• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 31
  • 25
  • 22
  • 9
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 432
  • 208
  • 162
  • 157
  • 150
  • 136
  • 112
  • 102
  • 92
  • 80
  • 77
  • 74
  • 73
  • 71
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Exploring User Trust in Natural Language Processing Systems : A Survey Study on ChatGPT Users

Aronsson Bünger, Morgan January 2024 (has links)
ChatGPT has become a popular technology among people and gained a considerable user base, because of its power to effectively generate responses to users requests. However, as ChatGPT’s popularity has grown and as other natural language processing systems (NLPs) are being developed and adopted, several concerns have been raised about the technology that could have implications on user trust. Because trust plays a central role in user willingness to adopt artificial intelligence (AI) systems and there is no consensus in research on what facilitates trust, it is important to conduct more research to identify the factors that affect user trust in artificial intelligence systems, especially modern technologies such as NLPs. The aim of the study was therefore to identify the factors that affect user trust in NLPs. The findings from the literature within trust and artificial intelligence indicated that there may exist a relationship between trust and transparency, explainability, accuracy, reliability, automation, augmentation, anthropomorphism and data privacy. These factors were quantitatively studied together in order to uncover what affects user trust in NLPs. The result from the study indicated that transparency, accuracy, reliability, automation, augmentation, anthropomorphism and data privacy all have a positive impact on user trust in NLPs, which both supported and opposed previous findings from literature.
352

Comparative Analysis of ChatGPT-4and Gemini Advanced in ErroneousCode Detection and Correction

Sun, Erik Wen Han, Grace, Yasine January 2024 (has links)
This thesis investigates the capabilities of two advanced Large Language Models(LLMs) OpenAI’s ChatGPT-4 and Google’s Gemini Advanced in the domain ofSoftware engineering. While LLMs are widely utilized across various applications,including text summarization and synthesis, their potential for detecting and correct-ing programming errors has not been thoroughly explored. This study aims to fill thisgap by conducting a comprehensive literature search and experimental comparisonof ChatGPT-4 and Gemini Advanced using the QuixBugs and LeetCode benchmarkdatasets, with specific focus on Python and Java programming languages. The re-search evaluates the models’ abilities to detect and correct bugs using metrics suchas Accuracy, Recall, Precision, and F1-score.Experimental results presets that ChatGPT-4 consistently outperforms GeminiAdvanced in both the detection and correction of bugs. These findings provide valu-able insights that could guide further research in the field of LLMs.
353

Beyond Supervised Learning: Applications and Implications of Zero-shot Text Classification

