}-Glueballs ausgewertet, indem man die Observablen m_0^{++} *r_0 und m_2^{++}*r_0 betrachtet. Jedoch kann keine genaue Schlussfolgerung ueber das Scalingverhalten fuer diese Observablen gezogen werden. Eine besondere Aufmerksamkeit ist der Verletzung der physikalischen Positivitaet, die in diesen Wirkungen auftritt und den Konsequenzen in der Extraktion der physikalischen Groessen aus euklidischen Korrelationsfunktionen gewidmet. / The potential between a static quark and antiquark in pure SU(3) Yang-Mills theory is evaluated non-perturbatively through computations on the lattice in the region from short to intermediate distances (0.05 fm < r 0.5 fm. In the second part of this work, universality and scaling behavior of different formulations of Yang-Mills theory on the lattice are discussed. In particular, the Iwasaki and DBW2 action are investigated, which were obtained by following renormalization group (RG) arguments. The length scale r_0 ~ 0.5 fm is evaluated at several lattice spacings and the scaling of the critical deconfinement temperature T_c*r_0 is analyzed and confronted with the results obtained with the usual Wilson plaquette action. Since they agree in the continuum limit, the universality is confirmed. We remark that the quantity to use to set the scale has to be chosen with care in order to avoid large systematic uncertainties and $\rnod$ turns out to be appropriate. For the critical temperature the data obtained with RG actions show reduced lattice artifacts, above all with the Iwasaki action. Finally the mass of the glueballs 0^{++} and 2^{++} is evaluated by considering the quantities m_0^{++}*r_0 and m_2^{++}*r_0; however for those observables no clear conclusion about the scaling behavior can be drawn. Particular attention is dedicated to the violation of physical positivity which occur in these actions and the consequences in the extraction of physical quantities from Euclidean correlation functions.
22

Luttinger-liquid physics in wire and dot geometries / Luttingerflüssigkeitsphysik in Quantendraht- und Quantenpunktgeometrien

Wächter, Hans Peter 16 December 2009 (has links)
No description available.
23

Emergence and Breakdown of Quantum Scale Symmetry: From Correlated Condensed Matter to Physics Beyond the Standard Model

