• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • Tagged with
  • 36
  • 35
  • 31
  • 26
  • 24
  • 22
  • 21
  • 19
  • 17
  • 16
  • 13
  • 13
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Applied Retrieval Augmented Generation Within Service Desk Automation

Cederlund, Oscar January 2024 (has links)
Background. New ways of modeling abstract concepts have been enabled due to the recent boom in generative machine learning brought on by transformer architecture. By modeling abstract concepts within high-dimensional vectors their semantic meaning can be inferred and compared, which allows for methods such as embedding-based retrieval and the groundwork for a retrieval-augmented generation. Large language models can augment their parametric generative capabilities by introducing non-parametric information through retrieval processes. Objectives. Previous studies have explored different uses of embedding-based retrieval and retrieval-augmented generation, and this study examines the impact of these methods when used as an aid to support technicians. Methods. By developing and deploying a proof-of-concept system using embedding-based retrieval and retrieval-augmented generation to the Södra ITs service desk, the thesis could monitor system performance. Introducing a system to the service desk that generates instructional solutions to the support tickets and presenting them to the technician. The thesis investigates both systems' perceived performance based on the participating IT technician's input along with the retention of generated solutions and the quality of the solutions. Results. With 75.4% of the systems generated solutions being classified as reasonable solutions to ticket problems the system was deployed to the service desk. After an evaluation period where the technicians had been working with the system, it was shown that the solutions had a retention rate of 38.4%. These results were validated by a survey conducted at the service desk where the inputs were gathered from the technicians, showing a great deal degree of user engagement but a varying opinion on the system's helpfulness. Conclusions. Despite the varying degrees of opinion on the usefulness of the system among the technicians the numbers from the production test show that a significant amount of tickets were solved with the help of the system. Still, there's a huge dependency on seamless integration with the technicians and ticket quality from the requester. / Bakgrund. Nya sätt att modellera abstrakta begrepp har möjliggjorts tack vare den senaste tidens tillväxt inom generativ maskininlärning tack vare transformatorarkitekturen. Genom att modellera abstrakta begrepp i högdimensionella vektorer kan deras semantiska innebörd tolkas och jämföras, vilket möjliggör metoder som inbäddningsbaserad hämtning och grunden för en hämtningsförstärkt generation. Stora språkmodeller kan utvidga sina parametriska generativa förmågor genom att införa icke-parametrisk information genom hämtningsprocesser. Syfte. Tidigare studier har behandlat olika användningsområden för inbäddningsbaserad hämtning och hämtningsförstärkt generering, och i det här examensarbetet undersöks vilken inverkan dessa metoder har när de används som ett hjälpmedel för supporttekniker. Metod. Genom att utveckla och driftsätta ett prototypsystem som använder inbäddningsbaserad hämtning och hämtningsförstärkt generering till Södra ITs servicedesk, kunde examensarbetet övervaka systemets prestanda. Detta genom att införa ett system i servicedesken som genererar instruktionslösningar till supportärendena och presentera dem för teknikern. Examensarbetet undersöker både systemens upplevda prestanda baserat på den deltagande IT-teknikerns synpunkter tillsammans med kvarhållandet av genererade lösningar och kvaliteten på lösningarna. Resultat. Då 75,4% av de systemgenererade lösningarna klassificerades som rimliga för problemen i ärendena driftsattes systemet i servicedesken. Efter en utvärderingsperiod där teknikerna hade arbetat med systemet visade det sig att lösningarna hade en kvarhållningsgrad på 38,4%. Dessa resultat validerades av en undersökning som utförts vid servicedesken där synpunkter samlades in från teknikerna, vilket visade på en hög grad av användarengagemang men en varierande syn på systemets användbarhet. Slutsatser. Trots de varierande synpunkterna på systemets användbarhet bland teknikerna visar siffrorna från produktionstestningen att en betydande mängd ärenden löstes med hjälp av systemet. Dock är man fortfarande mycket beroende av en smidig integration med teknikerna och en god kvalitet på ärendena från beställaren.
32

