131 |
Etude et développement de revêtements γ-γ' riches en platine élaborés par Spark Plasma Sintering (SPS). Application au système barrière thermique / Study of Pt-modified γ-γ' coatings fabricated by spark plasma sintering (SPS) for thermal barrier coatingSelezneff, Serge 10 November 2011 (has links)
Le système barrière thermique, permettant la protection des aubes mobiles des turbines aéronautiques, est un système dont l'élaboration est complexe et nécessite de nombreuses étapes. L'utilisation du spark plasma sintering (SPS) a permis de réaliser des systèmes barrière thermique complets en une étape unique. Au-delà des possibilités industrielles de cette méthode, le SPS s'est avéré un outil de recherche précieux pour rapidement tester un vaste champ de compositions et d'ajouts d'éléments réactifs. Les premier essais et la modélisation de la diffusion dans le SPS ont permis de prévoir les phases du revêtement suite à l'étape de SPS. Les travaux se sont ensuite focalisés sur l'optimisation d'une composition de sous couche γ-γ' riche en platine dopée avec des éléments réactifs sur un substrat d'AM1. L'analyse chimique des revêtements SPS a révélé des taux de pollutions en soufre et carbone extrêmement faibles. Au vu de l'influence néfaste de ces éléments sur la tenue en oxydation cyclique ces analyses mettent en valeur la qualité des revêtements élaborés. Les performances des sous couches dopées, avec notamment du hafnium, de l'yttrium et du zirconium ont été évaluées lors d'essais de cyclage thermique à 1100°C sous air. La composition de revêtement γ-γ' la plus prometteuse a ensuite été comparée au système industriel β-(NiPt)Al avec la même barrière thermique de zircone yttriée déposée par EBPVD et le même substrat d'AM1. Les résultats obtenus montre une meilleure durée de vie des systèmes TBC avec sous couches γ-γ'. Par contre la remontée importante des éléments du superalliage dans le revêtement influence la durée de vie du système TBC comme cela a été montré par des dépôts conduits sur d'autres nuances de superalliages à base de nickel. Ces résultats montrent que pour les revêtements γ-γ' la prise en compte du revêtement dans le développement d'un superalliage est essentielle. / To protect turbines blades from excessive oxidation and to lower the temperature at the blade surface, a multilayer coating system has been developed in the past, i.e. the thermal barrier coating. The fabrication of TBC is expensive and demands numerous process steps. In this study, bond coatings have been fabricated by spark plasma sintering in a single step. This fast fabrication process permits to test a large range of bond coating compositions with different reactive elements such as Zr, Y and Hf on AM1 nickel base superalloy. From the first results, the data related to the diffusion during the SPS were calculated to predict the coating phases. Impurities levels were measured after SPS fabrication. Sulphur and carbon concentration were very low. These results highlight the great quality of coating made by spark plasma sintering, more particularly with a top coat also made by SPS. Then, a composition of γ-γ’ coating has been optimized for high life span during thermal cycling. The thermal cycling at 1100°C of TBC system with this optimized γ-γ’ bond coatings give better life span than the conventional system with β-(Ni,Pt)Al phase bond coating. After long thermal cycling, >1000*1h cycles, chemical elements from the substrate can diffuse in the thermally grown oxide, leading to its delamination. Thus, for increasing the life span of the whole system the bond coating has to be considered during the superalloy development.
