111 |
Theory of one-dimensional Vlasov-Maxwell equilibria : with applications to collisionless current sheets and flux tubesAllanson, Oliver Douglas January 2017 (has links)
Vlasov-Maxwell equilibria are characterised by the self-consistent descriptions of the steady-states of collisionless plasmas in particle phase-space, and balanced macroscopic forces. We study the theory of Vlasov-Maxwell equilibria in one spatial dimension, as well as its application to current sheet and flux tube models. The ‘inverse problem' is that of determining a Vlasov-Maxwell equilibrium distribution function self-consistent with a given magnetic field. We develop the theory of inversion using expansions in Hermite polynomial functions of the canonical momenta. Sufficient conditions for the convergence of a Hermite expansion are found, given a pressure tensor. For large classes of DFs, we prove that non-negativity of the distribution function is contingent on the magnetisation of the plasma, and make conjectures for all classes. The inverse problem is considered for nonlinear ‘force-free Harris sheets'. By applying the Hermite method, we construct new models that can describe sub-unity values of the plasma beta (βpl) for the first time. Whilst analytical convergence is proven for all βpl, numerical convergence is attained for βpl = 0.85, and then βpl = 0.05 after a ‘re-gauging' process. We consider the properties that a pressure tensor must satisfy to be consistent with ‘asymmetric Harris sheets', and construct new examples. It is possible to analytically solve the inverse problem in some cases, but others must be tackled numerically. We present new exact Vlasov-Maxwell equilibria for asymmetric current sheets, which can be written as a sum of shifted Maxwellian distributions. This is ideal for implementations in particle-in-cell simulations. We study the correspondence between the microscopic and macroscopic descriptions of equilibrium in cylindrical geometry, and then attempt to find Vlasov-Maxwell equilibria for the nonlinear force-free ‘Gold-Hoyle' model. However, it is necessary to include a background field, which can be arbitrarily weak if desired. The equilibrium can be electrically non-neutral, depending on the bulk flows.
|
112 |
Macroscopic modelling of the phase interface in non-equilibrium evaporation/condensation based on the Enskog-Vlasov equationJahandideh, Hamidreza 04 January 2022 (has links)
Considerable jump and slip phenomena are observed at the non-equilibrium phase interface in microflows. Hence, accurate modelling of the liquid-vapour interface transport mechanisms that matches the observations is required, e.g. in applications such as micro/nanotechnology and micro fuel cells. In the sharp interface model, the classical Navier-Stokes-Fourier (NSF) equations can be used in the liquid and vapour phases, while the interface resistivities describe the jump and slip phenomena at the interface. However, resistivities are challenging to find from the measurements, and most of the classical kinetic theories consider them as constants. One possible approach is to determine them from a model that resolves the phase interface.
In order to resolve the interface and the transport processes at and in front of the interface in high resolutions, there are two ways in general, microscopic or macroscopic. The microscopic studies are based either on molecular dynamics (MD) or kinetic models, such as the Enskog-Vlasov (EV) equation. The EV equation modifies the Boltzmann equation by considering dense gas effects, such as the interaction forces between the particles and their finite size. It can be solved by the Direct Simulation Monte Carlo (DSMC) method, which considers sample particles that stand in for thousands to hundred thousands of particles and determine most likely collisions based on interaction probabilities, but it is time-consuming and costly.
Here, a closed set of 26-moment equations is numerically solved to resolve the liquid-vapour interface macroscopically while considering the dense gas and phase change effects. The 26-moment set of equations is derived by Struchtrup & Frezzotti as an approximation of the EV equation using Grad's moment method. The macroscopic moment equations resolve the phase interface in a high resolution competitive to the microscopic studies. The resolved interface visualizes the interface structure and the changes of the system variables between the two phases at the interface.