Går det att lita på ChatGPT? En kvalitativ studie om studenters förtroende för ChatGPT i lärandesammanhang

Härnström, Alexandra, Bergh, Isak Eljas January 2023 (has links)
Världens tekniska utveckling går framåt i snabb takt, inte minst när det kommer till ”smarta” maskiner och algoritmer med förmågan att anpassa sig efter sin omgivning. Detta delvis på grund av den enorma mängd data som finns tillgänglig och delvis tack vare en ökad lagringskapacitet. I november 2022 släpptes ett av de senaste AI-baserade programmen; chatboten ChatGPT. Inom två månader hade ChatGPT fått över 100 miljoner användare. Denna webbaserade mjukvara kan i realtid konversera med användare genom att besvara textbaserade frågor. Genom att snabbt och ofta korrekt besvara användarnas frågor på ett mänskligt och övertygande sätt, har tjänsten på kort tid genererat mycket uppmärksamhet. Det finns flera studier som visar på hur ett stort antal människor saknar ett generellt förtroende för AI. Vissa studier menar att de svar som ChatGPT genererar inte alltid kan antas vara helt korrekta och därför bör följas upp med en omfattande kontroll av faktan, eftersom de annars kan bidra till spridandet av falsk information. Eftersom förtroende för AI har visat sig vara en viktig del i hur väl teknologin utvecklas och integreras, kan brist på förtroende för sådana tjänster, såsom ChatGPT, vara ett hinder för en välfungerande användning. Trots att man sett på ökad produktivitet vid införandet av AI-teknologi hos företag så har det inom högre utbildning, som ett hjälpmedel för studenter, inte integrerats i samma utsträckning. Genom att ta reda på vilket förtroende studenter har för ChatGPT i lärandesammanhang, kan man erhålla information som kan vara till hjälp för integrationen av sådan AI-teknik. Dock saknas det specifik forskning kring studenters förtroende för ChatGPT i lärandesammanhang. Därför syftar denna studie till att fylla denna kunskapslucka, genom att utföra en kartläggning. Vår frågeställning är: ” Vilket förtroende har studenter för ChatGPT i lärandesammanhang?”. Kartläggningen utfördes med semistrukturerade intervjuer av åtta studenter som använt ChatGPT i lärandesammanhang. Intervjuerna genererade kvalitativa data som analyserades med tematisk analys, och resultatet visade på att studenters förtroende för ChatGPT i lärandesammanhang beror på en rad faktorer. Under analysen identifierade vi sex teman som ansågs vara relevanta för att besvara frågeställningen: ● Erfarenheter ● Användning ● ChatGPT:s karaktär ● Yttre påverkan ● Organisationer ● Framtida förtroende / The world's technological development is advancing rapidly, especially when it comes to "smart" machines and algorithms with the ability to adapt to their surroundings. This is partly due to the enormous amount of available data and partly thanks to increased storage capacity. In November 2022, one of the latest AI-based programs was released; the chatbot ChatGPT. This web-based software can engage in real-time conversations with users by answering text-based questions. By quickly, and often accurately, answering users' questions in a human-like and convincing manner, the service has generated a lot of attention in a short period of time. Within two months, ChatGPT had over 100 million users. There are several studies that show how a large number of people lack a general trust in AI. Some studies argue that the responses generated by ChatGPT may not always be assumed to be completely accurate and should therefore be followed up with extensive fact-checking, as otherwise they may contribute to the spreading of false information. Since trust in AI has been shown to be an important part of how well the technology develops and integrates, a lack of trust in services like ChatGPT can be a hindrance to effective usage. Despite the increased productivity observed in the implementation of AI technology in companies, it has not been integrated to the same extent within higher education as an aid for students. By determining the level of trust that students have in ChatGPT in an educational context, valuable information can be obtained to assist in the integration of such AI technology. However, there is a lack of specific research on students' trust in ChatGPT in an educational context. Therefore, this study aims to fill this knowledge gap by conducting a survey. Our research question is: “What trust do students have in ChatGPT in a learning context?”. The survey was conducted through semi-structured interviews with eight students who have used ChatGPT in an educational context. The interviews generated qualitative data that was analyzed using thematic analysis, and the results showed that students' trust in ChatGPT in an educational context depends on several factors. During the analysis, six themes were identified as relevant for answering the research question: • Experiences • Usage • ChatGPT’s character • Influences • Organizations • Future trust
33