|
132 |
Extrémně rychlé slinování pokročilých keramických materiálů / Extremely fast sintering of advanced ceramic materialsTan, Hua January 2020 (has links)
Techniky rychlého slinování jako „Spark Plasma Sintering (SPS)“, „Flash Sintering“ (FS), „Selective Laser Sintering“ (SLS), „Induction Sintering“ (IS) a „Microwave Sintering“ (MS) jsou navrženy tak, aby účinně a předvídatelně kontrolovaly mikrostrukturu během slinovací proces. Spark Plasma Sintering jako jedna z nejmodernějších technik rychlého slinování a byla studována po celá desetiletí. V SPS má tři hlavní rysy: přímý ohřev elektrickým proudem, pulzní stejnosměrný elektrický proud a mechanický tlak. Mechanismy působení faktorů během SPS procesu však nejsou zatím jasně objasněny. Tato práce byla inspirována zvýšeným zájmem o techniky rychlého slinování a snahou o objasnění působení hlavních faktorů. Tato studie je rozdělena do čtyř částí: efekt elektromagnetického pole, efekt pulzního vzoru, tlakový efekt a přímý Joulův ohřev. Výsledky ukázaly, že elektromagnetické pole v SPS může být ignorováno, jak ukázaly simulace, a rovněž během experimentů nebyl nalezen žádný „efekt pole“. Na druhou stranu účinek pulzního vzoru byl významný, prášek TiO2 byl slinován pulzními vzory 12:2 a 10:9 s konstantním příkonem. Po aplikaci pulzního vzoru 10:9 došlo ke zvýšení velikosti zrna o jeden řád a ke zvýšení hustoty o 8%, zatímco množství spotřebované energie zůstalo konstantní. Při zahřátí s různými vzory pulzů se mění účinný výkon a kontaktní odpor indukovaný mechanickým pulsem, což jsou dva hlavní důvody, které vysvětlují měnící se energetickou účinnost. Vliv tlaku byl také významný, výsledky ukázaly, že použití tlaku při 900 ° C přineslo vysokou hustotu a malou velikost zrn, což vedlo k nejvyšší tvrdosti měřenou podle Vickerse. Interakce mezi tlakem a parami, vedoucí k rozdílné rychlosti přenosu páry v prvním slinovacím stupni, je považována za důvod pro rozdíly v mikrostruktuře, jako jsou mikropóry. Načasování mechanického tlaku může také podporovat difúzní mechanismy zhutňování během druhého slinovacího stupně, jako je difúze na hranicích zrn a mřížková difúze. Přímý ohřev, kdy se vede elektrický proud přímo skrz vzorek, vede k nízké měřené teplotě při slinování karbidu boru a jeho kompozitů, avšak teplota uvnitř vzorku je podstatně vyšší. Přidání slitiny titanu a křemíku do B4C významně zvýšilo finální hustotu, což byl hlavní důvod ovlivnění mechanických vlastností. Vzorek B4C + 1.0Ti (1 obj. % Ti slitiny) dosáhl nejvyšší tvrdosti 3628.5 ± 452.6 HV1 (16.2% vyšší než čistý B4C) s lomovou houževnatostí 2.11 ± 0.25 MPa m0.5. Zatímco při dopování křemíkem dosáhl vzorek B4C + 0.5Si (0.5 obj. % křemíku) nejvyšší tvrdosti 3524.6 ± 207.8 HV1 (o 13.0% vyšší než čistý B4C), vzorek B4C + 1.0Si dosáhl nejvyšší lomové houževnatosti 2.97 ± 0.03 MPa m0.5 (o 15.6% vyšší než čistý B4C). Velikost zrn kompozitů dotovaných titanem se oproti čistému karbidu boru byla o něco větší a mikrostruktura více nehomogenní. Naproti tomu se velikost zrn vzorků dotovaných křemíkem příliš nezměnila ve srovnání s velikostí zrn čistého karbidu boru. Sekundární fáze karbid křemíku byla dobře spojena s matricí karbidu boru a vykazovala pozitivní účinek jak na tvrdost, tak na lomovou houževnatost. Tato práce zkoumala vliv různých kontroverzních a nepopsaných aspektů na slinování keramických materiálů metodou Spark Plasma Sintering, což vedlo k lepšímu pochopení této techniky slinování.
|
133 |
Vliv podmínek mechanického legování na kontaminaci práškových směsí a bulk materiálů / The influence of mechanical alloying on contamination of powder mixtures and bulk materialsKubíček, Antonín January 2020 (has links)
This thesis deals with the influence of process parameters on the contamination level of powder materials produced by mechanical alloying (MA) technology. For this purpose austenitic stainless steel 316 L and equiatomic CoCrFeNi high-entropy alloy (HEA) were prepared by high-energy ball milling. Both materials were milled in argon and nitrogen atmospheres from 5 to 30 hours. Spark plasma sintering method (SPS) was then used for consolidation of chosen powder samples. Chemical analysis of contamination within MA was carried out using combustion analysers for determination of carbon, oxygen, and nitrogen contents after different lengths of milling. Also differences in chemical composition of powder and corresponding bulk samples were measured. The microstructure analysis using scanning electron microscopy (SEM) of both powder and bulk materials was executed with focus on oxide and carbide presence and dispersion. Increasing content of carbon with increasing milling time was observed across all measured samples. This contamination is attributed to using milling vial made of tool steel AISI D2 (containing 1,55 wt. % of carbon). Increase of carbon content within consolidation using SPS was also observed. Milling of specimens using N2 as milling atmosphere caused higher contamination level in both AISI 316 L and HEA compared to milling in argon.