The 26-moment equations are solved for a one-dimensional steady-state system for non-equilibrium evaporation/condensation process. Then, solutions are used to find the jump and slip conditions at the interface, which leads to determining the interface resistivities at different interface temperatures and non-equilibrium strengths from the Linear Irreversible Thermodynamics (LIT). The interface resistivities show their dependence on the temperature of the liquid at the interface as well as the strength of the non-equilibrium process.
As a result, in further studies, similar systems can be modelled using the sharp interface method with the appropriate jump conditions at the phase interface that can be found from the determined EV interface resistivities. / Graduate
|
113 |
Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques / Long time behavior of certain Vlasov equations : mathematics and numericsHorsin, Romain 01 December 2017 (has links)
Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs équations de type Vlasov, comme l’équation de Vlasov-Poisson ou le modèle Vlasov-HMF, et présentant certaines analogies avec le phénomène d’amortissement non visqueux pour l’équation d’Euler 2D. Les résultats qui y sont décrits sont les suivants. Le premier est un théorème d’amortissement Landau pour des solutions numériques du modèle Vlasov-HMF, obtenues par discrétisation en temps de ce dernier via des méthodes de splitting. Nous prouvons en outre la convergence des schémas numériques. Le second est un théorème d’amortissment Landau pour des solutions du modéle Vlasov-HMF linéarisé autour d’états stationnaires inhomogènes. Ce théorème est accompagné de nombreuses simulations numériques destinées à étudier numériquement le cas non-linéaire, et semblant mettre en lumière de nouveaux phénomènes. Enfin, le dernier résultat porte sur la discrétisation en temps de l’équation d’Euler 2D par un intégrateur de Crouch-Grossman symplectique. Nous prouvons la convergence du schéma. / This thesis concerns the long time behavior of certain Vlasov equations, mainly the Vlasov- HMF model. We are in particular interested in the celebrated phenomenon of Landau damp- ing, proved mathematically in various frameworks, foar several Vlasov equations, such as the Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain analogies with the inviscid damping phenomenon for the 2D Euler equation. The results described in the document are the following.The first one is a Landau damping theorem for numerical solutions of the Vlasov-HMF model, constructed by means of time-discretizations by splitting methods. We prove more- over the convergence of the schemes. The second result is a Landau damping theorem for solutions of the Vlasov-HMF model linearized around inhomogeneous stationary states. We provide moreover a quite large amount of numerical simulations, which are designed to study numerically the nonlinear case, and which seem to show new phenomenons. The last result is the convergence of a scheme that discretizes in time the 2D Euler equation by means of a symplectic Crouch-Grossmann integrator.
|
114 |
Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak / Mathematical and numerical study of a gyrokinetic model including electromagnetic effects for the simulation of the plasma in a Tokamak.Lutz, Mathieu 24 October 2013 (has links)
Cette thèse propose différentes méthodes théoriques et numériques pour simuler à coût réduit le comportement des plasmas ou des faisceaux de particules chargées sous l’action d’un champ magnétique fort. Outre le champ magnétique externe, chaque particule est soumise à champ électromagnétique créé par les particules elles-mêmes. Dans les modèles cinétiques, les particules sont représentées par une fonction de distribution f(x,v,t) qui vérifie l’équation de Vlasov. Afin de déterminer le champ électromagnétique, cette équation est couplée aux équations de Maxwell ou de Poisson. L’aspect champ magnétique fort est alors pris en compte par un dimensionnement adéquat qui fait apparaître un paramètre de perturbation singulière 1/ε. / This thesis is devoted to the study of charged particle beams under the action of strong magnetic fields. In addition to the external magnetic field, each particle is submitted to an electromagnetic field created by the particles themselves. In kinetic models, the particles are represented by a distribution function f(x,v,t) solution of the Vlasov equation. To determine the electromagnetic field, this equation is coupled with the Maxwell equations or with the Poisson equation. The strong magnetic field assumption is translated by a scaling wich introduces a singular perturbation parameter 1/ε.
