• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 17
  • 13
  • 1
  • Tagged with
  • 56
  • 37
  • 21
  • 21
  • 19
  • 15
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A quantitative 3D intravital look at the juxtaglomerular renin-cell-niche reveals an individual intra/extraglomerular feedback system

Arndt, Patrick, Sradnick, Jan, Kroeger, Hannah, Holtzhausen, Stefan, Kessel, Friederike, Gerlach, Michael, Todorov, Vladimir, Hugo, Christian 02 February 2024 (has links)
The juxtaglomerular niche occupied by renin cells (RCN) plays an important role in glomerular repair but the precise temporal and spatial interrelations remain unclear. This study proposes the hypothesis of a local intra-extraglomerular regenerative feedback system and establishes a new quantifiable system for RCN responses in individual glomeruli in vivo. A strictly intraglomerular twophoton laser-induced injury model was established. Labeled renin cells (RC) in transgenic renin reporter mice were fate-traced in healthy and injured glomeruli over several days by intravital microscopy and quantified via new three-dimensional image processing algorithms based on ray tracing. RC in healthy glomeruli demonstrated dynamic extraglomerular protrusions. Upon intraglomerular injury the corresponding RCN first increased in volume and then increased in area of dynamic migration up to threefold compared to their RCN. RC started migration reaching the site of injury within 3 hours and acquired a mesangial cell phenotype without losing physical RCN-contact. During intraglomerular repair only the corresponding RCN responded via stimulated neogenesis, a process of de novo differentiation of RC to replenish the RCN. Repeated continuous intravital microscopy provides a state-of-the-art tool to prove and further study the local intraglomerular RCN repair feedback system in individual glomeruli in vivo in a quantifiable manner.
52

The Cellular Basis of Pial Collateral Formation and Post-Stroke Adaptation

Perović, Tijana 03 December 2024 (has links)
Die Bildung und Aufrechterhaltung von Blutgefäßnetzen ist essenziell für Entwicklung, Gewebewachstum, Homöostase und Regeneration. Gefäßnetze erweitern sich durch ein Gleichgewicht von Endothelzellmigration und -proliferation. Während die Angiogenese gut untersucht ist, ist die Bildung arterieller Gefäße weniger erforscht. Piale Kollateralgefäße, eine seltene Form vaskulärer Redundanz im zentralen Nervensystem, verbinden Hirnarterien und schützen bei Schlaganfällen, indem sie blockierte Arterien ersetzen. Ein besserer pialer Kollateralfluss führt zu besseren Ergebnissen, was die Bedeutung ihrer Bildung und des Umbaus bei Schlaganfällen verdeutlicht. Diese Arbeit untersucht die zellulären Mechanismen, die der Bildung und dem Remodeling pialer Kollateralen zugrunde liegen. Mit Lineage-Tracing und hochauflösender Bildgebung pialer Gefäße von Mäusen wird gezeigt, dass Kollateralen primär aus wandernden, arteriellen Zellen und zu einem geringeren Teil aus Plexus-Zellen entstehen. Ich identifiziere den Mechanismus der Mosaikbesiedlung, bei dem arterielle und plexusstammende Endothelzellen (ECs) in vorkollaterale Kapillaren rekrutiert werden, die sich arteriell umgestalten. Während der embryonalen Entwicklung erfolgt die Kollateralbildung durch Rekrutierung von ECs, während der Umbau nach einem Schlaganfall auf der Proliferation lokaler, arterieller ECs beruht. Ultrastrukturelle Analysen zeigen, dass Kollateral-ECs eine hohe Caveolardichte aufweisen, die nach einem Schlaganfall im Vergleich zu Arterien rasch abnimmt. Die Arbeit beschreibt verschiedene Prozesse, die die Bildung und den Umbau pialer Kollateralen fördern, und hebt die Bedeutung endothelialer Linien hervor. Diese Erkenntnisse betonen die Relevanz arteriellen Wachstums für die Wiederherstellung des Kreislaufs und den Bedarf an verbesserten Kollateraltherapien für Schlaganfälle. / The formation and maintenance of blood vessel networks are crucial for development, tissue growth, homeostasis, and regeneration. Vascular networks expand and remodel through a balance of endothelial cell migration and proliferation. While angiogenesis—the growth of new vessels from existing ones—is well-studied, arterial vessel formation remains less explored. Pial collateral vessels, a rare form of vascular redundancy in the central nervous system, connect cerebral arteries and provide protection during stroke by dilating to replace blocked arteries. Patients with better pial collateral flow show improved outcomes, underscoring the importance of understanding collateral formation and remodeling in stroke. This work investigates the cellular mechanisms underlying pial collateral formation and post-stroke remodeling. Using lineage tracing and high-resolution imaging of mouse pial vasculature, I show that pial collaterals primarily arise from migrating artery-derived cells, with a smaller contribution from plexus-derived cells. I identify a novel mechanism—mosaic colonization—where arterial and plexus endothelial cells (ECs) are recruited into pre-collateral capillaries, coinciding with arterialization. Embryonic collateral formation involves EC recruitment, while post-stroke remodeling relies on proliferation of local artery-derived ECs. Ultrastructural analysis reveals collateral ECs exhibit high caveolar density, which rapidly declines after stroke compared to arterial caveolae. Overall, this thesis delineates distinct processes driving pial collateral formation and remodeling, highlighting the key endothelial lineages. These findings emphasize the importance of arterial growth in restoring circulation and underscore the need for improved collateral therapeutics for stroke.
53