|
134 |
Vysoce entropické slitiny Cantorova typu zpevněné disperzí nitridů / Nitride dispersion strengthened Cantor´s high entropy alloysHavlíček, Štěpán-Adam January 2020 (has links)
High Entropy Alloy (HEA) is a class of construction steels based on the mixing of five or more elements in approximately equimolar ratios. Despite the ambiguity of their future use, HEAs represent a significantly new group of construction materials that are currently receiving a great deal of attention. Single-phase HEAs fail when used at elevated tempera-tures. The improvement of their high-temperature resistance was achieved by introducing a dispersion of oxides Al2O3 and Y2O3. To generalize the positive effect of dispersions on the mechanical properties at elevated temperatures, particles of a similar nature were cho-sen. These were dispersed particles of nitrides: hardness-incompatible AlN and hardness-compatible BN. The particles were evenly distributed inside the alloys by mechanical al-loying and compacted by SPS (Spark Plasma Sintering). The new structural alloy reached a density higher than 96.5 % and brought an increase in yield strength at room tempera-ture of up to 67 % and 40 % at elevated temperatures, while maintaining a homogeneous distribution of input powders.
|
135 |
Alliages à grains ultrafins et bimodaux : approche couplée expérience-modélisation basée sur la microstructure / Ultrafine grained and bimodal alloys : a coupled experimental-numerical approach based on the microstructureFlipon, Baptiste 22 October 2018 (has links)
Ce travail porte sur l'élaboration et l'analyse du comportement mécanique d'alliages à distribution bimodale de taille de grains. Les applications concernent les aciers inoxydables austénitiques 304L et 316L. Une approche couplée expérience-modélisation est menée pour comprendre les réponses mécaniques macroscopiques et locales de ces nouveaux alliages en se basant notamment sur l'étude des mécanismes de déformation associés. L'utilisation de deux voies d'élaboration et l'optimisation de leurs paramètres a conduit à l'obtention d'un large choix d'échantillons avec différentes distributions bimodales et différentes proportions de chaque famille de taille de grains. L'influence de ces caractéristiques microstructurales sur le comportement a été analysée sur la base d'essais en traction simple sous chargement monotone ou en charges-décharges alternées. Une base de données étendue de propriétés a ainsi été constituée et des éléments de réponse concernant les mécanismes de déformation propres aux alliages bimodaux ont pu être apportés. La présence de grains de taille conventionnelle (Coarse Grain -CG) au sein d'une matrice à grains ultrafins (UltraFine Grain - UFG) semble favoriser la relaxation d'une partie des contraintes internes de la matrice et tend ainsi à retarder l'endommagement des alliages bimodaux en comparaison aux alliages unimodaux à grains ultrafins. Une modélisation à champs complets selon deux lois de plasticité cristalline tenant compte explicitement d'une longueur interne a été proposée. Sa première motivation est de fournir un outil de prédiction du comportement effectif des alliages bimodaux en fonction de leurs caractéristiques microstructurales. Elle donne par ailleurs accès aux champs locaux et permet d'appuyer les analyses expérimentales en partition des contraintes en montrant à la fois une relaxation partielle des contraintes dans la matrice UFG mais aussi des concentrations de contrainte aux interfaces CG/UFG. / This work is focused on the elaboration and the mechanical behaviour of 304L and 316L austenitic stainless steel alloys with bimodal grain size distribution. The complementary approach between experiments and modelling enables a better understanding of both macroscopic and local mechanical responses and also of the associated deformation mechanisms.The use of two elaboration routes and optimized process parameters results in a wide range of samples with different bimodal grain size distributions. Grain sizes and fractions of each population are modified in order to study the influence of these microstructural characteristics on mechanical behavior. Uniaxial tensile tests are used to realize a database of mechanical properties of bimodal alloys and loading-unloading tests provides valuable informations about deformation mechanisms in these materials. With coarse grains (CG) embedded in an ultrafine grained (UFG) matrix, a relaxation of a part of the internal stresses seems to take place and leads to a delayed embrittlement of bimodal alloys as compared to their unimodal counterparts. Full-field modelling, based on two crystal plasticity laws with an explicit account of an internal length, is proposed. It constitutes a valuable prediction tool of effective properties of bimodal alloys in order, in particular, to study the effect of several microstructural characteristics. An access to local fields is also possible and tend, so far, to show similar results compared to experimental ones : stress relaxation is observed in the UFG matrix as well as stress concentrations at the CG/UFG interfaces.
