Spelling suggestions: "subject:"510 mathematik"" "subject:"510 thematik""
201 |
Divisors on moduli spaces of level curvesBruns, Gregor 04 January 2017 (has links)
In dieser Arbeit untersuchen wir drei Fragestellungen. Zwei beschäftigen sich mit Divisoren auf Modulräumen von Kurven mit Levelstruktur, die dritte handelt von Stabilitätseigenschaften der Normalenbündel von kanonischen Kurven. Die erste Frage, die in Kapitel 2 studiert wird, beschäftigt sich mit der Kodairadimension des Modulraums R15,2 von Prym-Varietäten vom Geschlecht 15. Wir studieren einen neuen Divisor auf diesem Modulraum und berechnen seine Klasse in der Standardbasis der Picardgruppe. Mit Hilfe dieser Klasse können wir schlussfolgern, dass R15,2 von allgemeinem Typ ist. In Kapitel 3 setzen wir unsere Untersuchung von Kurven mit Levelstruktur fort und untersuchen für jede Primzahl l Theta-Divisoren auf den Modulräumen R6,l und R8,l. Die Divisoren werden mit Hilfe der Mukai-Bündel von Kurven vom Geschlecht 6 beziehungsweise 8 definiert. Diese Bündel liefern kanonische Einbettungen unserer Kurven in Grassmann-Varietäten und beschreiben fundamentale geometrische Aspekte von Kurven dieser Geschlechter. Indem wir die Klasse des Divisors für g = 8 und l = 3 berechnen, können wir zeigen, dass R8,3 ebenfalls von allgemeinem Typ ist. Schließlich studieren wir in Kapitel 4 die Stabilität des Normalenbündels kanonischer Kurven vom Geschlecht 8 und beweisen, dass das Bündel auf einer generischen Kurve stabil ist. Für kanonische Kurven vom Geschlecht 9 beweisen wir die Stabilität zumindest im Bezug auf Unterbündel von niedrigem Rang. Ebenfalls liefern wir zusätzliche Hinweise für die Vermutung von M. Aprodu, G. Farkas und A. Ortega, die besagt, dass eine generische kanonische Kurve jedes Geschlechts g >= 7 ein stabiles Normalenbündel besitzt. / In this thesis we investigate three questions. Two are about divisors on moduli spaces of level curves, and about the consequences for the birational geometry of these spaces. The third asks about the stability properties of normal bundles of canonical curves. The first question, to be studied in Chapter 2, is about the Kodaira dimension of the moduli space R15,2 of Prym varieties of genus 15. We study a new divisor on this space and calculate its class in terms of the standard basis of the Picard group. This allows us to conclude that R15,2 is of general type. Continuing the study of level curves in Chapter 3, we investigate, for every l, theta divisors on R6,l and R8,l defined in terms of the Mukai bundle of genus 6 and 8 curves, respectively. These bundles provide canonical embeddings of our curves in Grassmann varieties and describe fundamental aspects of the geometry of curves of these genera. Using the class of the divisor for g = 8 and l = 3, we are able to prove that R8,3 is of general type as well. Finally, in Chapter 4 we study the stability of the normal bundle of canonical genus 8 curves and prove that on a general curve the bundle is stable. For canonical genus 9 curves we prove stability at least with respect to subbundles of low ranks. We also provide some more evidence for the conjecture of M. Aprodu, G. Farkas, and A. Ortega that a a general canonical curve of every genus g >= 7 has stable normal bundle.