Dissecting molecular mechanisms involved in CNS-tropism of Eμ-myc lymphomas

Gätjens-Sanchez, Ana Maria 29 November 2024 (has links)
Primäre und sekundäre Lymphome des zentralen Nervensystems (ZNS), PCNSL und SCNSL, sind schwer behandelbar und mit einer ungünstigen Prognose assoziiert. Der ZNS-Tropismus dieser Lymphome hängt mit einer Dysregulation von Genen zusammen, die für Immunabwehr, Chemotaxis, Zellmigration und die Blut-Hirn-Schranke (BBB) relevant sind. Zur Untersuchung der molekularen Mechanismen wurde das Eμ-myc-Mausmodell genutzt, um die Faktoren zu analysieren, die zur ZNS-Tropie beitragen, insbesondere jene, die die BBB destabilisieren und die Immunantwort beeinflussen. Eμ-myc-Lymphome wurden in C57BL/6-Mäuse transplantiert und ZNS-positive von ZNS-negativen Lymphomen histologisch unterschieden. RNA-Sequenzierungen identifizierten Signalwege, die mit dem ZNS-Tropismus korreliert sind. Der NF-κB-Signalweg zeigte hierbei besondere Relevanz: Seine Hemmung in ZNS-positiven Lymphomen verringerte die ZNS-Tropie und stabilisierte die BBB durch den Erhalt der Tight-Junction-Proteine. Zudem ergab sich eine Hochregulation von Gfrα-1 in ZNS-positiven Lymphomen, was eine verstärkte Zellmigration zu hirn-konditioniertem Medium bewirkte. Durch die Aktivierung von Astrozyten und GDNF-Hochregulation wurde die BBB zusätzlich destabilisiert. ZNS-trope Lymphome induzierten Immunmodulationen benachbarter Zellen, wie Mikroglia und Astrozyten, und verstärkten den ZNS-Tropismus durch post-seneszente Signaturen. Das Zusammenspiel zwischen Lymphomzellen und Astrozyten, die Aktivierung der GDNF/Gfrα-1/RET-Signalachse und die BBB-Störung gelten als zentrale Mechanismen der ZNS-Tropie bei DLBCL-ähnlichen Lymphomen. Die gezielte Modulation dieser molekularen Pfade könnte die ZNS-Beteiligung bei aggressiven B-Zell-Lymphomen reduzieren. Weitere Untersuchungen könnten therapeutische Ansätze zur Minderung der ZNS-Tropie und Verbesserung der klinischen Ergebnisse bieten. / Primary and secondary CNS lymphomas (PCNSL and SCNSL) are difficult to treat, with a poor prognosis. CNS tropism in these lymphomas involves immune evasion, chemotaxis, cell migration, and blood-brain barrier (BBB) integrity. This study aimed to identify factors behind CNS tropism using the Eμ-myc mouse lymphoma model to compare CNS-tropic and non-tropic lymphomas. Methods: Eμ-myc lymphomas were transplanted into immunocompetent mice, classified as CNS (+) or CNS (-) by histology. RNA sequencing identified pathways linked to CNS tropism, focusing on NF-κB, which was suppressed using IκBα∆N in CNS (+) lymphomas in vitro and in vivo. BBB disruption was assessed through astrocyte activation and ZO-1 degradation, while BBB permeability was evaluated with the Evans Blue assay. Lymphoma migration towards GDNF-conditioned medium was tested via Boyden chambers, with GDNF/Gfrα-1/RET pathway involvement assessed by knockdown and RET inhibition. Immune modulation was analyzed by PD-L1 expression in astrocytes and microglia co-cultured with CNS lymphomas. Results: RNA sequencing showed upregulation of NF-κB targets, pro-inflammatory cytokines, and SASP in CNS (+) lymphomas. NF-κB inhibition prevented CNS tropism and preserved BBB integrity by blocking ZO-1 degradation. CNS (+) lymphomas displayed Gfrα-1 upregulation and migration toward brain-conditioned medium. Astrocyte activation and GDNF upregulation by CNS (+) lymphomas further impaired BBB stability. CNS (+) lymphomas induced immune modulation in neighboring astrocytes and microglia, with a post-senescence signature linked to CNS tropism. Interactions between lymphoma cells, astrocytes, the GDNF/Gfrα-1/RET axis, and BBB disruption are key to CNS tropism in DLBCL-like lymphomas. Targeting these pathways may help prevent CNS involvement in aggressive B-cell lymphomas, offering potential therapeutic avenues to improve patient outcomes.
54