|
115 |
Relations de dispersion dans les plasmas magnétisés / Dispersion relations in magnetized plasmasFontaine, Adrien 04 July 2017 (has links)
Cette thèse décrit comment les ondes électromagnétiques se propagent dans les plasmas magnétisés, lorsque les fréquences sollicitées sont proches de la fréquence électron cyclotron. Elle porte sur l’analyse mathématique des variétés caractéristiques qui sont associées à des systèmes de type Vlasov-Maxwell relativiste avec paramètres rapides.La première partie s’intéresse aux plasmas froids des magnétosphères planétaires. On explique comment obtenir les relations de dispersion dans le cas d’un dipôle magnétique. Cela conduit à l’étude détaillée de certaines variétés algébriques de l’espace cotangent : les cônes et les sphères dits ordinaires et extraordinaires. La description géométrique de ces cônes et de ces sphères donne accès à une classification complète des ondes électromagnétiques susceptibles de se propager. Diverses applications sont proposées, concernant l’équation eikonale et l’absence de propagation en mode parallèle, ou encore concernant la structure des ondes dites en mode siffleur.La seconde partie porte sur la modélisation des plasmas chauds, typiquement ceux qui sont mis en jeu dans les tokamaks. On prouve dans un contexte réaliste que la propagation des ondes électromagnétiques s’effectue au travers d’un tenseur dielectrique. Ce tenseur est obtenu via une analyse fine des résonances cinétiques qui sont issues des interactions entre les particules (Vlasov) et les ondes (Maxwell). Il s’exprime comme une somme infinie d’intégrales singulières, faisant intervenir l’opérateur de Hilbert. Le sens mathématique de la formule donnant accès à ce tenseur est rigoureusement justifié. / This thesis describes how electromagnetic waves propagate in magnetized plasmas, when the frequencies are in a range around the electron cyclotron frequency. It focuses on the mathematical analysis of the characteristic varieties which are associated with relativistic Vlasov-Maxwell systems involving fast parameters. The first part is concerned with cold plasmas issued from planetary magnetospheres. We explain how to obtain the dispersion relations in the case where the magnetic field is given by a dipole model. This leads to the detailed study of some algebraic varieties from the cotangent space: the so-called ordinary and extraordinary cones and spheres. The geometrical description of these cones and spheres gives access to a complete classification of the electromagnetic waves which can propagate. Various applications are proposed, concerning the eikonal equation and the absence of purely parallel propagation, or concerning the structure of whistler waves. The second part focuses on the modelling of hot plasmas, typically like those involved in tokamaks. We prove in a realistic context that the propagation of electromagnetic waves is governed by some dielectric tensor. This tensor is obtain via some careful analysis of the kinetic resonances, which are issued from the interactions between the particles (Vlasov) and the waves (Maxwell). It can be expressed as an infinite sum of singular integrals, involving the Hilbert transform. The mathematical meaning of the formula defining this tensor is rigorously justified.
