231 |
Modellierung des schädigungsbehafteten inelastischen Materialverhaltens von Faser-Kunststoff-Verbunden / Modelling of inelastic material behaviour and failure of fibre reinforced polymersMüller, Sebastian 16 April 2015 (has links) (PDF)
Die Arbeit beschreibt eine Modellierung des Materialverhaltens von Faser-Kunststoff-Verbunden unter Berücksichtigung der lokalen Materialstruktur, den konstitutiven Eigenschaften der Verbundbestandteile sowie charakteristischer Schädigungsphönomene.
Die Diskretisierung eines repräsentativen Ausschnitts der Materialstruktur erfolgt unter Verwendung der erweiterten Finiten-Elemente-Methode (XFEM). Sie ermöglicht die effiziente Modellierung des Steifigkeitssprunges an den inneren Materialgrenzen und deren Versagen. Der Verlauf der Elementgrenzen muss dabei nicht an die Materialstruktur angepasst werden.
Für die Beschreibung der Dehnratenabhängigkeit der polymeren Matrix wird ein Modell der nichtlinearen fraktionalen Viskoelastizität angewendet. Die Kombination mit einem nichtlokalen Kontinuumsschädigungsmodell ermöglicht weiterhin die Modellierung einer verzerrungsgesteuerten Schädigung des Matrixwerkstoffs.
Die Parametrisierung, Validierung des Gesamtmodells erfolgt anhand ausgewählter experimenteller Untersuchungen an einem unidirektional verstärkten Glasfaser-Polypropylen-Verbund. / The thesis addresses the modelling of the material behavior of fibre reinforced polymers. It systematically includes the influence of the local material structure, the mechanical behaviour of the consituents and characteristic damage phenomena.
The diskretisation of a representative volume element of the material structure is based on the extended finite element method (XFEM). It allows for an efficient modelling of the stiffness jump at internal material boundaries as well as their damage. With the XFEM, the element boundaries are no longer required to coincide with the material structure.
The approximation of the strain rate dependence of the polymeric matrix is based on a nonlinear, fractional viscoelasticity approach. Its combination with a nonlocal strain driven continuum damage modell allows for the modelling of damage effects.
The parametrisation and validation of the overall approach is based on a comparison with experimental results for a unidirectional reinforced glass-fibre-polypropylene composite.
|
232 |
Scaffolds fabricated by three-dimensional plotting for bone tissue engineering and regeneration / Herstellung von Scaffolds für das Tissue Engineering und Regeneration von Knochen durch dreidimensionales PlottenLuo, Yongxiang 14 November 2013 (has links) (PDF)
In this thesis, several types of scaffolds composed of different materials and designed structures and functions were fabricated by 3D plotting under mild conditions (room temperature and without using any organic solvent). Broad biomaterials including inorganic (such as calcium phosphate cement and mesoporous bioglass), organic (such as alginate and gelatin) and composite materials were prepared into printable pastes to plot as 3D scaffolds for bone tissue engineering. Organic/inorganic biphasic and bipartite structure, core/shell alginate/nano-hydroxyapatite and hollow fiber structure were designed and realized. Scaffolds with multi functions including suitable mechanical properties, sustained drug/protein delivery and in vitro vascularization were achievable. 3D plotting provided great achievements in the field of tissue engineering by preparing advanced scaffolds, as well as by plotting cell/matrix constructs, and even complex tissues and organs.
|
233 |
Polypropylene and Natural Rubber based Thermoplastic Vulcanizates by Electron Induced Reactive ProcessingMondal, Manas 28 October 2013 (has links) (PDF)
Thermoplastic Vulcanizates (TPVs) are itself a commercially high valued group of polymer blend. They render technological properties of conventional vulcanized elastomers with the ease of thermoplastic melt (re)processability. With ever growing market, TPVs have got plenty of applications among various fields. Here, the technological properties of these TPVs were tailored according to the purpose by interplaying physical parameters of polymers and advanced high energy electron technology. Electron irradiation, though a well-known technique for cross-linking in polymer industry, is only restricted to final product treatment. We take it to the next level by coupling a conventional internal mixer and a high energy electron accelerator. Polypropylene (PP) and natural rubber (NR) based TPVs have been prepared using this new reactive processing technology, named Electron Induced Reactive Processing (EIReP). Various electron treatment parameters were explored to maximize technological properties of TPVs.