|
202 |
Limit theorems for limit order booksPaulsen, Michael Christoph 21 August 2014 (has links)
Im ersten Teil der Dissertation wird ein diskretes stochastisches zustandsabhängiges Modell eines zweiseitigen Limit Orderbuchs als bestehend aus den Zustandsgrößen bester Bidpreis (Geldkurs), bester Askpreis (Briefkurs) und vorhandener Kauf- bzw. Verkaufsdichte definiert. Für eine einfache Skalierung mit zwei Zeitskalen wird ein Grenzwertsatz bewiesen. Die Veränderungen der besten Bid- und Askpreise werden im Sinne des Gesetzes der großen Zahlen skaliert und dies entspricht der langsameren Zeitskala. Das Platzieren bzw. Stornieren der Limitorder findet auf der schnelleren Zeitskala statt. Der Grenzwertsatz besagt, dass die fundamentalen Zustandsgrößen, gegeben Regularitätsbedingungen der einkommenden Order, fast sicher zu einem stetigen Limesmodell konvergieren. Im Limesmodell sind der beste Bidpreis und der beste Askpreis die eindeutigen Lösungen von zwei gekoppelten gewöhnlichen DGLen. Die Kauf- und Verkaufsdichten sind jeweils als eindeutige Lösungen von linearen hyperbolischen PDGLen, die anhand der Erwartungswerte der einkommenden Orderparameter festgelegt sind, gegeben. Die Lösungen sind in geschlossener Form erhältlich. Im zweiten Teil wird ein funktionaler zentraler Grenzwertsatz d.h. ein Invarianzprinzip für ein vereinfachtes Modell eines Limitorderbuches bewiesen. Unter einer natürlichen Skalierung konvergiert der zweidimensionale Preisprozess (Bid- und Askpreis) in Verteilung zu einer Semimartingal reflektierten Brownschen Bewegung in der zugelassenen Preismenge. Gleichzeitig konvergieren die Kauf- und Verkaufsdichten im schwachen Sinn zum Betrag einer zweiparametrischen Brownschen Bewegung. Es wird weiterhin anhand eines Beispiels gezeigt, wie man für das Modell im ersten Teil eine stochastiche PDGL, unter einer starken Stationaritätsannahme für die Orderplatzierungen und -stornierungen, herleiten kann. Im dritten Teil wird ein Mittelungs- bzw. ein Invarianzprinzip für diskrete Banach- bzw. Hilbertraumwertige stochastische Prozesse bewiesen. / In the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
|
203 |
Stochastic lagrangian relaxation in power scheduling of a hydro-thermal system under uncertaintyNowak, Matthias Peter 01 December 2000 (has links)
Wir betrachten ein Kraftwerkssystem mit thermischen Blöcken und Pumpspeicherwerken und entwickeln dafür ein Modell für den kostenoptimalen Wochenbetrieb. Auf Grund der Ungewißheit des Bedarfs an elektrischer Energie ist das mathematische Modell ein mehrstufiges stochastisches Problem. Dieses Modell beinhaltet viele gemischt-ganzzahlige stochastische Entscheidungsvariablen. Die Variablen einzelner Einheiten sind aber nur durch wenige Nebenbedingungen miteinander verbunden, welches die Zerlegung in stochastische Teilprobleme erleichtert. Diese stochastischen Teilprobleme besitzen deterministische Analoga, deren Lösungsverfahren entsprechend erweitert werden können. In dieser Arbeit werden ein Abstiegsverfahren für stochastische Speicherprobleme und eine Erweiterung der dynamischen Programmierung auf stochastische Probleme betrachtet. Die Lösung des dualen Problems führt zu Schattenpreisen, die bestimmte Einsatzentscheidungen bevorteilen. Die Heuristik zur Suche von primalen zulässigen Punkten wertet eine Folge von zugeordneten Economic-Dispatch-Problemen aus. Die Kombination der Einschränkung auf dual bevorzugte Fahrweisen (Lagrangian reduction) mit der Auswertung einer Folge von Economic-Dispatch-Problemen (Facettensuche) führt zu einem effizienten Verfahren. Die numerischen Ergebnisse an Hand realistischer Daten eines deutschen Versorgungsunternehmens rechtfertigen diesen Zugang. / We consider a power generation system comprising thermal units and pumped hydro storage plants, and introduce a model for its weekly cost-optimal operation. Due to the uncertainty of the load, the mathematical model represents a dynamic (multi-stage) stochastic program. The model involves a large number of mixed-integer (stochastic) decisions but its constraints are loosely coupled across operating power units. The coupling structure is used to design a stochastic Lagrangian relaxation method, which leads to a decomposition into stochastic single unit subproblems. The stochastic subproblems have deterministic counterparts, which makes it easy to develop algorithms for the stochastic problems. In this paper, a descent method for stochastic storage problems and an extension of dynamic programming towards stochastic programs are developed. The solution of the dual problem provides multipliers leading to preferred schedules (binary primal variables). The crossover heuristics evaluates the economic dispatch problems corresponding to a sequence of such preferred schedules. The combination of the restriction on dual preferred schedules (Lagrangian reduction) with the evaluation of a sequence (facet search) leads to an efficient method. The numerical results on realistic data of a German utility justify this approach.