Ray, Shouryya 13 October 2022 (has links)
Scale symmetry is notoriously fickle: even when (approximately) present at the classical level, quantum fluctuations often break it, sometimes rather dramatically. Indeed, contemporary physics encompasses the study of very different phenomena at very different scales, e.g., from the (nominally) meV scale of spin systems, via the eV of electronic band structures, to the GeV of elementary particles, and possibly even the 10¹⁹ GeV of quantum gravity. However, there are often – possibly surprising – analogies between systems across these seemingly disparate settings. Studying the possible emergence of quantum scale symmetry and its breakdown is one way to systematically exploit these similarities, and in fact allows one to make testable predictions within a unified technical framework (viz., the renormalization group). The aim of this thesis is to do so for a few explicit scenarios. In the first four of these, quantum scale symmetry emerges in the long-wavelength limit near a quantum phase transition, over length scales of the order of the correlation length. In the fifth example, quantum scale symmetry is restored at very high energies (i.e., at and above the Planck scale), but severely constrains the phenomenology at 'low' energies (e.g., at accelerator scales), despite scale invariance being badly broken there. We begin with the Gross–Neveu (= chiral) SO(3) transition in D = 2+1 spacetime dimensions, which notably has been proposed to describe the transition of certain spin-orbital liquids to antiferromagnets. The chiral fermions that suffer a spontaneous breakdown of their isospin symmetry in this setting are fractionalized excitations (called spinons), and are as such difficult to observe directly in experiment. However, as gapless degrees of freedom, they leave their imprint on critical exponents, which may hence serve as a diagnostic tool for such unconventional excitations. These may be computed using (comparatively) conventional field-theoretic techniques. Here, we employ three complementary methods: a three-loop expansion in D = 4 - ε spacetime dimensions, a second-next-leading order expansion in large flavour number N , and a non-perturbative calculation using the functional renormalization group in the improved local potential approximation. The results are in fair agreement with each other, and yield combined best-guess estimates that may serve as benchmarks for numerical simulations, and possibly experiments on candidate spin liquids. We next turn our attention to spontaneous symmetry breaking at zero temperature in quasi-planar (electronic) semimetals. We begin with Luttinger semimetals, i.e., semimetals where two bands touch quadratically at isolated points of the Brioullin zone; Bernal-stacked bilayer graphene (BBLG) within certain approximations is one example. Luttinger semimetals are unstable at infinitesimal 4-Fermi interaction towards an ordered state (i.e., the field theory is asymptotically free rather than safe). Nevertheless, since the interactions are marginal, there are several pathologies in the critical behaviour. We show how these pathologies may be understood as a collision between the IR-stable Gaußian fixed point and a critical fixed point distinct from the Gaußian one in d = 2 + ε spatial dimensions. Observables like the order-parameter expectation value develop essential rather than power-law singularities; their exponent, as shown herein by explicit computation for the minimal model of two-component ‘spinors’, is distinct from the mean-field one. More tellingly, although finite critical exponents often default to canonical power-counting values, the susceptibility exponent turns out to be one-loop exact, and, in said minimal model takes the value γ = 2γᵐᵉᵃⁿ⁻ᶠᶦᵉˡᵈ = 2. Such an exact yet non-mean-field prediction can serve as a useful benchmark for numerical methods. We then proceed to scenarios in D = 2 + 1 spacetime dimensions where Dirac fermions can arise from Luttinger fermions due to low rotational symmetry. In BBLG, the 'Dirac from Luttinger' mechanism can occur both due to explicit and spontaneous breaking of rotational symmetry. The explicit symmetry breaking is due to the underlying honeycomb lattice, which only has C₃ symmetry around the location of the band crossings (so-called K points). As a consequence, the quadratic band crossing points each split into four Dirac cones, which is shown explicitly by computing the two-loop self-energy in the 4-Fermi theory. Within our approximations, we can estimate the critical coupling up to which a semimetallic state survives; it is finite (unlike a quadratic band touching point with high rotational symmetry), but significantly smaller than a 'vanilla' Dirac semimetal. Based on the ordering temperature of BBLG, our rough estimate further shows that the (effective) coupling strength in BBLG may be close to the critical value, in sharp contrast to other quasi-planar Dirac semimetals (such as monolayer graphene). Rotational symmetry in BBLG may also be broken spontaneously, i.e., due to the presence of nematic order, whereby a quadratic band crossing splits into two Dirac cones. Such a scenario is also very appealing for BBLG, since the precise nature of the ordered ground state of BBLG has not been established unambiguously: whilst some experiments show an insulating ground state with a full bulk gap, others show a partial gap opening with four isolated linear band crossings. Here, we show within a