Spelling suggestions: "subject:"anthropologique""
11 |
Optimisation de formes par la méthode des courbes de niveauxDe Gournay, Frédéric 07 July 2005 (has links) (PDF)
Dans le contexte de l'optimisation de formes par la mé́thode des courbes de niveaux, nous nous inté́ressons à certains nouveaux problèmes : l'optimisation de valeurs propres multiples, l'optimisation de la compliance robuste et l'optimisation du critère de flambement. Nous ré́solvons aussi deux importants problèmes numériques par le couplage avec le gradient topologique et la m ́thode de régularisation de la vitesse. Nous proposons aussi dans cette thèse un chapitre destiné à montrer les probèmes numériques propres à la méthode des courbes de niveaux et nous montrons les "trucs" numériques utilisés pour résoudre ces problèmes.
|
12 |
Systèmes dynamiques topologiques et mesurés / Topological and measured dynamical systemsBertazzon, Jean-François 03 December 2010 (has links)
Il y a de nombreuses manières d’aborder l’étude des systèmes dynamiques. De manière générale, on munit un espace initial de structures adaptées et on s’intéresse au comportement moyen des itérés d’une application qui préserve les structures initiales. Les propriétés intéressantes peuvent être par exemple, d’origine topologique, mesurable, algébrique ou encore différentiable. La théorie ergodique est principalement concentrée sur les systèmes dynamiques mesurés. D’autre part, une autre branche de la théorie ergodique s’intéresse à des questions dites de représentation des systèmes dynamiques mesurés.Un des aspects de cette théorie est de lier les systèmes dynamiques mesurés aux systèmes dynamiques topologiques. On s’intéressera plus particulièrement au lien entre les systèmes dynamiques topologiques,mesurés et algébriques. Les nilsystèmes ont pris ces dernières années une nouvelle dimension en théorie ergodique. Ils généralisent très naturellement les translations sur des groupes abéliens compacts, et en particulier, les rotations du cercle. On fera un lien partiel entre les propriétés algébriques et symboliques d’une famille bien choisie de nilsystèmes. On s’intéressera notamment à la notion d’induction pour de tels systèmes / There are many ways to approach the study of dynamical systems. In general, one equips the originalspace with an appropriate structure, and is interested in the average behavior of a map which preservesthis structure. For example, the interesting properties could be of topological, measurable, algebraicor differentiable origin. Ergodic theory is mainly concerned with dynamical systems with an invariantmeasure (measured dynamical system). Another branch of ergodic theory studies questions about therepresentation of measured dynamical systems. One aspect of this theory is to connect measured dynamicalsystems with topological dynamical systems. More specifically, we will be interested in theconnection between topological, measured and algebraic dynamical systems.Recently nilsystems have become important in ergodic theory. They naturally generalize translations ofcompact abelian groups, and in particular circle rotations. We will give a partial connection betweenalgebraic and symbolic properties of a well chosen family of nilsystems. We are particularly interestedin induction of such systems.
|
13 |
Topological phases of periodically driven crystals / Phases topologiques dans les cristaux soumis à un forçage périodiqueFruchart, Michel 05 October 2016 (has links)
Cette thèse a pour but de développer et d'utiliser un cadre cohérent permettant de caractériser les phases topologiques dans des milieux spatialement périodiques induites par une perturbation dépendant périodiquement du temps ("phases topologiques de Floquet" ou "isolants topologiques de Floquet"), en présence de symétries. Ces phases sont des généralisation des isolants topologiques apparues lors de l'étude d'isolants topologiques induits par la lumière ainsi que d'analogues ondulatoires des isolants topologiques (en acoustique, mécanique et optique). De nouveaux invariants topologiques caractérisant ces systèmes sont définis, en particulier en présence d'un renversement du temps fermionique. Les cas, déjà connus dans des situations particulières, des classes complexes A et AIII de Cartan-Altland-Zirnbauer sont généralisés à toutes les dimensions, et leur survivance dans les classes réelles est discutée. Les conséquences physiques potentielles dans des systèmes électroniques sont explorées par des simulations de transport résolues en temps, qui concluent à l'existence de conductances différentielles moyennes quantifiées en présence d'un état de bord topologique. / This thesis aims at developing and using a coherent framework to characterize topological states in spatially periodic media stemming from a time-periodic drive (« topological Floquet states » or « Floquet topological insulators »), when symmetries are present. Such states are a generalization of topological insulators, which appeared from the study of the control by light of topological insulators, and from the study of the wave-physics versions of topological insulators (in acoustics, mechanics and optics). New invariants characterizing such systems are defined, in particular when fermionic time-reversal is present. The cases of complex classes A and AIII in the Cartan-Altland-Zirnbauer classification, which are already known in particular cases, are generalized to any space dimension, and their survival in real classes is discussed. Potential physical consequences in electronic systems are explored by time-resolved numerical simulation of transport properties, which show evidence of quantized average differential conductances when a topological edge state is present.