|
204 |
Singular control of optional random measuresBank, Peter 14 December 2000 (has links)
In dieser Arbeit untersuchen wir das Problem der Maximierung bestimmter konkaver Funktionale auf dem Raum der optionalen, zufälligen Maße. Deartige Funktionale treten in der mikroökonomischen Literatur auf, wo ihre Maximierung auf die Bestimmung des optimalen Konsumplans eines ökomischen Agenten hinausläuft. Als Alternative zu den wohlbekannten Methoden der dynamischen Programmierung wird ein neuer Zugang vorgestellt, der es erlaubt, die Struktur der maximierenden Maße in einem über den üblicherweise angenommenen Markovschen Rahmen hinausgehenden, allgemeinen Semimartingalrahmen zu klären. Unser Zugang basiert auf einer unendlichdimensionalen Version des Kuhn-Tucker-Theorems. Die implizierten Bedingungen erster Ordnung erlauben es uns, das Maximierungsproblem auf ein neuartiges Darstellungsproblem für optionale Prozesse zu reduzieren, das damit als ein nicht-Markovsches Substitut für die Hamilton-Jacobi-Bellman Gleichung der dynamischen Programmierung dient. Um dieses Darstellungsproblem im deterministischen Fall zu lösen, führen wir eine zeitinhomogene Verallgemeinerung des Konvexitätsbegriffs ein. Die Lösung im allgemeinen stochastischen Fall ergibt sich über eine enge Beziehung zur Theorie des Gittins-Index der optimalen dynamischen Planung. Unter geeigneten Annahmen gelingt ihre Darstellung in geschlossener Form. Es zeigt sich dabei, daß die maximierenden Maße absolutstetig, diskret und auch singulär sein können, je nach Struktur der dem Problem zugrundeliegenden Stochastik. Im mikroökonomischen Kontext ist es natürlich, daß Problem in einen Gleichgewichtsrahmen einzubetten. Der letzte Teil der Arbeit liefert hierzu ein allgemeines Existenzresultat für ein solches Gleichgewicht. / In this thesis, we study the problem of maximizing certain concave functionals on the space of optional random measures. Such functionals arise in microeconomic theory where their maximization corresponds to finding the optimal consumption plan of some economic agent. As an alternative to the well-known methods of Dynamic Programming, we develop a new approach which allows us to clarify the structure of maximizing measures in a general stochastic setting extending beyond the usually required Markovian framework. Our approach is based on an infinite-dimensional version of the Kuhn-Tucker Theorem. The implied first-order conditions allow us to reduce the maximization problem to a new type of representation problem for optional processes which serves as a non-Markovian substitute for the Hamilton-Jacobi-Bellman equation of Dynamic Programming. In order to solve this representation problem in the deterministic case, we introduce a time-inhomogeneous generalization of convexity. The stochastic case is solved by using an intimate relation to the theory of Gittins-indices in optimal dynamic scheduling. Closed-form solutions are derived under appropriate conditions. Depending on the underlying stochastics, maximizing random measures can be absolutely continuous, discrete, and also singular. In the microeconomic context, it is natural to embed the above maximization problem in an equilibrium framework. In the last part of this thesis, we give a general existence result for such an equilibrium.