simplified phenomenological model using mean-field theory that there exists an extended region of parameter space with coexisting nematic and layer-polarized antiferromagnetic order, with a gapless nematic phase on one side and a gapped antiferromagnetic phase on the other. We then show that the nematic-to-coexistence quantum phase transition has emergent Lorentz invariance to one-loop in D = 2 + ε as well as D = 4 - ϵ dimensions, and thus falls into the celebrated Gross-Neveu-Heisenberg universality class. Combining previous higher-order field-theoretic results, we derive best-guess estimates for the critical exponents of this transition, with the theoretical uncertainty coming out somewhat smaller than in the monolayer counterpart due to the enlarged number of fermion components. Overall, BBLG may hence be a promising candidate for experimentally accessible Gross–Neveu quantum criticality in D = 2 + 1 spacetime dimensions. Finally, we turn our attention to the 'low-energy' consequences of transplanckian quantum scale symmetry. Extensions to the Standard Model that tend to lower the Higgs mass have many phenomenologically attractive properties (e.g., it would allow one to accommodate a more stable electroweak vacuum). Dark matter is one well-motivated candidate for such an extension. However, even in the most conservative settings, one usually has to contend with a significantly enlarged number of free parameters, and a concomitant reduction of predictivity. Here, we investigate how asymptotic safety (i.e., imposing quantum scale symmetry at the Planck scale and above) may constrain the Higgs mass in Standard Model (plus quantum gravity) when coupled to Yukawa dark matter via a Higgs portal. Working in a toy version of the Standard Model consisting of the top quark and the radial mode of the Higgs, we show within certain approximations that the Higgs mass may be lowered by the necessary amount if the dark scalar undergoes spontaneous symmetry breaking, as a function of the dark scalar mass, which is the only free parameter left in the theory.:1 Introduction 1.1 Scale invariance – why and where 1.1.1 Fundamental quantum field theories 1.1.2 Universality 1.1.3 Novel phases of matter 1.2 Outline of this thesis 2 Renormalization Group: A Brief Review 2.1 Quantum fluctuations and generating functionals 2.2 Renormalization group flow 2.3 Basic notions 2.4 Scale transformations, scale symmetry and RG fixed points 2.5 Characterization and interpretation of RG fixed points 2.5.1 Formal aspects 2.5.2 Scaling at (quantum) phase transitions 2.5.3 Predictivity in fundamental physics 2.5.4 Effective asymptotic safety in particle physics and condensed matter 3 Gross–Neveu SO(3) Quantum Criticality in 2 + 1 Dimensions 3.1 Effective field theory 3.2 Renormalization and critical exponents 3.2.1 4 - ϵ expansion 3.2.1.1 Method 3.2.1.2 Flow equations 3.2.1.3 Critical exponents 3.2.2 Large-N expansion 3.2.2.1 Method 3.2.2.2 Critical exponents 3.2.3 Non-perturbative FRG 3.2.3.1 Flow equations 3.2.3.2 Representation of the effective potential 3.2.3.3 Choice of regulator 3.2.3.4 Limiting behaviour 3.3 Discussion 3.3.1 General behaviour and qualitative aspects 3.3.2 Quantitative estimates for D = 3 3.4 Summary and outlook 4 Luttinger Fermions in Two Spatial Dimensions 4.1 Introduction 4.2 Action from top-down construction 4.3 Renormalization 4.3.1 4-Fermi formulation 4.3.2 Yukawa formulation 4.4 Fixed-point analysis 4.5 Non-mean-field behaviour 4.5.1 Order-parameter expectation value 4.5.2 Susceptibility exponent 4.6 Bottom-up construction: Spinless fermions on kagome lattice 4.6.1 Tight-binding dispersion 4.6.2 From Hubbard to Fermi 4.6.3 Fate of particle-hole asymmetry 4.7 Discussion 5 Dirac from Luttinger I: Explicit Symmetry Breaking 5.1 From lattice to continuum 5.1.1 Fermions on Bernal-stacked honeycomb bilayer 5.1.2 Continuum limit 5.1.3 Interactions 5.2 Mean-field theory 5.3 Renormalization-group analysis 5.3.1 Flow equations 5.3.2 Basic flow properties 5.3.3 Phase diagrams 5.4 Discussion 5.5 Summary and outlook 6 Dirac from Luttinger II: Spontaneous Symmetry Breaking 6.1 Model 6.2 Phase diagram and transitions 6.3 Emergent Lorentz symmetry 6.3.1 Loop expansion near lower critical dimension 6.3.1.1 Minimal 4-Fermi model 6.3.1.2 Gross–Neveu–Heisenberg fixed point 6.3.1.3 Fate of rotational symmetry breaking 6.3.2 Loop expansion near upper critical dimension 6.3.2.1 Gross–Neveu–Yukawa–Heisenberg model 6.3.2.2 Gross–Neveu–Yukawa–Heisenberg fixed point 6.3.2.3 Fate of rotational symmetry breaking 6.4 Critical exponents 6.5 Discussion 7 Higgs Mass in Asymptotically Safe Gravity with a Dark Portal 7.1 Review: The asymptotic safety scenario for quantum gravity and matter 7.2 Review: Higgs mass, and RG flow in the SM and beyond 7.2.1 Higgs mass in the SM 7.2.2 Higgs mass bounds in bosonic portal models 7.2.3 Higgs mass in asymptotic safety 7.2.4 Higgs Portal and Asymptotic Safety 7.3 Higgs mass in an asymptotically safe dark portal model 7.3.1 The UV regime 7.3.2 Flow towards the IR 7.3.3 Infrared masses 7.3.4 From the UV to the IR – Contrasting effective field theory and asymptotic safety 7.4 Discussion 8 Conclusions Appendices A Position-space propagator for C₃-symmetric QBT B Two-sided Padé approximants for C₃-symmetric QBTs C Corrections to the mean-field nematic order-parameter effective potential due to explicit symmetry breaking D Self-energy in anisotropic Yukawa theory E Master integrals for anisotropic Yukawa theory Bibliography
24