Charakterisierung von Plasmazellsubpopulationen im humanen Knochenmark

Kruck, Ina 09 November 2015 (has links)
Plasmazellen gehören zu den Effektorzellen des adaptiven Immunsystems. Langlebige Plasmazellen tragen durch kontinuierliche Sekretion protektiver Antikörper wesentlich zum humoralen Gedächtnis bei und überleben hauptsächlich in spezialisierten Nischen des Knochenmarks. Bislang ist jedoch kein Marker bekannt, mit dessen Hilfe langlebige Plasmazellen eindeutig identifiziert werden können. Die vorliegende Arbeit befasst sich mit der molekularbiologischen, phänotypischen und funktionellen Charakterisierung von reifen Plasmazellen im gesunden humanen Knochenmark, die sich durch die differentielle Expression von CD19 unterscheiden. Dabei konnte festgestellt werden, dass CD19negative Plasmazellen durch eine vergleichsweise geringere Expression von CD45 und HLADR einen höheren Reifegrad aufweisen als CD19positive Plasmazellen. Zudem lässt die vermehrte Expression von CD28, Mcl1, Bcl2 sowie die schwächere Expression u.a. von CD95 darauf schließen, dass CD19negative Plasmazellen im Knochenmark eine bessere Überlebenskapazität besitzen als CD19positive Plasmazellen. Da beide Plasmazellpopulationen ähnliche Antigen-Spezifitäten aufweisen, Plasmazellen im Knochenmark von Säuglingen ausschließlich CD19 exprimieren und nach sekundärer Vakzinierung im Blut detektierbare Plasmablasten und Plasmazellen ebenfalls CD19 auf ihrer Oberfläche exprimieren, weist die Gesamtheit der Daten darauf hin, dass sich CD19negative Plasmazellen im Kindesalter in situ aus reifen CD19positiven Plasmazellen im Knochenmark entwickeln. Die CD19negative Plasmazellpopulation leistet durch hohe Halbwertszeit und Stabilität einen konstanten Beitrag zur Aufrechterhaltung des humoralen Gedächtnisses. Die CD19positive Plasmazellpopulation stellt hingegen eine flexible Komponente dar, die eine Anpassung der humoralen Immunität und des humoralen Gedächtnisses an aktuelle Herausforderungen auch im Erwachsenenalter ermöglicht. / Plasma cells are effector cells of the adaptive immune system. Humoral memory is sustained by long-lived plasma cells that continuously secrete protective antibodies and mostly reside in specialized niches in the bone marrow. So far, no marker is known that could distinguish long-lived plasma cells from short-lived ones. The present work addresses the biomolecular, phenotypical and functional characterization of mature plasma cells in healthy human bone marrow that differ in their expression of the surface marker CD19. CD19negative plasma cells showed higher maturity than CD19positive plasma cells as they expressed lesser amounts of CD45 and HLADR. Moreover, higher expression of CD28, Mcl1 and Bcl2 and lesser expression of CD95 argues for a better survival capacity of CD19negative plasma cells. Both plasma cell populations showed similar antigen specificities. All plasmablasts and plasma cells detectable in blood after secondary vaccination expressed CD19, as well as all plasma cells isolated from infant bone marrow. These results indicate that CD19negative plasma cells mainly develop during childhood by further differentiation of mature CD19positive plasma cells in situ in the bone marrow. CD19negative plasma cells represent a long-lived and stable component of the adaptive immune system and humoral memory, whereas the CD19positive plasma cell population displays a flexible element allowing for adaption of humoral immunity to new challenges throughout a lifetime.
55