|
116 |
Analyse mathématique et numérique de modèles gyrocinétiques / Mathematical and numerical analysis of gyro-kinetic modelsCaldini-Queiros, Céline 15 November 2013 (has links)
Cette thèse porte sur les équations gyro-cinétiques et traite un développement rigoureux deslimites de l'équation de Vlasov avec différents opérateurs de collision dans un champ magnétiquefort, ainsi que du développement de méthodes numériques.On commence par une étude de l'opérateur de moyenne. L'opérateur de moyenne a été développé parM. Bostan dans le cadre général d'une équation pour laquelle une partie du transport estfortement pénalisée. Puis, on applique ces résultats généraux aux deux régimes limites que nousétudions : le régime du rayon de Larmor fini et le régime centre-guide.On s'intéresse au calcul précis et explicite de la moyenne de l'opérateur de Fokker-Planck-Landau. On se place pour cela dans le cas du régime du rayon de Larmor fini. Avant de réaliserles calculs sur l'opérateur de Fokker-Planck-Landau, qui contient des convolutions et des termesde diffusion, il semble raisonnable de calculer la moyenne de l'opérateur de relaxation deBoltzmann, dont l'expression est plus simple.On se place ensuite dans le cas du régime centre-guide et on présente un schéma numérique basésur une décomposition micro-macro de la fonction de distribution des particules qui provientd'un travail en collaboration avec N. Crouseilles et M. Lemou. On obtient un schéma uniformémentconsistant avec le modèle continu, pour tout ordre du champ magnétique. Des simulationsnumériques, basées sur cette approche, ont été réalisées à l'aide d'un code de calcul 2D quel'on a développé durant cette thèse.On présente ensuite un projet réalisé dans le cadre du Cemracs 2012, consacré à la modélisationdes écoulements sanguins dans le réseau veineux cérébral. / The main subject of this thesis is the gyro-kinetic equation. We present a rigourousdeveloppement of the Vlasov equation limits with different collision operator in a strongmagnetic field and numerical methods.We start with a study of the gyro-average operator. The average operator has been introduced byM. Bostan in the case of an equation where part of the transport is highly penalised. Then weapply our results at the two approximation we study : the finite Larmor radius approximation andthe guiding-center approximation.We first focus on the precise and explicit computation of the Fokker-Planck-Landau operatoraverage in the finite Larmor radius approximation. The Fokker-Planck-Landau operator containsconvolution and diffusion terms, it is then reasonable to first compute the average of theBoltzmann relaxation operator.We then focus on the guiding-center approximation and present a numerical scheme based on amicro-macro decomposition of the particles distribution fonction which comes from a joint workwith N. Crouseilles and M. Lemou. We obtain a scheme which is uniformly consistant with thecontinuous model for any order of the magnetic field. Numerical simulation based on thisapproach are presented.The last chapter of this thesis presents a project which was realised during the Cemracs 2012concerning the modelisation of blood flow in cerebral veins.
|
117 |
Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique / Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trapMétivier, David 22 September 2017 (has links)
Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dynamiques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant leur densité dans l'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion des photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longueur de Debye, et son influence sur la réponse du système. Les expériences réalisées ne permettent pour l'instant pas de conclure de façon définitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension infinie, nous avons examiné les bifurcations autour des états stationnaires instables, l'objectif étant d'obtenir des équations réduites décrivant la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifurcation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la forme normale Triple Zero) autour des états inhomogènes de l'équation de Vlasov. Ces résultats génériques pourraient être pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomènes de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées. / Long-range interacting systems are known to display particular statistical and dynamical properties.To describe their dynamical evolution, we can use kinetic equations describing their density in the phase space. This PhD thesis is divided into two distinct parts. The first part concerns our collaboration with an experimental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering. We have proposed experimental tests to highlight the analog of a Debye length, and its influence on the system response. The experimental realizations do not allow yet a definitive conclusion. In the second part, we analyzed the Vlasov and Kuramoto kinetic models. To study their infinite dimensional dynamics, we looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describing the dynamical evolution. We performed unstable manifold expansions on five different kinetic systems. These reductions are in general not exact and plagued by singularities, yet they predict correctly the nature and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reduction (obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation. These results are expected to be very generic and could be relevant in an astrophysical context. Other results apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or delayed interactions.
|
118 |
Liouville's equation and radiative acceleration in general relativityKeane, Aidan J. January 1999 (has links)
No description available.