Finding duplicate offers in the online marketplace catalogue using transformer based methods : An exploration of transformer based methods for the task of entity resolution / Hitta dubbletter av erbjudanden i online marknadsplatskatalog med hjälp av transformer-baserade metoder : En utforskning av transformer-baserad metoder för uppgiften att deduplicera

Damian, Robert-Andrei January 2022 (has links)
The amount of data available on the web is constantly growing, and e-commerce websites are no exception. Considering the abundance of available information, finding offers for the same product in the catalogue of different retailers represents a challenge. This problem is an interesting one and addresses the needs of multiple actors. A customer is interested in finding the best deal for the product they want to buy. A retailer wants to keep up to date with the competition and adapt its pricing strategy accordingly. Various services already offer the possibility of finding duplicate products in catalogues of e-commerce retailers, but their solutions are based on matching a Global Trade Identification Number (GTIN). This strategy is limited because a GTIN may not be made publicly available by a competitor, may be different for the same product exported by the manufacturer to different markets or may not even exist for low-value products. The field of Entity Resolution (ER), a sub-branch of Natural Language Processing (NLP), focuses on solving the issue of matching duplicate database entries when a deterministic identifier is not available. We investigate various solutions from the the field and present a new model called Spring R-SupCon that focuses on low volume datasets. Our work builds upon the recently introduced model, R-SupCon, introducing a new learning scheme that improves R-SupCon’s performance by up to 74.47% F1 score, and surpasses Ditto by up 12% F1 score for low volume datasets. Moreover, our experiments show that smaller language models can be used for ER with minimal loss in performance. This has the potential to extend the adoption of Transformer-based solutions to companies and markets where datasets are difficult to create, like it is the case for the Swedish marketplace Fyndiq. / Mängden data på internet växer konstant och e-handeln är inget undantag. Konsumenter har idag många valmöjligheter varifrån de väljer att göra sina inköp från. Detta gör att det blir svårare och svårare att hitta det bästa erbjudandet. Även för återförsäljare ökar svårigheten att veta vilken konkurrent som har lägst pris. Det finns tillgängliga lösningar på detta problem men de använder produktunika identifierare såsom Global Trade Identification Number (förkortat “GTIN”). Då det finns en rad utmaningar att bara förlita sig på lösningar som baseras på GTIN behövs ett alternativt tillvägagångssätt. GTIN är exempelvis inte en offentlig information och identifieraren kan dessutom vara en annan när samma produkt erbjuds på en annan marknad. Det här projektet undersöker alternativa lösningar som inte är baserade på en deterministisk identifierare. Detta projekt förlitar sig istället på text såsom produktens namn för att fastställa matchningar mellan olika erbjudanden. En rad olika implementeringar baserade på maskininlärning och djupinlärning studeras i detta projekt. Projektet har dock ett särskilt fokus på “Transformer”-baserade språkmodeller såsom BERT. Detta projekt visar hur man generera proprietär data. Projektet föreslår även ett nytt inlärningsschema och bevisar dess fördelar. / Le volume des données qui se trouve sur l’internet est en une augmentation constante et les commerces électroniques ne font pas note discordante. Le consommateur a aujourd’hui beaucoup des options quand il decide d’où faire son achat. Trouver le meilleur prix devient de plus en plus difficile. Les entreprises qui gerent cettes plates-formes ont aussi la difficulté de savoir en tous moments lesquels de ses concurrents ont le meilleur prix. Il y-a déjà des solutions en ligne qui ont l’objectif de résoudre ce problème, mais ils utilisent un identifiant de produit unique qui s’appelle Global Trade identification number (ou GTIN). Plusieurs difficultés posent des barriers sur cette solution. Par exemple, GTIN n’est pas public peut-être, ou des GTINs différents peut-être assigne par la fabricante au même produit pour distinguer des marchés différents. Ce projet étudie des solutions alternatives qui ne sont pas basées sur avoir un identifiant unique. On discute des methods qui font la décision en fonction du nom des produits, en utilisant des algorithmes d’apprentissage automatique ou d’apprentissage en profondeur. Le projet se concentre sur des solutions avec ”Transformer” modèles de langages, comme BERT. On voit aussi comme peut-on créer un ensemble de données propriétaire pour enseigner le modèle. Finalement, une nouvelle method d’apprentissage est proposée et analysée.
34