|
205 |
Macroscopic diffusion models for precipitation in crystalline gallium arsenideKimmerle, Sven-Joachim 23 December 2009 (has links)
Ausgehend von einem thermodynamisch konsistenten Modell von Dreyer und Duderstadt für Tropfenbildung in Galliumarsenid-Kristallen, das Oberflächenspannung und Spannungen im Kristall berücksichtigt, stellen wir zwei mathematische Modelle zur Evolution der Größe flüssiger Tropfen in Kristallen auf. Das erste Modell behandelt das Regime diffusionskontrollierter Interface-Bewegung, während das zweite Modell das Regime Interface-kontrollierter Bewegung des Interface behandelt. Unsere Modellierung berücksichtigt die Erhaltung von Masse und Substanz. Diese Modelle verallgemeinern das wohlbekannte Mullins-Sekerka-Modell für die Ostwald-Reifung. Wir konzentrieren uns auf arsenreiche kugelförmige Tropfen in einem Galliumarsenid-Kristall. Tropfen können mit der Zeit schrumpfen bzw. wachsen, die Tropfenmittelpunkte sind jedoch fixiert. Die Flüssigkeit wird als homogen im Raum angenommen. Aufgrund verschiedener Skalen für typische Distanzen zwischen Tropfen und typischen Radien der flüssigen Tropfen können wir formal so genannte Mean-Field-Modelle herleiten. Für ein Modell im diffusionskontrollierten Regime beweisen wir den Grenzübergang mit Homogenisierungstechniken unter plausiblen Annahmen. Diese Mean-Field-Modelle verallgemeinern das Lifshitz-Slyozov-Wagner-Modell, welches rigoros aus dem Mullins-Sekerka-Modell hergeleitet werden kann, siehe Niethammer et al., und gut verstanden ist. Mean-Field-Modelle beschreiben die wichtigsten Eigenschaften unseres Systems und sind gut für Numerik und für weitere Analysis geeignet. Wir bestimmen mögliche Gleichgewichte und diskutieren deren Stabilität. Numerische Resultate legen nahe, wann welches der beiden Regimes gut zur experimentellen Situation passen könnte. / Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins-Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, see Niethammer et al., and is well-understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation.
|
206 |
Bootstrap confidence sets under model misspecificationZhilova, Mayya 07 December 2015 (has links)
Diese Arbeit befasst sich mit einem Multiplier-Bootstrap Verfahren für die Konstruktion von Likelihood-basierten Konfidenzbereichen in zwei verschiedenen Fällen. Im ersten Fall betrachten wir das Verfahren für ein einzelnes parametrisches Modell und im zweiten Fall erweitern wir die Methode, um Konfidenzbereiche für eine ganze Familie von parametrischen Modellen simultan zu schätzen. Theoretische Resultate zeigen die Validität der Bootstrap-Prozedur für eine potenziell begrenzte Anzahl an Beobachtungen, eine große Anzahl an betrachteten parametrischen Modellen, wachsende Parameterdimensionen und eine mögliche Misspezifizierung der parametrischen Annahmen. Im Falle eines einzelnen parametrischen Modells funktioniert die Bootstrap-Approximation, wenn die dritte Potenz der Parameterdimension ist kleiner als die Anzahl an Beobachtungen. Das Hauptresultat über die Validität des Bootstrap gilt unter der sogenannten Small-Modeling-Bias Bedingung auch im Falle, dass das parametrische Modell misspezifiert ist. Wenn das wahre Modell signifikant von der betrachteten parametrischen Familie abweicht, ist das Bootstrap Verfahren weiterhin anwendbar, aber es führt zu etwas konservativeren Schätzungen: die Konfidenzbereiche werden durch den Modellfehler vergrößert. Für die Konstruktion von simultanen Konfidenzbereichen entwickeln wir ein Multiplier-Bootstrap Verfahren um die Quantile der gemeinsamen Verteilung der Likelihood-Quotienten zu schätzen und eine Multiplizitätskorrektur der Konfidenzlevels vorzunehmen. Theoretische Ergebnisse zeigen die Validität des Verfahrens; die resultierende Approximationsfehler hängt von der Anzahl an betrachteten parametrischen Modellen logarithmisch. Hier betrachten wir auch wieder den Fall, dass die parametrischen Modelle misspezifiziert sind. Wenn die Misspezifikation signifikant ist, werden Bootstrap-generierten kritischen Werte größer als die wahren Werte sein und die Bootstrap-Konfidenzmengen sind konservativ. / The thesis studies a multiplier bootstrap procedure for construction of likelihood-based confidence sets in two cases. The first one focuses on a single parametric model, while the second case extends the construction to simultaneous confidence estimation for a collection of parametric models. Theoretical results justify the validity of the bootstrap procedure for a limited sample size, a large number of considered parametric models, growing parameters’ dimensions, and possible misspecification of the parametric assumptions. In the case of one parametric model the bootstrap approximation works if the cube of the parametric dimension is smaller than the sample size. The main result about bootstrap validity continues to apply even if the underlying parametric model is misspecified under a so-called small modelling bias condition. If the true model deviates significantly from the considered parametric family, the bootstrap procedure is still applicable but it becomes conservative: the size of the constructed confidence sets is increased by the modelling bias. For the problem of construction of simultaneous confidence sets we suggest a multiplier bootstrap procedure for estimating a joint distribution of the likelihood ratio statistics, and for adjustment of the confidence level for multiplicity. Theoretical results state the bootstrap validity; a number of parametric models enters a resulting approximation error logarithmically. Here we also consider the case when parametric models are misspecified. If the misspecification is significant, then the bootstrap critical values exceed the true ones and the bootstrap confidence set becomes conservative. The theoretical approach includes non-asymptotic square-root Wilks theorem, Gaussian approximation of Euclidean norm of a sum of independent vectors, comparison and anti-concentration bounds for Euclidean norm of Gaussian vectors. Numerical experiments for misspecified regression models nicely confirm our theoretical results.