Borst-Graetz, Janos 25 October 2024 (has links)
This dissertation explores the application of zero-shot text classification, a technique for categorizing texts without annotated data in the target domain. A true zero-shot setting breaks with the conventions of the traditional supervised machine learning paradigm that relies on quantitative in-domain evaluation for optimization, performance measurement, and model selection. The dissertation summarizes existing research to build a theoretical foundation for zero-shot methods, emphasizing efficiency and transparency. It benchmarks selected approaches across various tasks and datasets to understand their general performance, strengths, and weaknesses, mirroring the model selection process. On this foundation, two case studies demonstrate the application of zero-shot text classification: The first engages with historical German stock market reports, utilizing zero-shot methods for aspect-based sentiment classification. The case study reveals that although there are qualitative differences between finetuned and zero-shot approaches, the aggregated results are not easily distinguishable, sparking a discussion about the practical implications. The second case study integrates zero-shot text classification into a civil engineering document management system, showcasing how the flexibility of zero-shot models and the omission of the training process can benefit the development of prototype software, at the cost of an unknown performance. These findings indicate that, although zero-shot text classification works for the exemplary cases, the results are not generalizable. Taking up the findings of these case studies, the dissertation discusses dilemmas and theoretical considerations that arise from omitting the in-domain evaluation of applying zero-shot text classification. It concludes by advocating a broader focus beyond traditional quantitative metrics in order to build trust in zero-shot text classification, highlighting their practical utility as well as the necessity for further exploration as these technologies evolve.:1 Introduction 1.1 Problem Context 1.2 Related Work 1.3 Research Questions & Contribution 1.4 Author’s Publications 1.5 Structure of This Work 2 Research Context 2.1 The Current State of Text Classification 2.2 Efficiency 2.3 Approaches to Addressing Data Scarcity in Machine Learning 2.4 Challenges of Recent Developments 2.5 Model Sizes and Hardware Resources 2.6 Conclusion 3 Zero-shot Text Classification 3.1 Text Classification 3.2 State-of-the-Art in Text Classification 3.3 Neural Network Approaches to Data-Efficient Text Classification 3.4 Zero-shot Text Classification 3.5 Application 3.6 Requirements for Zero-shot Models 3.7 Approaches to Transfer Zero-shot 3.7.1 Terminology 3.7.2 Similarity-based and Siamese Networks 3.7.3 Language Model Token Predictions 3.7.4 Sentence Pair Classification 3.7.5 Instruction-following Models or Dialog-based Systems 3.8 Class Name Encoding in Text Classification 3.9 Approach Selection 3.10 Conclusion 4 Model Performance Survey 4.1 Experiments 4.1.1 Datasets 4.1.2 Model Selection 4.1.3 Hypothesis Templates 4.2 Zero-shot Model Evaluation 4.3 Dataset Complexity 4.4 Conclusion 5 Case Study: Historic German Stock Market Reports 5.1 Project 5.2 Motivation 5.3 Related Work 5.4 The Corpus and Dataset - Berliner Börsenzeitung 5.4.1 Corpus 5.4.2 Sentiment Aspects 5.4.3 Annotations 5.5 Methodology 5.5.1 Evaluation Approach 5.5.2 Trained Pipeline 5.5.3 Zero-shot Pipeline 5.5.4 Dictionary Pipeline 5.5.5 Tradeoffs 5.5.6 Label Space Definitions 5.6 Evaluation - Comparison of the Pipelines on BBZ 5.6.1 Sentence-based Sentiment 5.6.2 Aspect-based Sentiment 5.6.3 Qualitative Evaluation 5.7 Discussion and Conclusion 6 Case Study: Document Management in Civil Engineering 6.1 Project 6.2 Motivation 6.3 Related Work 6.4 The Corpus and Knowledge Graph 6.4.1 Data 6.4.2 BauGraph – The Knowledge Graph 6.5 Methodology 6.5.1 Document Insertion Pipeline 6.5.2 Frontend Integration 6.6 Discussion and Conclusion 7 MLMC 7.1 How it works 7.2 Motivation 7.3 Extensions of the Framework 7.4 Other Projects 7.4.1 Product Classification 7.4.2 Democracy Monitor 7.4.3 Climate Change Adaptation Finance 7.5 Conclusion 8 Discussion: The Five Dilemmas of Zero-shot 8.1 On Evaluation 8.2 The Five Dilemmas of Zero-shot 8.2.1 Dilemma of Evaluation or Are You Working at All? 8.2.2 Dilemma of Comparison or How Do I Get the Best Model? 8.2.3 Dilemma of Annotation and Label Definition or Are We Talking about the Same Thing? 8.2.4 Dilemma of Interpretation or Am I Biased? 8.2.5 Dilemma of Unsupervised Text Classification or Do I Have to Trust You? 8.3 Trust in Zero-shot Capabilities 8.4 Conclusion 9 Conclusion 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.1.1 RQ1: Strengths and Weaknesses . . . . . . . . . . . . . . . . 139 9.1.2 RQ2: Application Studies . . . . . . . . . . . . . . . . . . . . 141 9.1.3 RQ3: Implications . . . . . . . . . . . . . . . . . . . . . . . . 143 9.2 Final Thoughts & Future Directions . . . . . . . . . . . . . . . . . . 144 References 147 A Appendix for Survey Chapter A.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 A.2 Task-specific Hypothesis Templates . . . . . . . . . . . . . . . . . . 