|
14 |
Topological degree methods for some nonlinear problemsBereanu, Cristian 07 December 2006 (has links)
Using topological degree methods, we give some existence and
multiplicity results for nonlinear differential or difference
equations. In Chapter 1 some continuation theorems are presented.
Chapter 2 deal with nonlinear difference equations. Using Brouwer
degree we obtain upper and lower solutions theorems, Ambrosetti and
Prodi type results and sharp existence conditions for nonlinearities
which are bounded from below or from above. In Chapter 3, using
Leray-Schauder degree, we give various existence and multiplicity
result for second order differential equations with
$phi$-Laplacian. Such equations are in particular motivated by the
one-dimensional mean curvature problems and by the acceleration of a
relativistic particle of mass one at rest moving on a straight
line. In Chapter 4, using Mawhin continuation theorem, sufficient
conditions are obtained for the existence of positive periodic
solutions for delay Lotka-Volterra systems. In the last chapter of
this work we prove some results concerning the multiplicity of
solutions for a class of superlinear planar systems. The results of
Chapters 2 and 3 are joint work with Prof. Jean Mawhin. / En utilisant le degré topologique, nous obtenons quelques
résultats d'existance et de multiplicité pour des
équations non-linéaires différentielles ou aux différences.
Quelques théorèmes de continuation sont présentés au
Chapitre 1. Le Chapitre 2 concerne des équations aux différences
non-linéaires. En utilisant le degré de Brouwer, nous
obtenons des résultats de sur et sous-solutions, des
résultats de type Ambrosetti-Prodi ainsi que des conditions
optimales d'existence pour des non-linéarités bornées
inférieurement ou supérieurement. En utilisant le
degré de Leray-Schauder, nous donnons au Chapitre 3 des
résultats d'existence et de multiplicité pour des
équations différentielles du second ordre avec
$phi$-Laplacien. De telles équations sont en particulier
motivées par le problème de la courbure en dimension un et
par l'accélération d'une particule relativisite de masse un
sur une droite. Au Chapitre 4, en utilisant le théorème de
continuation de Mawhin, des conditions suffisantes sont obtenues
pour l'existence de solutions périodiques positives des
systhèmes de Lotka-Volterra avec retard. Dans le dernier
chapitre de ce travail, nous prouvons certains résultats
concernant la multiplicité des solutions pour une classe de
systhèmes superlinéaires planaires. Les résultats des
Chapitre 2 et 3 sont
faits en collaboration avec monsieur le Professeur Jean Mawhin.
|
15 |
Sur les invariants topologiques des actions de groupes moyennables discretsKrieger, Fabrice Coornaert, Michel. January 2006 (has links) (PDF)
Thèse doctorat : Mathématiques : Strasbourg 1 : 2006. / Titre provenant de l'écran-titre. Bibliogr. 4 p.. Index.