Effects of various polyfunctional monomers (PFM) were also studied. In an endeavor to develop a potential method for customization, deep insights of macroscopic and microscopic structure of these TPVs were presented with the help of various advanced scientific characterization techniques. Commonly faced difficulties like viscosity mismatch, cure rate mismatch, and incompatibility due to different molecular structures were furnished along with plausible solutions. Investigation of phase inversion from co-continuous matrix to thermoplastic matrix was dealt with special care as it helps to understand structure property correlation for all TPVs. To make the whole effort relevant, at the end of this thesis a summary of various technological properties has been given for the newly processed and commercially available TPVs.
|
234 |
Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und KupfermischkristalllegierungenKauffmann, Alexander 01 July 2014 (has links) (PDF)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
|
235 |
Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber PlacementSpickenheuer, Axel 17 July 2014 (has links) (PDF)
Seitdem Faser-Kunststoff-Verbunde (FKV) als Leichtbauwerkstoffe für Hochleistungsanwendungen im Luftfahrzeug-, Automobil- und Sportgerätebau eingesetzt werden, erfolgt dies vorrangig mit Hilfe multiaxialer Mehrlagenlaminate. Vergleichsweise neue Fertigungstechnologien, wie die Tailored Fiber Placement (TFP-)Technologie, eröffnen jedoch die Möglichkeit einer gekrümmten, auch als variabelaxial bezeichneten, Ablage von Verstärkungsfäden. Der zugewonnene Freiheitsgrad, den Verstärkungsfasern an jeder beliebigen Stelle eine neue Richtung zuweisen zu können, bedingt aber auch ein komplexes Verständnis für eine beanspruchungsgerechte Auslegung von Faserverbundbauteilen.
Ziel ist es dabei, die Fäden so zu orientieren, dass sie die angreifenden mechanischen Lasten mit einer möglichst gleichmäßigen Beanspruchung übertragen und das notwendige Matrixmaterial nur geringen Belastungen ausgesetzt ist. Nach einer Analyse bestehender theoretischer Auslegungsstrategien werden Vor- und Nachteile von reinen Materialoptimierungsansätzen bzw. in Kombination mit einer vorgeschalteten Topologieoptimierung diskutiert. Experimentelle Nachweise werden am Beispiel einer Zugscheibe mit ungleich breiten Einspannbereichen und einem steifigkeitsdimensionierten Fahrradbauteil (Brake Booster) erbracht. Dabei wird insbesondere das hohe Leichtbaupotential einer topologisch optimierten variabelaxialen FKV-Struktur gegenüber einer multiaxialen Laminatgestaltung herausgestellt.
Anhand der TFP-Prozesskette wird deutlich gemacht, dass für eine numerische Auslegung variabelaxialer Strukturbauteile neue Softwarewerkzeuge sowie ein hinreichend genaues Analysemodell notwendig sind. Mit Hilfe des in der vorliegenden Arbeit entwickelten Softwarewerkzeugs AOPS kann die Auslegung beanspruchungsgerechter Strukturbauteile zukünftig effizienter erfolgen. Einen wesentlichen Bestandteil bildet dabei der vorgestellte Modellierungsansatz für die Finite Elemente Analyse. Damit ist es erstmals möglich ausgehend von einem beliebigen TFP-Ablagemuster, die spätere Struktursteifigkeit eines komplexen variabelaxialen TFP-Bauteils vorauszusagen. Der entwickelte Modellansatz konnte anhand der durchgeführten experimentellen Untersuchungen erfolgreich validiert werden.
|
236 |
Temperaturverhältnisse und Reaktionskinetik beim Ziehen und Wärmebehandeln von DrahtMüller, Wolfhart 10 June 2014 (has links) (PDF)
Die Temperaturverhältnisse beim Ziehen und Wärmebehandeln von Draht werden mit mathematisch-analytischen Methoden auf der Grundlage der FOURIERschen Wärmeleitungsgleichung eingehend untersucht. Insbesondere wird unter den spezifischen Wärmeübergangsbedingungen zwischen Draht und Ziehdüse sowie zwischen Draht und Ziehtrommel deren thermische Wechselwirkung analysiert. Ein Näherungsverfahren zur Berechnung der Drahttemperaturen in Zugfolgen unter Berücksichtigung des Ziehdüseneinflusses wird angegeben und mit einem Beispiel zum Nassziehen stark verzinkten Stahldrahts illustriert. Aus geschwindigkeitsabhängig gemessenen Änderungen des Drahtdurchmessers werden unter thermoelastischer Ziehringdurchmesserkorrektur Schmierfilmdicken bestimmt. Diffusionsgleichungen werden analysiert und ein Zusammenhang zur Reaktionskinetik wird hergestellt. Ein neues reaktionskinetisches Werkstoffmodell, das insbesondere auch im Falle stärker anisothermer Verhältnisse, also bei Kurzzeitwärmebehandlung anwendbar ist, wird vorgestellt.