180 A.3 Fractions of SotA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 181 B Uncertainty vs. Accuracy 182 C Declaration of Authorship 185 D Declaration: Use of AI-Tools 186 E Bibliographic Data 187 / In dieser Dissertation wird die Anwendung von Zero-Shot-Textklassifikation -- die Kategorisierung von Texten ohne annotierte Daten in der Anwendungsdomäne -- untersucht. Ein echter Zero-Shot-Ansatz bricht mit den Konventionen des traditionellen überwachten maschinellen Lernens, welches auf einer quantitativen Evaluierung in der Zieldomäne zur Optimierung, Performanzmessung und Modellauswahl (model selection) basiert. Eine Zusammenfassung bestehender Forschungsarbeiten bildet die theoretische Grundlage für die verwendeten Zero-Shot-Methoden, wobei Effizienz und Transparenz im Vordergrund stehen. Ein Vergleich ausgewählter Ansätze mit verschiedenen Tasks und Datensätzen soll allgemeine Stärken und Schwächen aufzeigen und den Prozess der Modellauswahl widerspiegeln. Auf dieser Grundlage wird die Anwendung der Zero-Shot-Textklassifikation anhand von zwei Fallstudien demonstriert: Die erste befasst sich mit historischen deutschen Börsenberichten, wobei Zero-Shot zur aspekt-basierten Sentiment-Klassifikation eingesetzt wird. Es zeigt sich, dass es zwar qualitative Unterschiede zwischen trainierten und Zero-Shot-Ansätzen gibt, dass die aggregierten Ergebnisse aber nicht leicht zu unterscheiden sind, was Überlegungen zu praktischen Implikationen anstößt. Die zweite Fallstudie integriert Zero-Shot-Textklassifikation in ein Dokumentenmanagementsystem für das Bauwesen und zeigt, wie die Flexibilität von Zero-Shot-Modellen und der Wegfall des Trainingsprozesses die Entwicklung von Prototypen vereinfachen können -- mit dem Nachteil, dass die Genauigkeit des Modells unbekannt bleibt. Die Ergebnisse zeigen, dass die Zero-Shot-Textklassifikation in den Beispielanwendungen zwar annähernd funktioniert, die Ergebnisse aber nicht leicht verallgemeinerbar sind. Im Anschluss werden Dilemmata und theoretische Überlegungen erörtert, die sich aus dem Wegfall der Evaluierung in der Zieldomäne von Zero-Shot-Textklassifikation ergeben. Abschließend wird ein breiterer Fokus über die traditionellen quantitativen Metriken hinaus vorgeschlagen, um Vertrauen in die Zero-Shot-Textklassifikation aufzubauen und den praktischen Nutzen zu verbessern. Die Überlegungen zeigen aber auch die Notwendigkeit weiterer Forschung im Zuge der Weiterentwicklung dieser Technologien.:1 Introduction 1.1 Problem Context 1.2 Related Work 1.3 Research Questions & Contribution 1.4 Author’s Publications 1.5 Structure of This Work 2 Research Context 2.1 The Current State of Text Classification 2.2 Efficiency 2.3 Approaches to Addressing Data Scarcity in Machine Learning 2.4 Challenges of Recent Developments 2.5 Model Sizes and Hardware Resources 2.6 Conclusion 3 Zero-shot Text Classification 3.1 Text Classification 3.2 State-of-the-Art in Text Classification 3.3 Neural Network Approaches to Data-Efficient Text Classification 3.4 Zero-shot Text Classification 3.5 Application 3.6 Requirements for Zero-shot Models 3.7 Approaches to Transfer Zero-shot 3.7.1 Terminology 3.7.2 Similarity-based and Siamese Networks 3.7.3 Language Model Token Predictions 3.7.4 Sentence Pair Classification 3.7.5 Instruction-following Models or Dialog-based Systems 3.8 Class Name Encoding in Text Classification 3.9 Approach Selection 3.10 Conclusion 4 Model Performance Survey 4.1 Experiments 4.1.1 Datasets 4.1.2 Model Selection 4.1.3 Hypothesis Templates 4.2 Zero-shot Model Evaluation 4.3 Dataset Complexity 4.4 Conclusion 5 Case Study: Historic German Stock Market Reports 5.1 Project 5.2 Motivation 5.3 Related Work 5.4 The Corpus and Dataset - Berliner Börsenzeitung 5.4.1 Corpus 5.4.2 Sentiment Aspects 5.4.3 Annotations 5.5 Methodology 5.5.1 Evaluation Approach 5.5.2 Trained Pipeline 5.5.3 Zero-shot Pipeline 5.5.4 Dictionary Pipeline 5.5.5 Tradeoffs 5.5.6 Label Space Definitions 5.6 Evaluation - Comparison of the Pipelines on BBZ 5.6.1 Sentence-based Sentiment 5.6.2 Aspect-based Sentiment 5.6.3 Qualitative Evaluation 5.7 Discussion and Conclusion 6 Case Study: Document Management in Civil Engineering 6.1 Project 6.2 Motivation 6.3 Related Work 6.4 The Corpus and Knowledge Graph 6.4.1 Data 6.4.2 BauGraph – The Knowledge Graph 6.5 Methodology 6.5.1 Document Insertion Pipeline 6.5.2 Frontend Integration 6.6 Discussion and Conclusion 7 MLMC 7.1 How it works 7.2 Motivation 7.3 Extensions of the Framework 7.4 Other Projects 7.4.1 Product Classification 7.4.2 Democracy Monitor 7.4.3 Climate Change Adaptation Finance 7.5 Conclusion 8 Discussion: The Five Dilemmas of Zero-shot 8.1 On Evaluation 8.2 The Five Dilemmas of Zero-shot 8.2.1 Dilemma of Evaluation or Are You Working at All? 8.2.2 Dilemma of Comparison or How Do I Get the Best Model? 8.2.3 Dilemma of Annotation and Label Definition or Are We Talking about the Same Thing? 8.2.4 Dilemma of Interpretation or Am I Biased? 8.2.5 Dilemma of Unsupervised Text Classification or Do I Have to Trust You? 8.3 Trust in Zero-shot Capabilities 8.4 Conclusion 9 Conclusion 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.1.1 RQ1: Strengths and Weaknesses . . . . . . . . . . . . . . . . 139 9.1.2 RQ2: Application Studies . . . . . . . . . . . . . . . . . . . . 141 9.1.3 RQ3: Implications . . . . . . . . . . . . . . . . . . . . . . . . 143 9.2 Final Thoughts & Future Directions . . . . . . . . . . . . . . . . . . 144 References 147 A Appendix for Survey Chapter A.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 A.2 Task-specific Hypothesis Templates . . . . . . . . . . . . . . . . . . 180 A.3 Fractions of SotA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 181 B Uncertainty vs. Accuracy 182 C Declaration of Authorship 185 D Declaration: Use of AI-Tools 186 E Bibliographic Data 187
354