|
207 |
Hypersurfaces with defect and their densities over finite fieldsLindner, Niels 20 February 2017 (has links)
Das erste Thema dieser Dissertation ist der Defekt projektiver Hyperflächen. Es scheint, dass Hyperflächen mit Defekt einen verhältnismäßig großen singulären Ort besitzen. Diese Aussage wird im ersten Kapitel der Dissertation präzisiert und für Hyperflächen mit beliebigen isolierten Singularitäten über einem Körper der Charakteristik null, sowie für gewisse Klassen von Hyperflächen in positiver Charakteristik bewiesen. Darüber hinaus lässt sich die Dichte von Hyperflächen ohne Defekt über einem endlichen Körper abschätzen. Schließlich wird gezeigt, dass eine nicht-faktorielle Hyperfläche der Dimension drei mit isolierten Singularitäten stets Defekt besitzt. Das zweite Kapitel der Dissertation behandelt Bertini-Sätze über endlichen Körpern, aufbauend auf Poonens Formel für die Dichte glatter Hyperflächenschnitte in einer glatten Umgebungsvarietät. Diese wird auf quasiglatte Hyperflächen in simpliziellen torischen Varietäten verallgemeinert. Die Hauptanwendung ist zu zeigen, dass Hyperflächen mit einem in Relation zum Grad großen singulären Ort die Dichte null haben. Weiterhin enthält das Kapitel einen Bertini-Irreduzibilitätssatz, der auf einer Arbeit von Charles und Poonen beruht. Im dritten Kapitel werden ebenfalls Dichten über endlichen Körpern untersucht. Zunächst werden gewisse Faserungen über glatten projektiven Basisvarietäten in einem gewichteten projektiven Raum betrachtet. Das erste Resultat ist ein Bertini-Satz für glatte Faserungen, der Poonens Formel über glatte Hyperflächen impliziert. Der letzte Abschnitt behandelt elliptische Kurven über einem Funktionskörper einer Varietät der Dimension mindestens zwei. Die zuvor entwickelten Techniken ermöglichen es, eine untere Schranke für die Dichte solcher Kurven mit Mordell-Weil-Rang null anzugeben. Dies verbessert ein Ergebnis von Kloosterman. / The first topic of this dissertation is the defect of projective hypersurfaces. It is indicated that hypersurfaces with defect have a rather large singular locus. In the first chapter of this thesis, this will be made precise and proven for hypersurfaces with arbitrary isolated singularities over a field of characteristic zero, and for certain classes of hypersurfaces in positive characteristic. Moreover, over a finite field, an estimate on the density of hypersurfaces without defect is given. Finally, it is shown that a non-factorial threefold hypersurface with isolated singularities always has defect. The second chapter of this dissertation deals with Bertini theorems over finite fields building upon Poonen’s formula for the density of smooth hypersurface sections in a smooth ambient variety. This will be extended to quasismooth hypersurfaces in simplicial toric varieties. The main application is to show that hypersurfaces admitting a large singular locus compared to their degree have density zero. Furthermore, the chapter contains a Bertini irreducibility theorem for simplicial toric varieties generalizing work of Charles and Poonen. The third chapter continues with density questions over finite fields. In the beginning, certain fibrations over smooth projective bases living in a weighted projective space are considered. The first result is a Bertini-type theorem for smooth fibrations, giving back Poonen’s formula on smooth hypersurfaces. The final section deals with elliptic curves over a function field of a variety of dimension at least two. The techniques developed in the first two sections allow to produce a lower bound on the density of such curves with Mordell-Weil rank zero, improving an estimate of Kloosterman.