|
237 |
Wertarbeit mit ErsatzstoffenLuxbacher, Günther 02 April 2014 (has links) (PDF)
No description available.
|
238 |
Schließringbolzen ohne Sollbruchstelle für wartungsfreie Verbindungen im Nutzfahrzeug- und StahlbauStädler, Hans-Albert 05 November 2012 (has links) (PDF)
Die Auswahl einer zweckmäßigen Verbindungstechnik hat großen Einfluss auf die Kosten für die Herstellung und Wartung von Gütern. Das mechanische Verbinden von Bauteilen mit Schließringbolzen gehört zum umformtechnischen Fügen. Damit werden kostengünstig unlösbare und mechanisch hoch beanspruchbare, punktförmige Verbindungen erzeugt.
Die vorliegende Arbeit hatte das Ziel, in umfassender Form den Nachweis zu erbringen, dass mit Schließringbolzensystemen ohne Sollbruchstelle wartungsfreie Verbindungen hergestellt werden können. Diese Wartungsfreiheit bezieht sich auf den Erhalt der mechanischen Eigenschaften der Verbindung und des Korrosionsschutzes bis zur beabsichtigten Grenznutzungsdauer. Aus einer Analyse des Standes der Technik wurde der Forschungsbedarf hinsichtlich der Wartungsfreiheit von Schließringbolzenverbindungen aus mechanischer und korrosiver Sicht abgeleitet. In einem mehrstufigen Prüfprogramm, unterteilt nach Anwendungen im Nutzfahrzeugbau und Stahlbau, wurde nach maschinenbaulichen und stahlbaulichen Konzepten die mechanische Leistungsfähigkeit der Verbindungen untersucht. Die Forschungsergebnisse aus diesem Programm und der Test neu entwickelter Beschichtungssysteme für die Bolzen und die Schließringe bestätigten die Eingangsthese über die Wartungsfreiheit. Metallografische Analysen und FEM Rechnungen ergänzen die Arbeit. Sie ist in sechs Abschnitte unterteilt und enthält 135 Abbildungen, 25 Tabellen, 3 Anlagen. Es wurden 118 Literaturquellen berücksichtigt. Mit der Arbeit steht dem Ingenieur ein umfangreiches Auskunftsmaterial zum Vergleich von Schließringbolzenverbindungen mit anderen Fügeverfahren, besonders jedoch zur Verschraubung zur Verfügung. Die durchgeführten Untersuchungen und Aussagen sollten in zukünftiger Forschung zu einem ganzheitlichen Konzept für die rechnerische Auslegung und Dimensionierung von Schließringbolzenverbindungen nach dem Vorbild der VDI 2230 und der EN 1993 weitergeführt werden.
|
239 |
Spin-transfer torques in MgO-based magnetic tunnel junctionsBernert, Kerstin 12 March 2014 (has links) (PDF)
This thesis discusses spin-transfer torques in MgO-based magnetic tunnel junctions. The voltage-field switching phase diagrams have been experimentally determined for in-plane CoFeB/MgO/CoFeB magnetic tunnel junctions. In order to limit the effect of thermal activation, experiments have been carried out using nanosecond voltage pulses, as well as at low-temperature (4.2 K).
The bias-dependence of the two spin-torque terms (Slonczewski-like and field-like) has been determined from thermally-excited ferromagnetic resonance measurements, yielding values which are in good agreement with previous reports. Additionally, material parameters such as the effective magnetisation and the damping factor have also been extracted.
Using these values as input, the switching voltages as function of the applied magnetic field have been calculated numerically and analytically by solving the modified Landau-Lifshitz-Gilbert equation. Unlike previous studies, the field-like spin-torque has also been included. Moreover, different configurations have been considered for the magnetic anisotropy directions of the reference and free layer, respectively. / Diese Arbeit befasst sich mit Spin-Transfer-Torque-Effekten in MgO-basierten magnetischen Tunnelstrukturen. Die Phasendiagramme als Funktion von Spannung und Magnetfeld von CoFeB/MgO/CoFeB-Tunnelstrukturen mit Magnetisierung in der Ebene wurden experimentell bestimmt. Um thermische Anregungseffekte zu limitieren, wurden die Experimente einerseits mit nanosekundenlangen Spannungspulsen und andererseits bei niedrigen Temperaturen (4.2 K) durchgeführt.