Surmize: An Online NLP System for Close-Domain Question-Answering and Summarization

Bergkvist, Alexander, Hedberg, Nils, Rollino, Sebastian, Sagen, Markus January 2020 (has links)
The amount of data available and consumed by people globally is growing. To reduce mental fatigue and increase the general ability to gain insight into complex texts or documents, we have developed an application to aid in this task. The application allows users to upload documents and ask domain-specific questions about them using our web application. A summarized version of each document is presented to the user, which could further facilitate their understanding of the document and guide them towards what types of questions could be relevant to ask. Our application allows users flexibility with the types of documents that can be processed, it is publicly available, stores no user data, and uses state-of-the-art models for its summaries and answers. The result is an application that yields near human-level intuition for answering questions in certain isolated cases, such as Wikipedia and news articles, as well as some scientific texts. The application shows a decrease in reliability and its prediction as to the complexity of the subject, the number of words in the document, and grammatical inconsistency in the questions increases. These are all aspects that can be improved further if used in production. / Mängden data som är tillgänglig och konsumeras av människor växer globalt. För att minska den mentala trötthet och öka den allmänna förmågan att få insikt i komplexa, massiva texter eller dokument, har vi utvecklat en applikation för att bistå i de uppgifterna. Applikationen tillåter användare att ladda upp dokument och fråga kontextspecifika frågor via vår webbapplikation. En sammanfattad version av varje dokument presenteras till användaren, vilket kan ytterligare förenkla förståelsen av ett dokument och vägleda dem mot vad som kan vara relevanta frågor att ställa. Vår applikation ger användare möjligheten att behandla olika typer av dokument, är tillgänglig för alla, sparar ingen personlig data, och använder de senaste modellerna inom språkbehandling för dess sammanfattningar och svar. Resultatet är en applikation som når en nära mänsklig intuition för vissa domäner och frågor, som exempelvis Wikipedia- och nyhetsartiklar, samt viss vetensaplig text. Noterade undantag för tillämpningen härrör från ämnets komplexitet, grammatiska korrekthet för frågorna och dokumentets längd. Dessa är områden som kan förbättras ytterligare om den används i produktionen.
355

Går det att lita på ChatGPT? En kvalitativ studie om studenters förtroende för ChatGPT i lärandesammanhang