|
136 |
Manufacturing methods for (U-Zr)N-fuelsHollmer, Tobias January 2011 (has links)
In this work a manufacturing method for UN, ZrN and (U,Zr)N pellets was established at the nuclear fuel laboratory at KTH Stockholm/Sweden, which consists of the production of nitride powders and their sintering into pellets by spark plasma sintering. The nitride powders were produced by the hydriding-nitriding route using pure metal as starting material. This synthesis was performed in a stream of the particular reaction gas. A synthesis control and monitoring system was developed, which can follow the reactions in real time by measuring the gas flow difference before and after the reaction chamber. With the help of this system the hydriding and nitriding reactions of uranium and zirconium were studied in detail. Fine nitride powders were obtained; however, the production of zirconium nitride involved one milling step of the brittle zirconium hydride. Additionally uranium and zirconium alloys with different zirconium contents were produced and synthesized to nitride powders. It was found that also the alloys could be reduced to fine powder, but only by cyclic hydriding-dehydriding. Pellets were sintered out of uranium nitrides, zirconium nitrides, mixed nitrides and alloy nitrides. These experiments showed that relative densities of more than 90% can easily be achieved for all those powders. Pellets sintered from mechanically mixed nitride powders were found to still consist of two separate nitride phases, while nitride produced from alloy was demonstrated to be a monophasic solid solution both as powder and as sintered pellets.
|
137 |
Einfluss der Struktur und Herstellungsroute auf das tribologische Verhalten thermisch gespritzter HochentropielegierungenLöbel, Martin 28 April 2021 (has links)
Hochentropielegierungen stellen einen neuen Entwicklungsansatz metallischer Werkstoffe ohne ein eigenschaftsbestimmendes Hauptelement dar. Die zielgerichtete Übertragung der bisher überwiegend an Massivwerkstoffen ermittelten Eigenschaften in die Beschichtungstechnik erfordert die Kenntnis der bestimmenden Einflussfaktoren. Für die Schichtherstellung werden die Verfahren des thermischen Spritzens betrachtet. Hierfür wird eine geeignete Prozessroute ermittelt. Die detaillierten Untersuchungen zu den Prozess-Struktur-Eigenschaftsbeziehungen erfolgen an Legierungen mit variabler Struktur. Diese werden anhand von thermodynamischen Parametern sowie Untersuchungen an schmelzmetallurgisch hergestellten Massivwerkstoffen ausgewählt. Zur Bewertung des Einflusses der Größe der Strukturmerkmale, der Heterogenität und möglicher Ungleichgewichtszustände werden schmelz- und pulvermetallurgisch hergestellte Massivwerkstoffe als Referenz betrachtet. Die geplanten Forschungsarbeiten tragen zu einem Verständnis der Prozess-Struktur-Eigenschaftsbeziehung von Hochentropielegierungen bei. Weiterhin wird eine geeignete Prozessroute für die pulvermetallurgische Verarbeitung sowie für Anwendungen in der Oberflächentechnik ermittelt.