|
119 |
Hamiltonian Perturbation Methods for Magnetically Confined Fusion Plasmas / Application de la théorie des perturbations hamiltoniennes pour l'étude de la dynamique des plasmas de fusionTronko, Natalia 15 October 2010 (has links)
Les effets auto-consistantes sont omniprésents dans les plasmas de fusion. Ils sont dus au fait que les équations de Maxwell qui décrivent l’évolution des champs électromagnétiques contiennent la densité de charge et de courant des particules.D’autre côté à son tour les trajectoires des particules sont influencés par les champs à travers les équations de mouvement ( où l’équation de Vlasov). Le résultat decette interaction auto-consistente se résume dans un effet cumulatif qui peut causer le déconfinement de plasma à l’intérieur d’une machine de fusion. Ce travail de thèse traite les problèmes liés à l’amélioration de confinement de plasma de fusion dans le cadre des approches hamiltonienne et lagrangien par le contrôle de transport turbulent et la création des barrières de transport. Les fluctuations auto-consistantes de champs électromagnétiques et de densités des particules sont à l’origine de l’apparition des instabilités de plasma qui sont à son tour liés aux phénomènes de transport. Dans la perspective de comprendre les mécanismes de la turbulence sousjacente,on considère ici l’application des méthodes hamiltoniennes pour des plasmasnon-collisionnelles / This thesis deals with dynamicla investigation of magnetically confined fusion plasmas by using Lagrangian and Hamilton formalisms. It consists of three parts. The first part is devoted to the investigation of barrier formation for the EXB drift model by means of the Hamiltonian control method. The strong magnetic field approach is relevant for magnetically confined fusion plasmas ; this is why at the first approximation one can consider the dynamics of particles driven by constant and uniform magnetic field. In this case only the electrostatic turbulence is taken into account. During this study the expressions for the control term (quadratic in perturbation amplitude) additive to the electrostatic potential, has been obtained. The effeciency of such a control for stopping turbulent diffusion has been shown analytically abd numerically. The second and the third parts of this thesis are devoted to study of self consistent phenomena in magnetized plasmas through the Maxwell-Vlasov model. In particular, the second part of this thesis treats the problem of the monumentum transport by derivation of its conservation law. the Euler-Poincare variational principle (with constrained variations) as well as Noether's theorem is apllied here. this derivation is realized in two cases : first, in electromagnetic turbulence case for the full Maxwell-Vlasov system, and then in electrostatic turbulence case for the gyrokinetic Maxwell-Vlasov system. Then the intrinsic mechanisms reponsible for the intrinsic plama rotation, that can give an important in plasma stabilization, are identified. The last part of this thesis deals with dynamicla reduction for the Maxwell-Vlaslov model. More particularly; the intrisic formulation for the guiding center model is derived. Here the term 'intrinsis" means that no fixed frame was used during its construction. Due to that not any problem related to the gyrogauge dependence of dynamics appears. The study of orbits of trapped particles is considered as one of the possible for illustration of the first step of such a dynamical reduction.
|
120 |
Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiquesTran, Viet Chi 13 December 2006 (has links) (PDF)
Cette thèse se divise en deux parties indépendantes. Dans la première, nous considérons un modèle microscopique individu-centré pour décrire une population structurée par traits et âges. Nous étudions l'écologie de ce système (problèmes de dynamique de populations) dans une asymptotique de grandes populations. Sous certaines renormalisations, le processus microscopique converge par la solution à valeurs mesures d'une équation d'évolution déterministe. Un théorème central limite et les déviations exponentielles associées à cette convergence sont étudiés. Nous appliquons ensuite ces résultats pour établir des généralisations aux populations structurées par âge de modèles d'évolution tirés de la récente théorie des dynamiques adaptatives. Ces derniers modélisent l'évolution de la structure en traits sur des grandes échelles de temps et sous les hypothèses de mutations rares (éventuellement petites) et de grandes populations. Dans la seconde partie de la thèse, nous considérons des équations aux dérivées partielles de McKean-Vlasov et de Navier-Stokes 2D avec conditions initiales aléatoires. La loi des solutions, qui sont alors des variables aléatoires, est appelée solution statistique. En nous basant sur une approche probabiliste de ces équations aux dérivées partielles, nous proposons de nouvelles approximations particulaires stochastiques avec ondelettes pour les moments d'ordre 1 des solutions statistiques, et nous étudions leurs vitesses de convergence.
|
Page generated in 0.0274 seconds