Härnström, Alexandra, Bergh, Isak Eljas January 2023 (has links)
Världens tekniska utveckling går framåt i snabb takt, inte minst när det kommer till ”smarta” maskiner och algoritmer med förmågan att anpassa sig efter sin omgivning. Detta delvis på grund av den enorma mängd data som finns tillgänglig och delvis tack vare en ökad lagringskapacitet. I november 2022 släpptes ett av de senaste AI-baserade programmen; chatboten ChatGPT. Inom två månader hade ChatGPT fått över 100 miljoner användare. Denna webbaserade mjukvara kan i realtid konversera med användare genom att besvara textbaserade frågor. Genom att snabbt och ofta korrekt besvara användarnas frågor på ett mänskligt och övertygande sätt, har tjänsten på kort tid genererat mycket uppmärksamhet. Det finns flera studier som visar på hur ett stort antal människor saknar ett generellt förtroende för AI. Vissa studier menar att de svar som ChatGPT genererar inte alltid kan antas vara helt korrekta och därför bör följas upp med en omfattande kontroll av faktan, eftersom de annars kan bidra till spridandet av falsk information. Eftersom förtroende för AI har visat sig vara en viktig del i hur väl teknologin utvecklas och integreras, kan brist på förtroende för sådana tjänster, såsom ChatGPT, vara ett hinder för en välfungerande användning. Trots att man sett på ökad produktivitet vid införandet av AI-teknologi hos företag så har det inom högre utbildning, som ett hjälpmedel för studenter, inte integrerats i samma utsträckning. Genom att ta reda på vilket förtroende studenter har för ChatGPT i lärandesammanhang, kan man erhålla information som kan vara till hjälp för integrationen av sådan AI-teknik. Dock saknas det specifik forskning kring studenters förtroende för ChatGPT i lärandesammanhang. Därför syftar denna studie till att fylla denna kunskapslucka, genom att utföra en kartläggning. Vår frågeställning är: ” Vilket förtroende har studenter för ChatGPT i lärandesammanhang?”. Kartläggningen utfördes med semistrukturerade intervjuer av åtta studenter som använt ChatGPT i lärandesammanhang. Intervjuerna genererade kvalitativa data som analyserades med tematisk analys, och resultatet visade på att studenters förtroende för ChatGPT i lärandesammanhang beror på en rad faktorer. Under analysen identifierade vi sex teman som ansågs vara relevanta för att besvara frågeställningen: ● Erfarenheter ● Användning ● ChatGPT:s karaktär ● Yttre påverkan ● Organisationer ● Framtida förtroende / The world's technological development is advancing rapidly, especially when it comes to "smart" machines and algorithms with the ability to adapt to their surroundings. This is partly due to the enormous amount of available data and partly thanks to increased storage capacity. In November 2022, one of the latest AI-based programs was released; the chatbot ChatGPT. This web-based software can engage in real-time conversations with users by answering text-based questions. By quickly, and often accurately, answering users' questions in a human-like and convincing manner, the service has generated a lot of attention in a short period of time. Within two months, ChatGPT had over 100 million users. There are several studies that show how a large number of people lack a general trust in AI. Some studies argue that the responses generated by ChatGPT may not always be assumed to be completely accurate and should therefore be followed up with extensive fact-checking, as otherwise they may contribute to the spreading of false information. Since trust in AI has been shown to be an important part of how well the technology develops and integrates, a lack of trust in services like ChatGPT can be a hindrance to effective usage. Despite the increased productivity observed in the implementation of AI technology in companies, it has not been integrated to the same extent within higher education as an aid for students. By determining the level of trust that students have in ChatGPT in an educational context, valuable information can be obtained to assist in the integration of such AI technology. However, there is a lack of specific research on students' trust in ChatGPT in an educational context. Therefore, this study aims to fill this knowledge gap by conducting a survey. Our research question is: “What trust do students have in ChatGPT in a learning context?”. The survey was conducted through semi-structured interviews with eight students who have used ChatGPT in an educational context. The interviews generated qualitative data that was analyzed using thematic analysis, and the results showed that students' trust in ChatGPT in an educational context depends on several factors. During the analysis, six themes were identified as relevant for answering the research question: • Experiences • Usage • ChatGPT’s character • Influences • Organizations • Future trust
356

[en] A NOVEL SOLUTION TO EMPOWER NATURAL LANGUAGE INTERFACES TO DATABASES (NLIDB) TO HANDLE AGGREGATIONS / [pt] UMA NOVA SOLUÇÃO PARA CAPACITAR INTERFACES DE LINGUAGEM NATURAL PARA BANCOS DE DADOS (NLIDB) PARA LIDAR COM AGREGAÇÕES