|
16 |
Quelques méthodes numériques en optimisation de formes / Numerical methods in shape optimization with the topological derivativesSzulc, Katarzyna 08 June 2010 (has links)
La dérivée topologique évaluée pour une fonctionnelle d'énergie définie dans un domaine et dépendante d'une solution d'un problème aux limites, est l'outil principal de l'optimisation de formes. Elle représente le taux de variation de la fonctionnelle d'énergie quand le domaine est modifié par une création de trou. La forme de la dérivée topologique est fournie par une analyse asymptotique d'un problème aux dérivées partielles et d'une fonctionnelle d'énergie. La définition de la dérivée topologique a été introduite dans [4] et [5]. Quelques notions d'analyse asymptotique qui permetent d'évaluer la forme de la dérivée topologique, ont été évoquées dans [2], [3]. Une méthode numérique pour calculer la solution du problème d'optimisation de forme, utilisant la dérivée topologique et la méthode des courbes de niveaux (levelset) a été présentée dans [1]. L'objet de ce travail de thèse est de développer des méthodes pour déterminer la dérivée topologique. Dans la première partie, on fait l'analyse d'un problème elliptique d'équation aux dérivées partielles non-linéaire. On commence par l'approximation de la solution du problème aux limites et ensuite on obtient le développement asymptotique d'une fonctionnelle de forme, dont le terme de premier ordre est la dérivée topologique. Par la suite, on considère une approximation numérique de la dérivée topologique en utilisant une méthode d'éléments finis et on démontre sa convergence. Les résultats théoriques sont illustrés par les calculs numériques. Dans la deuxième partie, on adapte la méthode de courbes de niveau à un problème d'optimisation de formes et de topologie. On applique la dérivée topolo- gique trouvée dans la première parie pour trouver l'endroit de modification du domaine afin de minimiser une fonctionnelle de coût. Dans la troisième partie, on considère le système de l'élasticité défini dans un domaine avec une fissure. Dans ce cas, on regarde le comportement asymptotique de la solution et de la fonctionnelle d'énergie par rapport aux perturbations singulières du domaine géométrique. Dans ce chapitre la dérivée topologique de l'énergie est donnée pour des domaine fissurés en dimension deux et trois. / The dissertation concerns numerical methods of shape optimization for nonlinear elliptic boundary value problems. Two classes of equations are considered. The first class are semilinear elliptic equations. The second class are elasticity problems in domains weakened by nonlinear cracks. The method proposed in the dissertation is known for linear problems. The framework includes the topological derivatives [2]-[5], and the levelset method [1]. It is shown, that the method can be applied in order to find numerical solutions for the shape optimization problems in the case of nonlinear elliptic equations. There are three parts of the dissertation. In the first part the topological derivatives for semilinear elliptic equation are determined by the compound asymptotic expansions. The expansion of solutions with respect to the small parameter which describes the size of the hole or cavity created in the domain of integration is established and justified. There are two problems considered in details. The first problem in three spatial dimensions with the Dirichlet boundary conditions on the hole. The complete proof of asymptotic expansion of the solution in the weighted Holder spaces is given. The order of the remainder is established by the Banach fixed point theorem in the weighted Holder spaces. The expansion of the solution is plug into the shape functional, and the first order term with respect to small parameter, is obtained. The second boundary value problem in two spatial dimensions enjoys the Neumann boundary conditions on the hole. The numerical results for the topological derivatives are given in twwo spatial dimensions by the finite element method combined with the Newton method for the nonlinear problems. The error estimates for the finite element method are also established. In the second part numerical method of shape optimization is proposed , justified and tested for a semilinear elliptic problem in two spatial dimensions. The forms of the shape gradient and of the topological derivative for the tracking type shape functional are given. The existence of an optimal domain under standard assumptions on the family of admissible domains is shown. Finally, numerical results are presented, which confirm the efficiency of the proposed method. In the third part of dissertation the elasticity boundary value problems in a body weakened by cracks is introduced. The variational formulations of the problem are recalled, including the smooth domain formulation. The domain decomposition method with the Steklov-Poincaré operator is analysed, with respect to the singular perturbation by creation of a small opening. The difficulty of the analysis is due to the fact that there are nonpenetration conditions prescribed on the crack lips, which make the problem nonlinear. The asymptotics of the energy functional are introduced and justified. As a result, the form of the topological derivative of the energy functional is obtained.
|
17 |
Transformations de graphes pour les opérations topologiques en modélisation géométrique - Application à l'étude de la dynamique de l'appareil de GolgiPoudret, Mathieu 15 October 2009 (has links) (PDF)
Dans cette thèse, qui s'inscrit dans l'étude de la modélisation géométrique via les méthodes formelles, nous proposons un langage graphique à base de règles dédié à la description des opérations topologiques des cartes généralisées. Notre langage est fondé sur la théorie des transformations de graphes. Dans nos règles, les variables permettent d'abstraire les cellules topologiques (sommets, arêtes, faces, volumes, etc.) manipulées dans les opérations topologiques. Nous avons défini des critères syntaxiques sur les règles assurant que les objets obtenus par application des règles satisfont les contraintes de cohé- rence des cartes généralisées. La conception de ce langage a été motivée par l'étude de la dynamique de l'appareil de Golgi. Il est connu que dans cette organelle, la topologie des compartiments joue un rôle essentiel. Néanmoins, la structure globale de l'appareil de Golgi reste encore méconnue. Plusieurs hypothèses de fonctionnement sont ainsi avancées par les biologistes. Notre langage à base de règles fournit un cadre pour la simulation puis la comparaison de ces différentes hypothèses d'appareil de Golgi.