|
208 |
Bounds for Green's functions on hyperbolic Riemann surfaces of finite volumeAryasomayajula, Naga Venkata Anilatmaja 21 October 2013 (has links)
Im Jahr 2006, in einem Papier in Compositio Titel "Bounds auf kanonische Green-Funktionen" J. Jorgenson und J. Kramer, haben optimale Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem kompakten hyperbolischen Riemannschen Fläche definiert abgeleitet. Diese Schätzungen wurden im Hinblick auf abgeleitete Invarianten aus hyperbolischen Geometrie der Riemannschen Fläche. Als Anwendung abgeleitet sie Schranken für die kanonische Green-Funktionen durch Abdeckungen und für Familien von Modulkurven. In dieser Arbeit erweitern wir ihre Methoden nichtkompakten hyperbolischen Riemann Oberflächen und leiten ähnliche Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem nichtkompakten hyperbolischen Riemannschen Fläche definiert. / In 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
|
209 |
Approximation of nonsmooth optimization problems and elliptic variational inequalities with applications to elasto-plasticityRösel, Simon 09 May 2017 (has links)
Optimierungsprobleme und Variationsungleichungen über Banach-Räumen stellen Themen von substantiellem Interesse dar, da beide Problemklassen einen abstrakten Rahmen für zahlreiche Anwendungen aus verschiedenen Fachgebieten stellen. Nach einer Einführung in Teil I werden im zweiten Teil allgemeine Approximationsmethoden, einschließlich verschiedener Diskretisierungs- und Regularisierungsansätze, zur Lösung von nichtglatten Variationsungleichungen und Optimierungsproblemen unter konvexen Restriktionen vorgestellt. In diesem allgemeinen Rahmen stellen sich gewisse Dichtheitseigenschaften der konvexen zulässigen Menge als wichtige Voraussetzungen für die Konsistenz einer abstrakten Klasse von Störungen heraus. Im Folgenden behandeln wir vor allem Restriktionsmengen in Sobolev-Räumen, die durch eine punktweise Beschränkung an den Funktionswert definiert werden. Für diesen Restriktionstyp werden verschiedene Dichtheitsresultate bewiesen. In Teil III widmen wir uns einem quasi-statischen Kontaktproblem der Elastoplastizität mit Härtung. Das entsprechende zeit-diskretisierte Problem kann als nichtglattes, restringiertes Minimierungsproblem betrachtet werden. Zur Lösung wird eine Pfadverfolgungsmethode auf Basis des verallgemeinerten Newton-Verfahrens entwickelt, dessen Teilprobleme lokal superlinear und gitterunabhängig lösbar sind. Teil III schließt mit verschiedenen numerischen Beispielen. Der letzte Teil der Arbeit ist der quasi-statischen, perfekten Plastizität gewidmet. Auf Basis des primalen Problems der perfekten Plastizität leiten wir eine reduzierte Formulierung her, die es erlaubt, das primale Problem als Fenchel-dualisierte Form des klassischen zeit-diskretisierten Spannungsproblems zu verstehen. Auf diese Weise werden auch neue Optimalitätsbedingungen hergeleitet. Zur Lösung des Problems stellen wir eine modifizierte Form der viskoplastischen Regularisierung vor und beweisen die Konvergenz dieses neuen Regularisierungsverfahrens. / Optimization problems and variational inequalities over Banach spaces are subjects of paramount interest since these mathematical problem classes serve as abstract frameworks for numerous applications. Solutions to these problems usually cannot be determined directly. Following an introduction, part II presents several approximation methods for convex-constrained nonsmooth variational inequality and optimization problems, including discretization and regularization approaches. We prove the consistency of a general class of perturbations under certain density requirements with respect to the convex constraint set. We proceed with the study of pointwise constraint sets in Sobolev spaces, and several density results are proven. The quasi-static contact problem of associative elasto-plasticity with hardening at small strains is considered in part III. The corresponding time-incremental problem can be equivalently formulated as a nonsmooth, constrained minimization problem, or, as a mixed variational inequality problem over the convex constraint. We propose an infinite-dimensional path-following semismooth Newton method for the solution of the time-discrete plastic contact problem, where each path-problem can be solved locally at a superlinear rate of convergence with contraction rates independent of the discretization. Several numerical examples support the theoretical results. The last part is devoted to the quasi-static problem of perfect (Prandtl-Reuss) plasticity. Building upon recent developments in the study of the (incremental) primal problem, we establish a reduced formulation which is shown to be a Fenchel predual problem of the corresponding stress problem. This allows to derive new primal-dual optimality conditions. In order to solve the time-discrete problem, a modified visco-plastic regularization is proposed, and we prove the convergence of this new approximation scheme.
|
210 |
Maximum Principle for Reflected BSPDE and Mean Field Game Theory with ApplicationsFu, Guanxing 29 June 2018 (has links)
Diese Arbeit behandelt zwei Gebiete: stochastische partielle Rückwerts-Differentialgleichungen (BSPDEs) und Mean-Field-Games (MFGs).