ALEXANDRE FERREIRA NOVELLO 19 July 2021 (has links)
[pt] Perguntas e Respostas (Question Answering - QA) é um campo de estudo dedicado à construção de sistemas que respondem automaticamente a perguntas feitas em linguagem natural. A tradução de uma pergunta feita em linguagem natural em uma consulta estruturada (SQL ou SPARQL) em um banco de dados também é conhecida como Interface de Linguagem Natural para Bancos de Dados (Natural Language Interface to Database - NLIDB). Os sistemas NLIDB geralmente não lidam com agregações, que podem ter os seguintes elementos: funções de agregação (como contagem, soma, média, mínimo e máximo), uma cláusula de agrupamento (GROUP BY) e uma cláusula HAVING. No entanto, eles fornecem bons resultados para consultas normais. Esta dissertação aborda a criação de um módulo genérico, para ser utilizado em sistemas NLIDB, que permite a tais sistemas realizar consultas com agregações, desde que os resultados da consulta que o NLIDB retorna sejam, ou possam ser transformados, em um resultado no formato tabular. O trabalho cobre agregações com especificidades como ambiguidades, diferenças de escala de tempo, agregações em atributos múltiplos, o uso de adjetivos superlativos, reconhecimento básico de unidade de medida, agregações em atributos com nomes compostos e subconsultas com funções de agregação aninhadas em até dois níveis. / [en] Question Answering (QA) is a field of study dedicated to building systems that automatically answer questions asked in natural language. The translation of a question asked in natural language into a structured query (SQL or SPARQL) in a database is also known as Natural Language Interface to Database (NLIDB). NLIDB systems usually do not deal with aggregations, which can have the following elements: aggregation functions (as count, sum, average, minimum and maximum), a grouping clause (GROUP BY) and a having clause (HAVING). However, they deliver good results for normal queries. This dissertation addresses the creation of a generic module, to be used in NLIDB systems, that allows such systems to perform queries with aggregations, on the condition that the query results the NLIDB return are, or can be transformed into, a result set in the form of a table. The work covers aggregations with specificities such as ambiguities, timescale differences, aggregations in multiple attributes, the use of superlative adjectives, basic unit measure recognition, aggregations in attributes with compound names and subqueries with aggregation functions nested up to two levels.
357

Zero/Few-Shot Text Classification : A Study of Practical Aspects and Applications / Textklassificering med Zero/Few-Shot Learning : En Studie om Praktiska Aspekter och Applikationer

Åslund, Jacob January 2021 (has links)
SOTA language models have demonstrated remarkable capabilities in tackling NLP tasks they have not been explicitly trained on – given a few demonstrations of the task (few-shot learning), or even none at all (zero-shot learning). The purpose of this Master’s thesis has been to investigate practical aspects and potential applications of zero/few-shot learning in the context of text classification. This includes topics such as combined usage with active learning, automated data labeling, and interpretability. Two different methods for zero/few-shot learning have been investigated, and the results indicate that:  • Active learning can be used to marginally improve few-shot performance, but it seems to be mostly beneficial in settings with very few samples (e.g. less than 10). • Zero-shot learning can be used produce reasonable candidate labels for classes in a dataset, given knowledge of the classification task at hand.  • It is difficult to trust the predictions of zero-shot text classification without access to a validation dataset, but IML methods such as saliency maps could find usage in debugging zero-shot models. / Ledande språkmodeller har uppvisat anmärkningsvärda förmågor i att lösa NLP-problem de inte blivit explicit tränade på – givet några exempel av problemet (few-shot learning), eller till och med inga alls (zero-shot learning). Syftet med det här examensarbetet har varit att undersöka praktiska aspekter och potentiella tillämpningar av zero/few-shot learning inom kontext av textklassificering. Detta inkluderar kombinerad användning med aktiv inlärning, automatiserad datamärkning, och tolkningsbarhet. Två olika metoder för zero/few-shot learning har undersökts, och resultaten indikerar att: • Aktiv inlärning kan användas för att marginellt förbättra textklassificering med few-shot learning, men detta verkar vara mest fördelaktigt i situationer med väldigt få datapunkter (t.ex. mindre än 10). • Zero-shot learning kan användas för att hitta lämpliga etiketter för klasser i ett dataset, givet kunskap om klassifikationsuppgiften av intresse. • Det är svårt att lita på robustheten i textklassificering med zero-shot learning utan tillgång till valideringsdata, men metoder inom tolkningsbar maskininlärning såsom saliency maps skulle kunna användas för att felsöka zero-shot modeller.
358