Chlamydia infection impairs host cell motility via CPAF-mediated Golgi fragmentation

Heymann, Julia 07 August 2012 (has links)
Chlamydien sind obligat intrazelluläre Bakterien, die sich in einem membranumschlossenen Kompartiment namens Inklusion vermehren. Nach Infektion fragmentiert der Golgi-Apparat der Wirtszelle in kleine Membranstapel. Dies verbessert die Aufnahme von Sphingolipiden und ist deshalb für die chlamydiale Vermehrung essentiell. Die infektionsinduzierte Golgi-Fragmentierung geschieht nach Spaltung des Golgi-Matrix-Proteins Golgin-84. In dieser Arbeit konnte, durch den Vergleich mit bekannten Substraten und Inhibitorstudien, die chlamydiale Protease CPAF (Chlamydia protease-like activity factor) als das Enzym identifiziert werden, das diese Spaltung induziert, abhängig von der Anwesenheit zweier Rab-Proteine, Rab6 und Rab11, die den zellulären Vesikeltransport kontrollieren und zur Inklusion rekrutiert werden. Die Fragmentierung des Golgi-Apparates verhinderte dessen Relokalisierung während der Zellpolarisierung nach Einbringen eines migratorischen Stimulus. Sowohl infizierte als auch Golgin-84-depletierte Zellen migrierten langsamer und randomisiert in einem Motilitätsassay. Die Relokalisierung des Golgi-Apparates konnte durch seine Stabilisierung mittels WEHD oder Rab-Depletion wieder gewonnen werden, was die Zellmotilität teilweise wieder herstellte. Darüber hinaus konnte gezeigt werden, dass die Infektion außer der Golgi-Reorientierung die Signaltransduktion durch GTPasen beeinflusst. Die Aktivität von Cdc42 in infizierten Zellen war erhöht und die Interaktionen mit vielen ihrer Effektoren laut quantitativer Massenspektrometrie stark verändert. Die Ergebnisse dieser Arbeit zeigen, dass CPAF die für Chlamydien lebenswichtige Golgin-84 Prozessierung und Fragmentierung des Golgi-Apparates auslöst. Dies verringert die Mobilität der Wirtszelle, vor allem da der Golgi-Apparat während der Polarisierung nicht mehr ausgerichtet werden kann, des Weiteren durch Modulierung der Protein-Protein-Interaktionen von Cdc42. / Chlamydia are obligate intracellular human pathogens that proliferate inside a membrane-bound compartment called the inclusion. In infected cells, the Golgi apparatus is fragmented into small ministacks that are aligned around the inclusion. This facilitates uptake of host cell sphingolipids and is essential for chlamydial development. Infection-induced Golgi fragmentation happens after processing of the Golgi matrix protein golgin-84. This work could, via comparison with well-known substrates and inhibitor studies, identify the chlamydial protease CPAF (Chlamydia protease-like activity factor) as the enzyme accountable for this cleavage. Golgi Fragmentation depended on two Rab proteins, Rab6 and Rab11, which control vesicle transport and are recruited to the Chlamydia inclusion. As a consequence of Golgi fragmentation, cells lost the capacity to reorient the Golgi apparatus during polarization after a migratory stimulus. Both infected and golgin-84 depleted cells with a permanently fragmented Golgi apparatus displayed decelerated and furthermore randomized migration in a motility assay. Relocalization of the Golgi apparatus could be restored via stabilizing WEHD treatment or Rab depletion which partly rescued cell motility. Moreover, it could be shown that migration signaling via small GTPases was influenced by Chlamydia infection. Infected cells exhibited activation of the small polarity GTPase Cdc42. Numerous interactions with downstream effectors were strongly altered in infected cells according to quantitative mass spectrometry. Particularly, the binding of Cdc42 to migration-associated effectors was decreased. The results of this work show that CPAF, by processing of golgin-84, induces Golgi fragmentation which is vitally important for Chlamydia. This disturbs host cell motility because the Golgi apparatus cannot be reoriented during polarization and, additionally, via the modulation of protein-protein-interactions of Cdc42.
56

