• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 13
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à m

Persechino, Roberto 05 1900 (has links)
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$. Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4. Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations. Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent. Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui, une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui formeront la base des démonstrations de ceux chapitre 1. / The main topic of this masters thesis is the study of the asymptotic distribution of the fonction f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$. The first chapter provides the seven main results which will later on be proved in chapter 4. Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations. In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities. The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of chapiter 1.
12

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire

Lardin, Pauline 26 November 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données
13

Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques

Tran, Viet Chi 13 December 2006 (has links) (PDF)
Cette thèse se divise en deux parties indépendantes. Dans la première, nous considérons un modèle microscopique individu-centré pour décrire une population structurée par traits et âges. Nous étudions l'écologie de ce système (problèmes de dynamique de populations) dans une asymptotique de grandes populations. Sous certaines renormalisations, le processus microscopique converge par la solution à valeurs mesures d'une équation d'évolution déterministe. Un théorème central limite et les déviations exponentielles associées à cette convergence sont étudiés. Nous appliquons ensuite ces résultats pour établir des généralisations aux populations structurées par âge de modèles d'évolution tirés de la récente théorie des dynamiques adaptatives. Ces derniers modélisent l'évolution de la structure en traits sur des grandes échelles de temps et sous les hypothèses de mutations rares (éventuellement petites) et de grandes populations. Dans la seconde partie de la thèse, nous considérons des équations aux dérivées partielles de McKean-Vlasov et de Navier-Stokes 2D avec conditions initiales aléatoires. La loi des solutions, qui sont alors des variables aléatoires, est appelée solution statistique. En nous basant sur une approche probabiliste de ces équations aux dérivées partielles, nous proposons de nouvelles approximations particulaires stochastiques avec ondelettes pour les moments d'ordre 1 des solutions statistiques, et nous étudions leurs vitesses de convergence.
14

Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à m

Persechino, Roberto 05 1900 (has links)
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$. Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4. Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations. Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent. Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui, une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui formeront la base des démonstrations de ceux chapitre 1. / The main topic of this masters thesis is the study of the asymptotic distribution of the fonction f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$. The first chapter provides the seven main results which will later on be proved in chapter 4. Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations. In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities. The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of chapiter 1.
15

Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète / Probabilistic methods for the asymptotic study of integral partitions and discrete convex geometry

Bureaux, Julien 08 December 2015 (has links)
Cette thèse se compose de plusieurs travaux portant sur l'énumération et le comportement asymptotique de structures combinatoires apparentées aux partitions d'entiers. Un premier travail s'intéresse aux partitions d'entiers bipartites, qui constituent une généralisation bidimensionnelle des partitions d'entiers. Des équivalents du nombre de partitions sont obtenus dans le régime critique où l'un des entiers est de l'ordre du carré de l'autre entier et au delà de ce régime critique. Ceci complète les résultats établis dans les années cinquante par Auluck, Nanda et Wright. Le deuxième travail traite des chaînes polygonales à sommets entiers dans le plan. Pour un modèle statistique introduit par Sinaï, une représentation intégrale exacte de la fonction de partition est donnée. Ceci conduit à un équivalent du nombre de chaînes joignant deux points distants qui fait intervenir les zéros non triviaux de la fonction zêta de Riemann. Une analyse combinatoire détaillée des chaînes convexes est présentée. Elle permet de montrer l'existence d'une forme limite pour les chaînes convexes aléatoires ayant peu de sommets, répondant ainsi à une question ouverte de Vershik. Un troisième travail porte sur les zonotopes à sommets entiers en dimension supérieure. Un équivalent simple est donné pour le logarithme du nombre de zonotopes contenus dans un cône convexe et dont les extrémités sont fixées. Une loi des grands nombres est établie et la forme limite est caractérisée par la transformée de Laplace du cône. / This thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone.
16

Le théorème central limite pour la marche linéaire sur le tore et le théorème de renouvellement dans Rd / The central limit theorem for the linear random walk on the torus and the renewal theorem in Rd