|
18 |
Sur le problème inverse de détection d'obstacles par des méthodes d'optimisation / The inverse problem of obstacle detection via optimization methodsGodoy Campbell, Matias 08 July 2016 (has links)
Cette thèse porte sur l'étude du problème inverse de détection d'obstacle/objet par des méthodes d'optimisation. Ce problème consiste à localiser un objet inconnu oméga situé à l'intérieur d'un domaine borné connu Oméga à l'aide de mesures de bord et plus précisément de données de Cauchy sur une partie Gammaobs de thetaOmega. Nous étudions les cas scalaires et vectoriels pour ce problème en considérant les équations de Laplace et de Stokes. Dans tous les cas, nous nous appuyons sur une résultat d'identifiabilité qui assure qu'il existe un unique obstacle/objet qui correspond à la mesure de bord considérée. La stratégie utilisée dans ce travail est de réduire le problème inverse à la minimisation d'une fonctionnelle coût: la fonctionnelle de Kohn-Vogelius. Cette approche est fréquemment utilisée et permet notamment d'utiliser des méthodes d'optimisation pour des implémentations numériques. Cependant, afin de bien définir la fonctionnelle, cette méthode nécessite de connaître une mesure sur tout le bord extérieur thetaOmega. Ce dernier point nous conduit à étudier le problème de complétion de données qui consiste à retrouver les conditions de bord sur une région inaccessible, i.e. sur thetaOmega\Gammaobs, à partir des données de Cauchy sur la région accessible Gammaobs. Ce problème inverse est également étudié en minimisant une fonctionnelle de type Kohn-Vogelius. La caractère mal posé de ce problème nous amène à régulariser la fonctionnelle via une régularisation de Tikhonov. Nous obtenons plusieurs propriétés théoriques comme des propriétés de convergence, en particulier lorsque les données sont bruitées. En tenant compte de ces résultats théoriques, nous reconstruisons numériquement les données de bord en mettant en oeuvre un algorithme de gradient afin de minimiser la fonctionnelle régularisée. Nous étudions ensuite le problème de détection d'obstacle lorsque seule une mesure de bord partielle est disponible. Nous considérons alors les conditions de bord inaccessibles et l'objet inconnu comme les variables de la fonctionnelle et ainsi, en utilisant des méthodes d'optimisation de forme géométrique, en particulier le gradient de forme de la fonctionnelle de Kohn-Vogelius, nous obtenons la reconstruction numérique de l'inclusion inconnue. Enfin, nous considérons, dans le cas vectoriel bi-dimensionnel, un nouveau degré de liberté en étudiant le cas où le nombre d'objets est inconnu. Ainsi, nous utilisons l'optimisation de forme topologique afin de minimiser la fonctionnelle de Kohn-Vogelius. Nous obtenons le développement asymptotique topologique de la solution des équations de Stokes 2D et caractérisons le gradient topologique de cette fonctionnelle. Nous déterminons alors numériquement le nombre d'obstacles ainsi que leur position. De plus, nous proposons un algorithme qui combine les méthodes d'optimisation de forme topologique et géométrique afin de déterminer numériquement le nombre d'obstacles, leur position ainsi que leur forme. / This PhD thesis is dedicated to the study of the inverse problem of obstacle/object detection using optimization methods. This problem consists in localizing an unknown object omega inside a known bounded domain omega by means of boundary measurements and more precisely by a given Cauchy pair on a part Gammaobs of thetaOmega. We cover the scalar and vector scenarios for this problem considering both the Laplace and the Stokes equations. For both cases, we rely on identifiability result which ensures that there is a unique obstacle/object which corresponds to the considered boundary measurements. The strategy used in this work is to reduce the inverse problem into the minimization of a cost-type functional: the Kohn-Vogelius functional. This kind of approach is widely used and permits to use optimization tools for numerical implementations. However, in order to well-define the functional, this approach needs to assume the knowledge of a measurement on the whole exterior boundary thetaOmega. This last point leads us to first study the data completion problem which consists in recovering the boundary conditions on an inaccessible region, i.e. on thetaOmega\Gammaobs, from the Cauchy data on the accessible region Gammaobs. This inverse problem is also studied through the minimization of a Kohn-Vogelius type functional. The ill-posedness of this problem enforces us to regularize the functional via a Tikhonov regularization. We obtain several theoretical properties as convergence properties, in particular when data is corrupted by noise. Based on these theoretical results, we reconstruct numerically the boundary data by implementing a gradient algorithm in order to minimize the regularized functional. Then we study the obstacle detection problem when only partial boundary measurements are available. We consider the inaccessible boundary conditions and the unknown object as the variables of the functional and then, using geometrical shape optimization tools, in particular the shape gradient of the Kohn-Vogelius functional, we perform the numerical reconstruction of the unknown inclusion. Finally, we consider, into the two dimensional vector case, a new degree of freedom by studying the case when the number of objects is unknown. Hence, we use the topological shape optimization in order to minimize the Kohn-Vogelius functional. We obtain the topological asymptotic expansion of the solution of the 2D Stokes equations and characterize the topological gradient for this functional. Then we determine numerically the number and location of the obstacles. Additionally, we propose a blending algorithm which combines the topological and geometrical shape optimization methods in order to determine numerically the number, location and shape of the objects.