Analysen zur differentiellen Plasmazellhomöostase beim Menschen

Mei, Henrik Eckhard 05 January 2010 (has links)
Das humorale Immungedächtnis wird von reifen Plasmazellen des Knochenmarks vermittelt, welche bei Immunreaktionen aus aktivierten B-Lymphozyten gebildet werden. Dabei sind im Blut Plasmablasten als unmittelbare Vorläufer der Plasmazellen nachweisbar, die von dort aus in das Knochenmark einwandern. Anhand der durchflusszytometrischen Detektion spezifischer Plasmablasten gelang es hier, das simultane Auftauchen von Wellen neu generierter, migratorischer Plasmablasten und reifer, nicht-migratorischer Plasmazellen im Blut eine Woche nach einer Tetanusimpfung nachzuweisen. Plasmablasten und Plasmazellen lagen stets im Gleichgewicht vor, wodurch auf die stöchiometrische Mobilisierung reifer Plasmazellen des Knochenmarks durch systemisch induzierte Plasmablasten geschlossen wurde. Ein solcher Verdrängungsmechanismus wird hier erstmalig als Anpassungsmechanismus des humoralen Immungedächtnisses dargestellt, der die Aufnahme neuer Spezifitäten in das Gedächtnis unter Wahrung der Stabilität präexistierender Spezifitäten erlaubt. Anders als systemisch induzierte Plasmablasten, weisen Plasmablasten, die im immunologischen Ruhephase zirkulieren, Kennzeichen mukosaler Immunreaktionen auf: sie exprimieren IgA sowie die mukosalen Zellmigrationsrezeptoren alpha4beta7-Integrin und CCR10. Wahrscheinlich wandern sie in mukosale Plasmazelldepots ein und interferieren nicht mit den Plasmazellen des Knochenmarks, sodass die Stabilität des humoralen Gedächtnisses in der Ruhephase gewahrt bleibt. Eine Anpassung des humoralen Gedächtnisses findet somit nur im Rahmen systemischer Immunreaktionen statt. Bei splenektomierten Patienten und unter der B-Zell-Depletionstherapie bei Rheumapatienten bleiben mukosale Plasmablasten im Blut nachweisbar. Dies belegt deren autonome Bildung aus mukosalen, therapie-refraktären B-Zellen. Insgesamt wird hier eine bisher unbeachtete Komplexität menschlicher peripherer Plasmablasten und Plasmazellen und ihren Beziehungen zum humoralen Immungedächtnis dargestellt. / Humoral memory, i.e. persistence of specific antibody titers, is provided by plasma cells in the bone marrow, which are generated from activated B cells during immune responses. At this, immediate plasma cell precursors, the plasmablasts, migrate via the blood to the bone marrow. Using cytometric detection of antigen-specific plasmablasts, synchronous circulation of waves of recently generated, migratory plasmablasts and non migratory plasma cells with a mature phenotype was demonstrated one week after tetanus vaccination. Circulating plasmablast and plasma cell numbers were always in homeostasis, so that the stoichiometric mobilization of old bone marrow plasma cells by recently generated plasmablasts was hypothesized. This plasma cell replacement mechanism is herein described for the first time as an adaption mechanism of the humoral memory that allows incorporation of new antibody specificities while maintaining pre-existing ones. In immunological steady state, very low numbers of plasmablasts are detectable in any donor. These express IgA and receptors for mucosal homing, alpha4beta7 integrin and CCR10, and therefore most likely migrate into mucosal plasma cell depots and do not interfere with plasma cells of the bone marrow, preserving the stability of humoral memory during steady state. Hence, adaption of humoral memory is only possible during systemic immune reactions. Circulating mucosal plasmablasts produced during steady state remain detectable in patients with rheumatoid arthritis during B cell depletion therapy as well as in asplenic patients. Hence, this type of plasmablasts is self-sufficiently generated from mucosal B cells that are refractory to B cell depletion therapy. This work demonstrates a hitherto disregarded complexity of peripheral plasmablast and plasma cell subsets in healthy humans, with implications for the regulation of induction and maintenance of humoral memory.

Page generated in 0.5016 seconds