Die Spannungsabhängigkeit der beiden Spin-Torque-Parameter (in-plane und senkrechter Spin-Transfer-Torque) wurde aus Messungen der thermisch angeregten ferromagnetischen Resonanz bestimmt, wobei sich Werte ergaben, die gut mit vorangegangenen Untersuchungen übereinstimmen. Zusätzlich wurden Werte für Materialparameter wie die effektive Magnetisierung und den Dämpfungsparameter gewonnen.
Unter Verwendung der erhaltenen Werte wurden die Schaltspannungen als Funktion des angelegten Magnetfeldes analytisch und numerisch berechnet, indem die erweiterte Landau-Lifshitz-Gilbert-Gleichung gelöst wurde. Im Gegensatz zu vorangegangenen Untersuchungen wurde der senkrechte Spin-Transfer-Torque dabei mit einbezogen. Darüber hinaus wurden verschiedene Konfigurationen für die Richtung der magnetischen Anisotropie der freien und fixierten Schicht berücksichtigt.
|
240 |
Microstructure and mechanical properties of new composite structured Ti-based alloysOkulov, Ilya 09 March 2015 (has links) (PDF)
The demanding structural applications (e.g. aerospace, biomedical, etc.) require new materials with improved mechanical performance. The novel Ti-based dendrite + nano-/ultrafine-structured (Ti-based DNUS) composites exhibit an advantageous combination of high compressive strength (2000 – 2500 MPa) and large compressive ductility (10 – 30 %) already in the as-cast state [1,2] and, therefore, can be referred as high-performance materials. However, these Ti-based composites frequently exhibit very low or even lack of tensile ductility [3].
Therefore, the aim of this research work is to develop high strength Ti-based DNUS composites with pronounced tensile plasticity and to correlate the mechanical properties with their microstructure.
In order to reach the goal, the high-strength Ti66Nb13Cu8Ni6.8Al6.2 (at.%) alloy exhibiting large compressive ductility [4] was selected for the modification. The microstructure of Ti66Nb13Cu8Ni6.8Al6.2 is composed of two metallographic constituents including β-Ti dendrites and an interdendritic component. The β-Ti dendrites are enriched in Nb and, therefore, Nb is referred as “dendritic element” whereas the interdendritic component is enriched in Ni and Cu and, therefore, these are referred as “interdendritic elements”.
To perform a systematic study of the “interdendritic elements” (Ni, Cu and Co) effect on microstructure, a number of alloys with different concentration and types of alloying elements (Ti-Nb-Cu-Ni-Al, Ti-Nb-Co-Ni-Al, Ti-Nb-Cu-Co-Al and Ti-Nb-Ni(Co)-Al) were developed. It was shown that a higher concentration of the “interdendritic elements” in a composition within one alloy system corresponds to a higher volume fraction of the interdendritic component. Additionally, the crystal structure of the interdendritic phases is affected by type of the “interdendritic elements”.
Since the most advanced applications (e.g. aerospace) require materials with high specific strengths, the new ductile Ti-Nb-Cu-Ni-Al alloys were modified to reduce their density, i.e. the Nb was substituted by lighter V. As a result, a new family of Ti-V-Cu-Ni-Al alloys with improved specific strength compared to the Ti-Nb-Cu-Ni-Al alloys was developed. Additionally, moduli of resilience of the Ti-V-Ni-Cu-Al alloys are superior when compared with those of the commercial Ti-based spring materials.
The effect of microstructure on deformation of the newly developed alloys was studied through the in-situ microstructural analysis of samples at different strained states by means of scanning electron microscopy. To reveal the effect of the metallographic constituents on strength, the microhardness mapping of the new alloys was performed.