Im ersten Teil wird über eine stochastische Variante der De Giorgischen Iteration ein Maximumprinzip für quasilineare reflektierte BSPDEs (RBSPDEs) auf allgemeinen Gebieten bewiesen. Als Folgerung erhalten wir ein Maximumprinzip für RBSPDEs auf beschränkten, sowie für BSPDEs auf allgemeinen Gebieten. Abschließend wird das lokale Verhalten schwacher Lösungen untersucht.
Im zweiten Teil zeigen wir zunächst die Existenz von Gleichgewichten in MFGs mit singulärer Kontrolle. Wir beweisen, dass die Lösung eines MFG ohne Endkosten und ohne Kosten in der singulären Kontrolle durch die Lösungen eines MFGs mit strikt regulären Kontrollen approximiert werden kann. Die vorgelegten Existenz- und Approximationsresultat basieren entscheidend auf der Wahl der Storokhod M1 Topologie auf dem Raum der Càdlàg-Funktion.
Anschließend betrachten wir ein MFG optimaler Portfolioliquidierung unter asymmetrischer Information. Die Lösung des MFG charakterisieren wir über eine stochastische Vorwärts-Rückwärts-Differentialgleichung (FBSDE) mit singulärer Endbedingung der Rückwärtsgleichung oder alternativ über eine FBSDE mit endlicher Endbedingung, jedoch singulärem Treiber. Wir geben ein Fixpunktargument, um die Existenz und Eindeutigkeit einer Kurzzeitlösung in einem gewichteten Funktionenraum zu zeigen. Dies ermöglicht es, das ursprüngliche MFG mit entsprechenden MFGs ohne Zustandsendbedinung zu approximieren.
Der zweite Teil wird abgeschlossen mit einem Leader-Follower-MFG mit Zustandsendbedingung im Kontext optimaler Portfolioliquidierung bei hierarchischer
Agentenstruktur. Wir zeigen, dass das Problem beider Spielertypen auf singuläre FBSDEs zurückgeführt werden kann, welche mit ähnlichen Methoden wie im vorangegangen Abschnitt behandelt werden können. / The thesis is concerned with two topics: backward stochastic partial differential equations and mean filed games.
In the first part, we establish a maximum principle for quasi-linear reflected backward stochastic partial differential equations (RBSPDEs) on a general domain by using a stochastic version of De Giorgi’s iteration. The maximum principle for RBSPDEs on a bounded domain and the maximum principle for BSPDEs on a general domain are obtained as byproducts. Finally, the local behavior of the weak solutions is considered.
In the second part, we first establish the existence of equilibria to mean field games (MFGs) with singular controls. We also prove that the solutions to MFGs with no terminal cost and no cost from singular controls can be approximated by the solutions, respectively control rules, for MFGs with purely regular controls. Our existence and approximation results strongly hinge on the use of the Skorokhod M1 topology on the space of càdlàg functions.
Subsequently, we consider an MFG of optimal portfolio liquidation under asymmetric
information. We prove that the solution to the MFG can be characterized in terms of a forward backward stochastic differential equation (FBSDE) with possibly singular terminal condition on the backward component or, equivalently, in terms of an FBSDE with finite terminal value, yet singular driver. We apply the fixed point argument to prove the existence and uniqueness on a short time horizon in a weighted space. Our existence and uniqueness result allows to prove that our MFG can be approximated by a sequence of MFGs without state constraint.
The final result of the second part is a leader follower MFG with terminal constraint arising from optimal portfolio liquidation between hierarchical agents. We show the problems for both follower and leader reduce to the solvability of singular FBSDEs, which can be solved by a modified approach of the previous result.
|
Page generated in 0.0474 seconds