|
19 |
Intégration d'une méthode d'optimisation topologique dans le processus de CAO/FAO pour des pièces tridimensionnellesPicher-Martel, Gilles-Philippe January 2010 (has links)
Ce projet de maîtrise présente l'intégration d'une méthode d'optimisation topologique dans le processus de Conception et Fabrication Assistée par Ordinateur. Il fut réalisé dans le cadre d'un projet multidisciplinaire issu d'une collaboration entre le groupe de recherche en optimisation des structures de l'Université de Sherbrooke (OptiS) et l'Équipe de Recherche en Intégration CAO-Calcul de l'UQTR (ÉRICCA).Ce projet multidisciplinaire consiste à développer un gratuiciel multiplateforme d'optimisation des structures intégrant la CAO à l'optimisation afin de permettre le développement complet de pièces ou structures mécaniques en partant du modèle CAO initial, jusqu'au modèle CAO final optimisé. Deux objectifs principaux sont visés dans le cadre de ce projet de maîtrise. Premièrement, implanter la méthode d'optimisation topologique par homogénéisation (méthode SIMP) pour des structures quelconques en 3D. Deuxièmement, développer une méthode de lissage pour réduire le bruit présent sur le maillage optimisé résultant de l'optimisation topologique par la méthode SIMP. Nous avons atteint ces deux objectifs en développant un processus d'optimisation complètement automatique en sept étapes. Elles correspondent respectivement à la modélisation géométrique, l'entrée des données initiales du problème (conditions aux limites, matériau, etc.), la sous-division de la géométrie en sous-domaines de design et de non-design, le maillage automatique adapté aux sous-domaines multiples, l'optimisation topologique, le lissage du maillage de surface et finalement la reconstruction de la géométrie finale. Les résultats ont démontré que notre implantation de la méthode SIMP fonctionne et donne des résultats très intéressants qui s'apparentent aux résultats présentés dans la littérature. Néanmoins, le développement d'une méthode de lissage de triangulation basée sur les méthodes classiques a démontré que ces méthodes sont très mal adaptées à des maillages très bruités tels que ceux obtenus avec la méthode SIMP. En somme, ce projet a permis de faire un grand pas vers l'intégration complète de l'optimisation comme une étape à part entière du processus de CAO/FAO.
|
20 |
Combinatoire bijective et énumérative des cartes pointées sur une surfaceGiorgetti, Alain 10 December 1998 (has links) (PDF)
Une carte est le plongement d'un graphe dans une surface, à un homéomorphisme près. Ainsi, une carte est un objet topologique énumérable, en fonction du nombre de ses sommets, de ses arêtes et de ses faces. Les cartes admettent des symétries internes qui rendent leur énumération difficile. On n'envisage dans ce travail que l'énumération des cartes pointées, le pointage supprimant toutes les symétries. Le nombre exact de cartes pointées sur une surface donnée n'est connu que pour les surfaces de petit genre, comme la sphère (genre 0), le tore ou le plan projectif (genre 1). En effet, la complexité des méthodes de calcul de ces nombres augmente rapidement avec le genre des surfaces. Un travail important de cette thèse a été de convertir l'une de ces méthodes de calcul en une preuve de l'existence d'une structure commune à toutes les séries génératrices de cartes pointées de genre non nul. Pour chaque surface orientable, on réduit le problème à la détermination d'un polynôme, dont le degré est majoré par une fonction simple du genre de la surface. Un résultat analogue est obtenu pour les cartes pointées sur les surfaces non orientables. Des conséquences pratiques et une implantation logicielle de tous ces résultats sont décrites. De nouvelles formules explicites d'énumération sont données. Indépendamment, une bijection géométrique nouvelle est exposée, entre certaines cartes 2-coloriables et les partitions de polygones, énumérées par les nombres de Schröder.
|
Page generated in 0.0486 seconds