The opportunities of applying Artificial Intelligence in strategic sourcing / Möjligheterna med att applicera Artificiell Intelligens i strategiskt inköp

Karlsson, Frida January 2020 (has links)
Artificial Intelligence technology has become increasingly important from a business perspective. In strategic sourcing, the technology has not been explored much. However, 67% of CPO:s in a survey showed that AI is one of their top priorities the next 10 years. AI can be used to identify patterns, predict prices and provide support in decision making. A qualitative case study has been performed in a strategic sourcing function at a large size global industrial company where the purpose has been to investigate how applicable AI is in the strategic sourcing process at The Case Company. In order to achieve the purpose of this study, it has been important to understand the strategic sourcing process and understand what AI technology is and what it is capable of in strategic sourcing. Based on the empirical data collection combined with literature, opportunities of applying AI in strategic sourcing have been identified and key areas for an implementation have been suggested. These include Forecasting, Spend Analysis & Savings Tracking, Supplier Risk Management, Supplier Identification & Selection, RFQ process, Negotiation process, Contract Management and Supplier Performance Management. These key areas have followed the framework identified in the literature study while identifying and adding new factors. It also seemed important to consider factors such as challenges and risks, readiness and maturity as well as factors that seems to be important to consider in order to enable an implementation. To assess how mature and ready the strategic sourcing function is for an implementation, some of the previous digital projects including AI technologies have been mapped and analysed. Based on the identified key areas of opportunities of applying AI, use cases and corresponding benefits of applying AI have been suggested. A guideline including important factors to consider if applying the technology has also been provided. However, it has been concluded that there might be beneficial to start with a smaller use case and then scale it up. Also as the strategic sourcing function has been establishing a spend analytics platform for the indirect team, there might be a good start to evaluate that project and then apply AI on top of the existing solution. Other factors to consider are ensuring data quality and security, align with top management as well as demonstrate the advantages AI can provide in terms of increased efficiency and cost savings. The entire strategic sourcing function should be involved in an AI project and the focus should not only be on technological aspect but also on soft factors including change management and working agile in order to successfully apply AI in strategic sourcing. / Artificiell Intelligens har blivit allt viktigare ur ett affärsperspektiv. När det gäller strategiskt inköp har tekniken inte undersökts lika mycket tidigare. Hursomhelst, 67% av alla tillfrågade CPO:er i en enkät ansåg att AI är en av deras topprioriteringar de kommande tio åren. AI kan exempelvis identifiera mönster, förutspå priser samt ge support inom beslutsfattning. En kvalitativ fallstudie har utförts i en strategisk inköpsfunktion hos ett globalt industriföretag där syftet har varit att undersöka hur tillämpbart AI är i strategiskt inköp hos Case-Företaget. För att uppnå syftet med denna studie har det varit viktigt att förstå vad den strategiska inköpsprocessen omfattas av samt vad AI-teknologi är och vad den är kapabel till inom strategiskt inköp. Därför har litteraturstudien gjorts för att undersöka hur man använt AI inom strategiskt inköp tidigare och vilka fördelar som finns. Baserat på empirisk datainsamling kombinerat med litteratur har nyckelområden för att applicera AI inom strategiskt inköp föreslagits inkluderat forecasting, spendanalys & besparingsspårning, riskhantering av leverantörer, leverantörsidentifikation och val, RFQ-processen, förhandlingsprocessen, kontrakthantering samt uppföljning av leverantörsprestation. Dessa nyckelområden har följt det ramverk som skapats i litteraturstudien samtidigt som nya faktorer har identifierats och lagts till då de ansetts som viktiga. För att tillämpa AI i strategiska inköpsprocessen måste Case-Företaget överväga andra aspekter än var i inköpsprocessen de kan dra nytta av AI mest. Faktorer som utmaningar och risker, beredskap och mognad samt faktorer som ansetts viktiga att beakta för att möjliggöra en implementering har identifierats. För att bedöma hur mogen och redo den strategiska inköpsfunktionen hos Case-Företaget är för en implementering har några av de tidigare digitala projekten inklusive AI-teknik kartlagts och analyserats. Det har emellertid konstaterats att det kan vara fördelaktigt för strategiskt inköp att börja med ett mindre användningsområde och sedan skala upp det. Eftersom strategiska inköpsfunktionen har implementerat en spendanalys plattform kan det vara en bra start att utvärdera det projektet och sedan tillämpa AI ovanpå den befintliga lösningen. Andra faktorer att beakta är att försäkra datakvalitet och säkerhet, involvera ledningen samt lyfta vilka fördelar AI kan ge i form av ökad effektivitet och kostnadsbesparingar. Därtill är det viktigt att inkludera hela strategiska inköps-funktionen samt att inte endast beakta den tekniska aspekten utan också mjuka faktorer så som change management och agila metoder.
359