Topological regularization and relative latent representations / Topologisk regularisering och relativa latenta representationer

García Castellanos, Alejandro January 2023 (has links)
This Master's Thesis delves into the application of topological regularization techniques and relative latent representations within the realm of zero-shot model stitching. Building upon the prior work of Moschella et al. (2022) that introduces relative latent representations to enhance the similarities between latent spaces of different models, we incorporate the approach of Hofer et al. (2021), which combines Topological Data Analysis (TDA) and Machine Learning techniques for topological densification of class distributions in the latent space. The main research objective is to investigate the impact of topological regularization on zero-shot stitching performance when employing relative latent representations. Theoretical foundations for the relative transformation are established based on the intertwiner groups of activation functions. Empirical analyses are conducted to validate the assumptions underlying the construction of the relative transformation in the latent space. Moreover, experiments are performed on a Large Language Model trained on multilingual Amazon Reviews datasets to evaluate the effectiveness of zero-shot stitching while using the topological densification technique and the relative transformation. The findings indicate that the proposed methodologies can enhance the performance of multilingual model stitching. Specifically, enforcing the relative transformation to preserve the H0 homology death times distributions proves beneficial. Additionally, the presence of similar topological features plays a crucial role in achieving higher model compatibility. However, a more in-depth exploration of the geometric properties of the post-relative transformation latent space is necessary to further improve the topological densification technique. Overall, this work contributes to the emerging field of Topological Machine Learning and provides valuable insights for researchers in transfer learning and representation learning domains. / Denna masteruppsats undersöker tillämpningen av topologiska regleringstekniker och relativa latenta representationer inom området för zero-shot model stitching. Genom att bygga vidare på tidigare arbete av Moschella et al. (2022), som introducerade relativa latenta representationer för att förbättra likheterna mellan latenta rummet hos olika modeller, inkorporerar vi tillvägagångssättet av Hofer et al. (2021), som kombinerar topologisk dataanalys (TDA) och maskininlärningstekniker för topologisk ``förtätning'' av klassfördelningar i det latenta utrymmet. Den huvudsakliga forskningsuppgiften är att undersöka effekten av topologisk reglering på zero-shot model stitching-prestanda när man använder relativa latenta representationer. Teoretiska grunder för den relativa transformationen etableras baserat på intertwinergrupperna för aktiveringsfunktioner. Empiriska analyser genomförs för att validera antagandena som ligger till grund för konstruktionen av den relativa transformationen i det latenta rummen. Dessutom utförs experiment på en stor språkmodell tränad på multilinguella Amazon Reviews-dataset för att utvärdera effektiviteten hos zero-shot model stitching med Hofer's topologiska reglering och relativa transformation. Resultaten visar att de föreslagna metoderna kan förbättra prestationen hos zero-shot model stitching för flerspråkiga modeller. Specifikt är det fördelaktigt att tvinga den relativa transformationen att bevara H0 homologins dödstidsfördelningar. Dessutom spelar närvaron av liknande topologiska egenskaper en avgörande roll för att uppnå högre modellkompatibilitet. Dock krävs en mer ingående utforskning av de geometriska egenskaperna hos det latenta utrymmet efter den relativa transformationen för att ytterligare förbättra Hofer's topologiska reglering. Sammanfattningsvis bidrar detta arbete till det framväxande området Topologisk Maskininlärning och ger värdefulla insikter för forskare inom ``transfer-inlärning'' och representationsinlärningsdomäner.
35

Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom Desinformationshantering

Ahmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI  denna  studie  utforskas  kapaciteterna  och  begränsningarna  hos  avancerade  stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling  av  AI,  där  en  noggrann  uppmärksamhet  kring etiska  aspekter  är  central.  En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
36

Applying Large Language Models in Business Processes : A contribution to Management Innovation / Tillämpning av stora språkmodeller i affärsprocesser : Ett bidrag till Management Innovation

Bergman Larsson, Niklas, Talåsen, Jonatan January 2024 (has links)
This master thesis explores the transformative potential of Large Language Models (LLMs) in enhancing business processes across various industries, with a specific focus on Management Innovation. As organizations face the pressures of digitalization, LLMs emerge as powerful tools that can revolutionize traditional business workflows through enhanced decision-making, automation of routine tasks, and improved operational efficiency. The research investigates the integration of LLMs within four key business domains: Human Resources, Tender Management, Consultancy, and Compliance. It highlights how LLMs facilitate Management Innovation by enabling new forms of workflow automation, data analysis, and compliance management, thus driving substantial improvements in efficiency and innovation. Employing a mixed-method approach, the study combines an extensive literature review with surveys and interviews with industry professionals to evaluate the impact and practical applications of LLMs. The findings reveal that LLMs not only offer significant operational benefits but also pose challenges related to data security, integration complexities, and privacy concerns. This thesis significantly contributes to the academic and practical understanding of LLMs, proposing a framework for their strategic adoption to foster Management Innovation. It underscores the need for businesses to align LLM integration with both technological capabilities and strategic business objectives, paving the way for a new era of management practices shaped by advanced technologies. / Denna masteruppsats utforskar den transformativa potentialen hos Stora Språkmodeller (LLMs) i att förbättra affärsprocesser över olika industrier, med särskilt fokus på Management Innovation. När organisationer möter digitaliseringens press, framträder LLMs som kraftfulla verktyg som kan revolutionera traditionella affärsarbetsflöden genom förbättrat beslutsfattande, automatisering av rutinuppgifter och förbättrad operationell effektivitet. Forskningen undersöker integrationen av LLMs inom fyra centrala affärsområden: Human Resources, Anbudshantering, Konsultverksamhet och Regelefterlevnad. Den belyser hur LLMs underlättar Management Innovation genom att möjliggöra nya former av arbetsflödesautomatisering, dataanalys och efterlevnadshantering, vilket driver påtagliga förbättringar i effektivitet och innovation. Genom att använda en blandad metodansats kombinerar studien en omfattande litteraturöversikt med enkäter och intervjuer med branschproffs för att utvärdera påverkan och praktiska tillämpningar av LLMs. Resultaten visar att LLMs inte bara erbjuder betydande operationella fördelar utan även medför utmaningar relaterade till datasäkerhet, integrationskomplexitet och integritetsfrågor. Denna uppsats bidrar avsevärt till den akademiska och praktiska förståelsen av LLMs, och föreslår en ram för deras strategiska antagande för att främja Management Innovation. Den understryker behovet för företag att anpassa LLM-integrationen med både teknologiska kapabiliteter och strategiska affärsmål, vilket banar väg för en ny era av ledningspraxis formad av avancerade teknologier.

Page generated in 0.0463 seconds