Boyer, Jean-Baptiste 28 June 2016 (has links)
La première partie de cette thèse porte sur l’étude de la marche aléatoire sur le tore Td := Rd/Zd définie par une mesure de probabilité SLd(Z). Pour étudier le Théorème Central Limite et la loi du logarithme itéré, nous appliquons la méthode de Gordin qui consiste à se ramener à des martingales. Pour cela, nous utilisons un résultat de Bourgain, Furmann, Lindenstrauss et Mozes nous permettant de résoudre l’équation de Poisson pour des points ayant de bonnes propriétés diophantiennes. Dans la deuxième partie, nous étudions la marche sur Rd\{0} définie par l’action de SLd(R) et nous montrons un résultat de vitesse de convergence dans le théorème de renouvellement de Guivarc’h et Le Page. / The first part of this thesis deals with the random walk on the torus Td := Rd/Zd defined by a robability measure on SLd(Z). To study the Central Limit Theorem and the Law of the Iterated Logarithm, we apply Gordin’s method. To do so, we use a result proved by Bourgain, Furmann, Lindenstrauss and Mozes to solve Poisson’s equation at point’s having good diophantine properties.In the second part, we study the walk on Rd \ {0} defined by the action of SLd(R) and we prove a result about the rate of convergence in Guivarc’h and Le Page’s renewal theorem.
17

Théorèmes limites pour estimateurs Multilevel avec et sans poids. Comparaisons et applications / Limit theorems for Multilevel estimators with and without weights. Comparisons and applications

Giorgi, Daphné 02 June 2017 (has links)
Dans ce travail, nous nous intéressons aux estimateurs Multilevel Monte Carlo. Ces estimateurs vont apparaître sous leur forme standard, avec des poids et dans une forme randomisée. Nous allons rappeler leurs définitions et les résultats existants concernant ces estimateurs en termes de minimisation du coût de simulation. Nous allons ensuite montrer une loi forte des grands nombres et un théorème central limite. Après cela nous allons étudier deux cadres d'applications. Le premier est celui des diffusions avec schémas de discrétisation antithétiques, où nous allons étendre les estimateurs Multilevel aux estimateurs Multilevel avec poids. Le deuxième est le cadre nested, où nous allons nous concentrer sur les hypothèses d'erreur forte et faible. Nous allons conclure par l'implémentation de la forme randomisée des estimateurs Multilevel, en la comparant aux estimateurs Multilevel avec et sans poids. / In this work, we will focus on the Multilevel Monte Carlo estimators. These estimators will appear in their standard form, with weights and in their randomized form. We will recall the previous existing results concerning these estimators, in terms of minimization of the simulation cost. We will then show a strong law of large numbers and a central limit theorem.After that, we will focus on two application frameworks.The first one is the diffusions framework with antithetic discretization schemes, where we will extend the Multilevel estimators to Multilevel estimators with weights, and the second is the nested framework, where we will analyze the weak and the strong error assumptions. We will conclude by implementing the randomized form of the Multilevel estimators, comparing this to the Multilevel estimators with and without weights.
18

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau

Carrapatoso, Kléber 09 December 2013 (has links) (PDF)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau.
19

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into account

Lardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
20

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau / Asymptotic theorems for Boltzmann and Landau equations

Carrapatoso, Kléber 09 December 2013 (has links)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau. / This thesis is concerned with kinetic theory and many-particle systems in the setting of Boltzmann and Landau equations. Firstly, we study the derivation of kinetic equation as mean field limits of many-particle systems, using the concept of propagation of chaos. More precisely, we study chaotic probabilities on the phase space of such particle systems : the Boltzmann's sphere, which corresponds to the phase space of a many-particle system undergoing a dynamics that conserves momentum and energy ; and the Kac's sphere, which corresponds to the energy conservation only. Then we are concerned with the propagation of chaos, with quantitative and uniform in time estimates, for Boltzmann and Landau equations. Secondly, we study the long-time behaviour of solutions to the Landau equation.

Page generated in 0.0975 seconds