Applying Large Language Models in Business Processes : A contribution to Management Innovation / Tillämpning av stora språkmodeller i affärsprocesser : Ett bidrag till Management Innovation

Bergman Larsson, Niklas, Talåsen, Jonatan January 2024 (has links)
This master thesis explores the transformative potential of Large Language Models (LLMs) in enhancing business processes across various industries, with a specific focus on Management Innovation. As organizations face the pressures of digitalization, LLMs emerge as powerful tools that can revolutionize traditional business workflows through enhanced decision-making, automation of routine tasks, and improved operational efficiency. The research investigates the integration of LLMs within four key business domains: Human Resources, Tender Management, Consultancy, and Compliance. It highlights how LLMs facilitate Management Innovation by enabling new forms of workflow automation, data analysis, and compliance management, thus driving substantial improvements in efficiency and innovation. Employing a mixed-method approach, the study combines an extensive literature review with surveys and interviews with industry professionals to evaluate the impact and practical applications of LLMs. The findings reveal that LLMs not only offer significant operational benefits but also pose challenges related to data security, integration complexities, and privacy concerns. This thesis significantly contributes to the academic and practical understanding of LLMs, proposing a framework for their strategic adoption to foster Management Innovation. It underscores the need for businesses to align LLM integration with both technological capabilities and strategic business objectives, paving the way for a new era of management practices shaped by advanced technologies. / Denna masteruppsats utforskar den transformativa potentialen hos Stora Språkmodeller (LLMs) i att förbättra affärsprocesser över olika industrier, med särskilt fokus på Management Innovation. När organisationer möter digitaliseringens press, framträder LLMs som kraftfulla verktyg som kan revolutionera traditionella affärsarbetsflöden genom förbättrat beslutsfattande, automatisering av rutinuppgifter och förbättrad operationell effektivitet. Forskningen undersöker integrationen av LLMs inom fyra centrala affärsområden: Human Resources, Anbudshantering, Konsultverksamhet och Regelefterlevnad. Den belyser hur LLMs underlättar Management Innovation genom att möjliggöra nya former av arbetsflödesautomatisering, dataanalys och efterlevnadshantering, vilket driver påtagliga förbättringar i effektivitet och innovation. Genom att använda en blandad metodansats kombinerar studien en omfattande litteraturöversikt med enkäter och intervjuer med branschproffs för att utvärdera påverkan och praktiska tillämpningar av LLMs. Resultaten visar att LLMs inte bara erbjuder betydande operationella fördelar utan även medför utmaningar relaterade till datasäkerhet, integrationskomplexitet och integritetsfrågor. Denna uppsats bidrar avsevärt till den akademiska och praktiska förståelsen av LLMs, och föreslår en ram för deras strategiska antagande för att främja Management Innovation. Den understryker behovet för företag att anpassa LLM-integrationen med både teknologiska kapabiliteter och strategiska affärsmål, vilket banar väg för en ny era av ledningspraxis formad av avancerade teknologier.
360

Duplicate Detection and Text Classification on Simplified Technical English / Dublettdetektion och textklassificering på Förenklad Teknisk Engelska

Lund, Max January 2019 (has links)
This thesis investigates the most effective way of performing classification of text labels and clustering of duplicate texts in technical documentation written in Simplified Technical English. Pre-trained language models from transformers (BERT) were tested against traditional methods such as tf-idf with cosine similarity (kNN) and SVMs on the classification task. For detecting duplicate texts, vector representations from pre-trained transformer and LSTM models were tested against tf-idf using the density-based clustering algorithms DBSCAN and HDBSCAN. The results show that traditional methods are comparable to pre-trained models for classification, and that using tf-idf vectors with a low distance threshold in DBSCAN is preferable for duplicate detection.

Page generated in 0.0497 seconds