|
138 |
[en] EVOLUTION OF POINT DEFECTS IN AL2W3O12 DURING CALCINATION IN AIR AND THE EFFECTS OF DIFFERENT SINTERING METHODS ON ITS DENSITY, MICROSTRUCTURE, AND HARDNESS / [pt] EVOLUÇÃO DO ESTADO DE DEFEITOS PONTUAIS NA AL2W3O12 DURANTE CALCINAÇÃO AO AR E O EFEITO DE DIFERENTES MÉTODOS DE SINTERIZAÇÃO SOBRE SUA DENSIDADE E MICROESTRUTURAMARIANNE DINIZ ROCHA HENRIQUES 02 September 2024 (has links)
[pt] Este trabalho consiste em dois estudos complementares sobre materiais a base de Al2W3O12. Portanto, o objetivo deste trabalho foi i) produzir cerâmicas densas de Al2W3O12 através de diferentes métodos de sinterização e avaliar sua densificação e microestrutura, e ii) avaliar a evolução do estado dos defeitos pontuais no Al2W3O12 depois de variações de temperatura durante o processo de calcinação em ar. Pó amorfo de Al2W3O12 foi produzido via coprecipitação seguido por calcinação para induzir cristalização. A influência das diferentes temperaturas de calcinação em atmosfera de ar ambiente foi verificada enquanto o tempo de calcinação se manteve fixo, por diferentes técnicas, como Difração de Raios-X (DRX), espectroscopia Raman, e espectroscopia de Ressonância Paramagnética Eletrônica (EPR), para entender a formação de defeitos pontuais na estrutura cristalina do Al2W3O12. Diferentes concentrações de vacâncias de oxigênio foram formadas ao alterar a temperatura de calcinação de 500 a 620 graus C. Foi observado que a concentração de vacâncias de oxigênio aumenta com a redução da temperatura de calcinação. Interessantemente, a maior concentração de vacâncias de oxigênio ocorre enquanto o pó ainda é amorfo à 500 graus C. Portanto, o processo de cristalização do Al2W3O12 ortorrômbico é altamente afetado pela formação de vacâncias de oxigênio. O melhor pó de Al2W3O12, calcinado a 570 graus C, foi selecionado e utilizado para consolidação das pastilhas para sinterização. Foi determinado que devido a presença de aglomerados, foi necessário moagem para quebrar os aglomerados e aumentar a área superficial específica do pó. Após moagem de bolas a área superficial específica foi de 26.4 m(2)g(-1) para 31.4 m(2)g(-1). Os pós calcinados moídos e não moídos foram usados para produzir corpos de prova sinterizados, e a sua densificação, microestrutura e propriedades mecânicas foram comparadas. As rotas de sinterização consistem em Sinterização Rápida Sem Auxílio de Pressão (RPLS) e Spark Plasma Sintering method (SPS). O método RPLS produziu cerâmicas densas de 96 por cento da densidade teórica em sua melhor configuração, enquanto SPS produzir pastilhas tão densas quanto 98 por cento da densidade teórica. O processo de moagem dos pós calcinados não mostrou grandemelhora na densificação ou microestrutura, formando amostras ligeiramente maisdensas do que aquelas sem moagem. / [en] This work consists of two complementary studies regarding Al2W3O12-based
materials. Therefore, the aim of this work was to i) produce dense Al2W3O12
ceramics by different sintering routes and evaluate its effects on densification and
microstructure, and ii) evaluate the evolution of point defects on Al2W3O12 after
temperature variations during the calcination process in air atmosphere. Al2W3O12
amorphous powder was produced via coprecipitation synthesis followed by
calcination to induce crystallization. The influence of the different calcination
temperatures in ambient air atmosphere was assessed while the calcination time
remained the same, by various techniques, such as X-ray Powder Diffraction
(XRPD), Raman, and Electron Paramagnetic Resonance (EPR) Spectroscopies to
understand the formation of point defects into Al2W3O12 crystal structure. Different
concentrations of oxygen vacancies were formed while altering the calcination
temperature from 500 – 620 degrees C. It was observed that the oxygen vacancy
concentration increases with the decrease of the calcination temperature.
Interestingly, the highest oxygen vacancy content occurs while the powder is still
amorphous at 500 degrees C. Therefore, the crystallization process of orthorhombic
Al2W3O12 is highly affected by the formation of oxygen vacancies. The best
Al2W3O12 powder, calcined at 570 degrees C, was selected and used to consolidate the
pellets for sintering. It was determined that due to the presence of agglomerates,
further milling was necessary to break the agglomerates and increase the specific
surface area of the powder. After ball-milling the specific surface area went from
26.4 m(2)g(-1) to 31.4 m(2)g(-1). The milled and non-milled calcined powders were used to
produce sintered bodies and is densification, microstructure, and mechanical
properties compared. The sintering routes consisted of Rapid Pressure-Less
Sintering (RPLS) technique and Spark Plasma Sintering method (SPS). RPLS
technique produced dense cylinders of 96 percent density at its best setting, while SPS
produced pellets as dense as 98.8 percent TD. The process of milling the calcined powder
did not show much improvement in either densification or microstructure, forming
samples slightly denser than those without milling.
|
139 |
Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und NiobWollmann, Philipp 22 March 2012 (has links)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in
transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus.
Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.:Inhaltsverzeichnis...........................................................................................................5
Abkürzungsverzeichnis ...................................................................................................9
1. Motivation....................................................................................................................11
2. Stand der Forschung und theoretischer Teil ...............................................................14
2.1. Nanoskalige Materialien...........................................................................................15
2.1.1. Nanopartikel und Nanokompositmaterialien ....................................................... 15
2.1.2. Dünnschichten..................................................................................................... 21
2.1.3. Anwendungen in der Photokatalyse.................................................................... 22
2.1.4. Anwendungen in der Gas- und Dampfsensorik.................................................... 24
2.2. Ferroelektrika .........................................................................................................26
2.2.1. Bismutmolybdat................................................................................................... 32
2.2.2. Bismutwolframat.................................................................................................. 34
2.2.3. Bismuttitanat ....................................................................................................... 36
2.2.4. Strontiumbariumniobat......................................................................................... 37
2.3. Verwendete Methoden.............................................................................................40
2.3.1. Spark-Plasma-Sintering ........................................................................................40
2.3.2. Bestimmung ferroelektrischer Eigenschaften ...................................................... 42
2.3.3. Charakterisierung nichtlinearer, elektrooptischer Eigenschaften......................... 43
3. Experimenteller Teil ....................................................................................................51
3.1. Synthesevorschriften................................................................................................52
3.1.1. Verwendete Chemikalien und Substrate.............................................................. 52
3.1.2. Solvothermalsynthese von Bi2MO6 (M = Mo, W)................................................... 55
3.1.3. Phasentransfersynthese von Bi2MO6 (M = Mo, W)............................................... 56
3.1.4. Präparation von Bi2MO6/PLA Nanokompositmaterialien (M = Mo, W) ................... 57
3.1.5. Sol-Gel-Synthese von Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Ba0.25Sr0.75Nb2O6 und Dünnschichten..................... 57
3.1.6. Mikroemulsionssynthese von Bi4Ti3O12 ............................................................... 59
3.1.7. Sol-Gel-Synthese von Bi2Ti2O7............................................................................. 60
3.1.8. Synthese von BiOH(C2O4), BiOCH3COO und Bi(CH3COO)3................................... 61
3.2. Vorschriften zur Durchführung und Charakterisierung...............................................62
3.2.1. Verwendete Geräte und Einstellungen ................................................................ 62
3.2.2. Spark Plasma Sintering von Bi2MO6 (M = Mo,W) und Bestimmung ferroelektrischer Eigenschaften ........................ 65
3.2.3. Prüfung elektrooptischer Eigenschaften, Präparation der Bauteile und Messaufbau .............................................. 67
3.2.4. Durchführung photokatalytischer Messungen ....................................................... 69
3.2.5. Messung der Dampfadsorption an Nanopartikeln mit Hilfe berührungsloser Detektion ........................................... 70
4. Ergebnisse und Diskussion...........................................................................................71
4.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................72
4.1.1. Synthese von Bi2MO6 (M = Mo, W) Nanopartikeln................................................. 72
4.1.2. Nanokompositmaterialien mit Bi2MO6 (M = Mo, W)................................................ 81
4.1.3. Synthese der Bismuttitanate Bi4Ti3O12 und Bi2Ti2O7 .......................................... 84
4.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 ................. 88
4.2. Funktion der nanoskaligen Materialien .....................................................................100
4.2.1. Bismuthaltige Nanopartikel in der Photokatalyse ..................................................100
4.2.2. Spark-Plasma-Sintern von Bi2MO6-Nanopartikel (M = Mo, W)................................103
4.2.3. Elektrooptische Eigenschaften von Dünnschichten und Kompositmaterialien ............................................................108
4.2.4. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ............114