Using the obtained empirical principles of microstructure adjustment, a new Ti68.8Nb13.6Co6Cu5.1Al6.5 (at.%) alloy with a large static toughness (superior to those of the recently developed Ti-based metallic glass composites) was developed. This large static toughness is due to both high strength and significant tensile plasticity. To study the effect of microstructure on tensile plasticity of Ti68.8Nb13.6Co6Cu5.1Al6.5 the in-situ microstructural analysis of samples at different strained states in the scanning electron microscope as well as the transmission electron microscopy studies were performed. / Der erhöhte Anspruch an strukturelle Anwendungen (z.B. Luftfahrt, Biomedizin, etc.) verlangt neue Werkstoffe mit verbesserten mechanischen Leistungsfähigkeiten. Neuartige Ti-basierte dendritische nano-/ultrafeine Komposite (Ti-basierte DNUS Komposite) besitzen eine vorteilhafte Kombination von hoher Druckfestigkeit mit großer plastischer Verformbarkeit unter Druckbelastung bereits im Gusszustand [1,2] wodurch sie als hochleistungsfähige Werkstoffe angesehen werden. Jedoch besitzen diese Ti-basierte DNUS Komposite heufig eine stark verringerte oder gar keine Duktilität unter Zugbelastung [3].
Deswegen ist es das Ziel dieser Forschungsarbeit neue hochfeste Ti-basierte DNUS Komposite mit ausgeprägter Duktilität unter Zugbelastung zu entwickeln und die mechanischen Eingeschaften mit ihrer Mikrostruktur zu korrelieren.
Um dieses Ziel zu erreichen wurde die hochfeste Legierung Ti66Nb13Cu8Ni6.8Al6.2 (at.%) [4], die eine große plastische Verformbarkeit unter Druckbelastung aufweist, ausgewählt. Die Mikrostruktur von Ti66Nb13Cu8Ni6.8Al6.2 setzt sich aus zwei metallographischen Konstituenten, einschließlich β-Ti Dendriten und einer interdendritischen Komponente, zusammen. Die β-Ti Dendriten sind mit Nb angereichert, weswegen Nb als “dendritisches Element” bezeichnet wird, wohingegen die interdendritische Komponente mit Ni und Cu angereichert ist und deswegen diese als “interdendritische Elemente” bezeichnet werden.
Um den Einfluss der “interdendritischen Elemente” (Ni, Cu and Co) auf die Mikrostruktur zu untersuchen wurden Legierungen mit verschiedenen Konzentrationen unterschiedlicher Legierungselemente (Ti-Nb-Cu-Ni-Al, Ti-Nb-Co-Ni-Al, Ti-Nb-Cu-Co-Al and Ti-Nb-Ni(Co)-Al) entwickelt. Es wurde gezeigt, dass eine höhere Konzentration “interdendritischer Elemente” in einer bestimmten Zusammensetzung einem höheren Volumanteil der interdendritischen Komponente entspricht. Zusätzlich wird die Kristallstruktur der interdendritischen Phase sehr stark durch die “interdendritischen Elemente” beeinflusst. Da die meisten hoch entwickelten Anwendungen (z.B. Luftfahrt) gesteigerte spezifische Festigkeiten erforden, wurden die neuen duktilen Ti-Nb-Cu-Ni-Al Legierungen modifiziert um ihre Dichte zu reduzieren, indem Nb durch das leichtere V ersetzt wurde. Als Ergebniss wurde eine neue Familie von Ti-V-Cu-Ni-Al Legierungen, mit im Vergleich zu Ti-Nb-Cu-Ni-Al Legierungen verbesserten spezifischen Festigkeiten, entwickelt. Zusäzlich ist die elastische Formänderungsenergiedichte der neu entwickelten Legierungen höher verglichen mit kommerziellen Ti-basierten Federmaterialien.
Der Effekt der Mikrostruktur auf das Verformungsverhalten der Legierungen wurde mittels in-situ mikrostruktureller Analysen verschiedener Verformungszustände im Rasterelektronenmikroskop untersucht. Um ein Einfluss der metallographischen Konstituenten auf die Festigkeit zu bestimmen wurden Mikrohärtekarten erstellt.
Unter Verwendung der erhalten empirischen Prinzipen zur Einstellung der Mikrostruktur wurde eine neue Legierung Ti68.8Nb13.6Co6Cu5.1Al6.5 (at.%) mit hoher statischer Zähigkeit (besser als die der kürzlich entwickelten Ti-basierten gläsernen metallischen Kompositlegierungen) entwickelt. Diese hohe statische Zähigkeit wird sowohl durch die hohe Festigkeit als auch durch die ausgeprägte Plastizität unter Zugbelastung verursacht. Um den Einfluss der Mikrostruktur auf die Plastizität unter Zug zu untersuchen wurde Transmissionelektronmikroskopie sowie in-situ mikrostrukturelle Analysen verschiedener Verformungszustände im Rasterelektronmikroskop durchgefühlt.
|
Page generated in 0.0334 seconds