Renormalization group flow of scalar models in gravity

Guarnieri, Filippo 15 May 2014 (has links)
In dieser Doktorarbeit werden wir das Renormierungsproblem von Gravitationstheorien im Kontext der Renormierungsgruppe (RG) unter Anwendung von perturbativen und nicht-perturbativen Methoden untersuchen. Insbesondere werden wir uns auf verschiedene Gravitationsmodelle und Näherungen konzentrieren, in welchen die zentrale Rolle von einem skalaren Freiheitsgrad eingenommen wird. Wir konzentrieren uns besonders auf zwei Ansätze für Quantengravitation, die in letzter Zeit viel Aufmerksamkeit erhalten haben, nämlich den asymptotisch sicheren Fall der Gravitation und die Hořava-Lifshitz Quantengravitation. Das Prinzip der Asymptotischen Sicherheit beruht auf der Annahme, dass das hochenergetische Gravitationsregime von einem nicht-Gaußschen Fixpunkt bestimmt wird, der nicht-perturbative Renormierung und Endlichkeit der Korrelationsfunktionen sicherstellt. Wir werden die Existenz eines solchen nicht-trivialen Fixpunktes mit Hilfe der funktionalen Renormierungsgruppe untersuchen. Insbesondere werden wir den einzigen konformen Freiheitsgrad quantisieren. Die Frage nach der Existenz eines nicht-Gaußschen Fixpunktes in einem unendlich- dimensionalen Parameterraum, das heißt für eine generische f(R)-Theorie, kann jedoch nicht mit einem solchen konform reduzierten Model analysiert werden. Deshalb werden wir es untersuchen, indem wir eine skalare dynamische Äquivalentstheorie, das heißt eine generische Brans-Dicke Theorie in der lokal-Potential Näherung mit ω = 0, quantisieren. Schließlich werden wir mittels einer perturbativen RG Methode die asymptotische Freiheit der Hořava-Lifshitz Gravitationstheorie analysieren. Diese Gravitationstheorie beruht auf der Entstehung einer Anisotropie zwischen Raum und Zeit, die Newtons Konstante zu einer marginalen Koppelung werden lässt und explizit die Unitarität bewahrt. Insbesondere werden wir die Einschleifenkorrektur in 2+1 Dimensionen berechnen, indem wir nur den konformen Freiheitsgrad quantisieren. / In this Ph.D. thesis we will study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we will focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Hořava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We will then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson’s renormalization group. In particular we will quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we will study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω = 0 in the local potential approximation. Finally, we will investigate, using a perturbative RG scheme, the asymptotic freedom of the Hořava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton’s constant to a marginal coupling and explicitly preserves unitarity. In particular we will evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
25

Renormalization-Group Theory for Quantum Dissipative Systems in Nonequilibrium / Renormierungsgruppentheorie für dissipative Quantensysteme im Nichtgleichgewicht

Keil, Markus 29 January 2002 (has links)
No description available.
26

Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - A way to spintronics? / Spin-Bahn-Wechselwirkung in Quantenpunkten und Quantendrähten korrelierter Elektronen - Ein Weg Richtung Spintronik?

Birkholz, Jens Eiko 06 October 2008 (has links)
No description available.
27

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 February 2012 (has links) (PDF)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
28

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 January 2012 (has links)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.

Page generated in 0.0643 seconds