4.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3....................................118
5. Zusammenfassung ......................................................................................................127
6. Ausblick .......................................................................................................................131
7. Literatur ......................................................................................................................132
8. Abbildungs- und Tabellenverzeichnis ..........................................................................146
8.1. Abbildungsverzeichnis...............................................................................................146
8.2. Tabellenverzeichnis...................................................................................................152
9. Anhang ........................................................................................................................154
9.1. Synthese und Eigenschaften von nanoskaligen Materialien......................................155
9.1.1. Solvothermalsynthese von Bi2MO6 (M = Mo, W).....................................................155
9.1.2. Phasentransfersynthese von Bi2MO6 (M = Mo, W).................................................156
9.1.3. Synthese der Bismutmolybdate Bi4Ti3O12 und Bi2Ti2O7 .......................................156
9.1.4. Herstellung von Dünnschichten der Systeme Bi2MO6 (M = Mo, W), Bi4Ti3O12 und Sr0.75Ba0.25Nb2O6 .................159
9.2. Funktion der nanoskaligen Materialien ......................................................................164
9.2.1. Spark-Plasma-Sintern..............................................................................................164
9.2.2. Elektro-optische Eigenschaften von Dünnschichten und Kompositmaterialien .........................................................166
9.2.3. Messung der Dampfadsorption an Bi2MO6 (M = Mo, W)-Nanopartikeln mit Hilfe berührungsloser Detektion ...........174
9.3. Synthese von BiOH(C2O4), BiO(CH3COO) und Bi(CH3COO)3.....................................175
9.3.1. DTA-TG-Ergebnisse .................................................................................................175
9.3.2. Kristalldaten und Strukturverfeinerung ...................................................................177
9.4. Quelltexte ..................................................................................................................181
9.4.1. MATLAB-Skript zur Auswertung elektrooptischer Koeffizienten................................181
9.4.2. MATLAB-Skript zur Auswertung dampfadsorptiver Eigenschaften............................182
|
140 |
Elaboration par frittage flash de composés céramique/métal pour la protection balistiqueMorin, Cédric 08 February 2012 (has links) (PDF)
Ce manuscrit de thèse porte sur l'élaboration de nouveaux matériaux pour la protection balistique grâce à l'apport du procédé de frittage flash. Il s'agit, en effet, d'associer deux composés possédant des températures de frittage éloignées, tels que l'alumine et l'aluminium, matériaux de référence utilisés dans la protection balistique.La première voie testée était un assemblage bi-matériau, réalisé par frittage d'une poudre d'aluminium sur un plot d'alumine préalablement fritté. Cette étude a permis d'observer la formation de la liaison alumine/aluminium par microscopie électronique à balayage et en transmission et d'optimiser les paramètres d'assemblage pour l'obtention d'un bi-matériau possédant une forte cohésion interfaciale. Des outils de caractérisation adaptés (diffraction des rayons X et indentation Vickers) ont mis en évidence des contraintes résiduelles dans la céramique qui résultent de la différence de coefficients de dilatation thermique entre les deux composés lors du refroidissement du bi-matériau. Ces assemblages ont également fait l'objet d'essais statiques (essais de traction indirects) et d'essais dynamiques (tirs balistiques). Ces essais ont démontré la très grandec ohésion des assemblages et ont permis de valider la pertinence de l'étude de matériaux de protection balistique par des essais statiques, qui sont plus faciles à mettre en oeuvre.L'autre voie envisagée était de fritter en une seule étape un matériau à gradient de composition, de l'alumine pure à l'aluminium pur avec une interphase constituée de mélanges alumine/aluminium. D'un point de vue technique, le frittage flash a démontré sa capacité à générer un gradient de température de plusieurs centaines de degrés à l'intérieur d'un échantillon de quelques millimètres de haut, grâce à l'utilisation d'un moulede forme spécifique. Malheureusement, la mauvaise mouillabilité de l'alumine par l'aluminium n'a pas permis d'abaisser la température de frittage des mélanges alumine/aluminium par rapport à l'alumine pure. Elle a au contraire conduit à augmenter la température de frittage des mélanges de ~200 °C, empêchant l'élaboration du matériau à gradient de composition. Cette voie a tout de même permis l'élaboration de composites denses (>99 %) à matrice d'alumine avec de faibles quantités d'aluminium, de l'ordre de 5 % en masse.
|
Page generated in 0.0809 seconds