Spelling suggestions: "subject:"510 mathematik"" "subject:"510 thematik""
191 |
Adaptive finite element computation of eigenvaluesGallistl, Dietmar 17 July 2014 (has links)
Gegenstand dieser Arbeit ist die numerische Approximation von Eigenwerten elliptischer Differentialoperatoren vermittels der adaptiven finite-Elemente-Methode (AFEM). Durch lokale Netzverfeinerung können derartige Verfahren den Rechenaufwand im Vergleich zu uniformer Verfeinerung deutlich reduzieren und sind daher von großer praktischer Bedeutung. Diese Arbeit behandelt adaptive Algorithmen für Finite-Elemente-Methoden (FEMs) für drei selbstadjungierte Modellprobleme: den Laplaceoperator, das Stokes-System und den biharmonischen Operator. In praktischen Anwendungen führen Störungen der Koeffizienten oder der Geometrie auf Eigenwert-Haufen (Cluster). Dies macht simultanes Markieren im adaptiven Algorithmus notwendig. In dieser Arbeit werden optimale Konvergenzraten für einen praktischen adaptiven Algorithmus für Eigenwert-Cluster des Laplaceoperators (konforme und nichtkonforme P1-FEM), des Stokes-Systems (nichtkonforme P1-FEM) und des biharmonischen Operators (Morley-FEM) bewiesen. Fehlerabschätzungen in der L2-Norm und Bestapproximations-Resultate für diese Nichtstandard-Methoden erfordern neue Techniken, die in dieser Arbeit entwickelt werden. Dadurch wird der Beweis optimaler Konvergenzraten ermöglicht. Die Optimalität bezüglich einer nichtlinearen Approximationsklasse betrachtet die Approximation des invarianten Unterraums, der von den Eigenfunktionen im Cluster aufgespannt wird. Der Fehler der Eigenwerte kann dazu in Bezug gesetzt werden: Die hierfür notwendigen Eigenwert-Fehlerabschätzungen für nichtkonforme Finite-Elemente-Methoden werden in dieser Arbeit gezeigt. Die numerischen Tests für die betrachteten Modellprobleme legen nahe, dass der vorgeschlagene Algorithmus, der bezüglich aller Eigenfunktionen im Cluster markiert, einem Markieren, das auf den Vielfachheiten der Eigenwerte beruht, überlegen ist. So kann der neue Algorithmus selbst im Fall, dass alle Eigenwerte im Cluster einfach sind, den vorasymptotischen Bereich signifikant verringern. / The numerical approximation of the eigenvalues of elliptic differential operators with the adaptive finite element method (AFEM) is of high practical interest because the local mesh-refinement leads to reduced computational costs compared to uniform refinement. This thesis studies adaptive algorithms for finite element methods (FEMs) for three model problems, namely the eigenvalues of the Laplacian, the Stokes system and the biharmonic operator. In practice, little perturbations in coefficients or in the geometry immediately lead to eigenvalue clusters which requires the simultaneous marking in adaptive finite element methods. This thesis proves optimality of a practical adaptive algorithm for eigenvalue clusters for the conforming and nonconforming P1 FEM for the eigenvalues of the Laplacian, the nonconforming P1 FEM for the eigenvalues of the Stokes system and the Morley FEM for the eigenvalues of the biharmonic operator. New techniques from the medius analysis enable the proof of L2 error estimates and best-approximation properties for these nonstandard finite element methods and thereby lead to the proof of optimality. The optimality in terms of the concept of nonlinear approximation classes is concerned with the approximation of invariant subspaces spanned by eigenfunctions of an eigenvalue cluster. In order to obtain eigenvalue error estimates, this thesis presents new estimates for nonconforming finite elements which relate the error of the eigenvalue approximation to the error of the approximation of the invariant subspace. Numerical experiments for the aforementioned model problems suggest that the proposed practical algorithm that uses marking with respect to all eigenfunctions within the cluster is superior to marking that is based on the multiplicity of the eigenvalues: Even if all exact eigenvalues in the cluster are simple, the simultaneous approximation can reduce the pre-asymptotic range significantly.
|
192 |
Optimization of nonsmooth first order hyperbolic systemsStrogies, Nikolai 16 November 2016 (has links)
Wir betrachten Optimalsteuerungsprobleme, die von partiellen Differentialgleichungen beziehungsweise Variationsungleichungen mit Differentialoperatoren erster Ordnung abhängen. Wir führen die Reformulierung eines Tagebauplanungsproblems, das auf stetigen Funktionen beruht, ein. Das Resultat ist ein Optimalsteuerungsproblem für Viskositätslösungen einer Eikonalgleichung. Die Existenz von Lösungen dieses und bestimmter Hilfsprobleme, die von semilinearen PDG‘s mit künstlicher Viskosität abhängen, wird bewiesen, Stationaritätsbedingungen hergeleitet und ein schwaches Konsistenzresultat für stationäre Punkte präsentiert. Des Weiteren betrachten wir Optimalsteuerungsprobleme, die von stationären Variationsungleichungen erster Art mit linearen Differentialoperatoren erster Ordnung abhängen. Wir diskutieren Lösbarkeit und Stationaritätskonzepte für diese Probleme. Für letzteres vergleichen wir Ergebnisse, die entweder durch die Anwendung von Penalisierungs- und Regularisierungsansätzen direkt auf Ebene von Differentialoperatoren erster Ordnung oder als Grenzwertprozess von Stationaritätssystemen für viskositätsregularisierte Optimalsteuerungsprobleme unter passenden Annahmen erhalten werden. Um die Konsistenz von ursprünglichem und regularisierten Problemen zu sichern, wird ein bekanntes Ergebnis für Lösungen von VU’s mit degeneriertem Differentialoperator erweitert. In beiden Fällen ist die erhaltene Stationarität schwächer als W-stationarität. Die theoretischen Ergebnisse werden anhand numerischer Beispiele verifiziert. Wir erweitern diese Ergebnisse auf Optimalsteuerungsprobleme bezüglich zeitabhängiger VU’s mit Differentialoperatoren erster Ordnung. Hierfür wird die Existenz von Lösungen bewiesen und erneut ein Stationaritätssystem mit Hilfe verschwindender Viskositäten unter bestimmten Beschränktheitsannahmen hergeleitet. Die erhaltenen Ergebnisse werden anhand von numerischen Beispielen verifiziert. / We consider problems of optimal control subject to partial differential equations and variational inequality problems with first order differential operators. We introduce a reformulation of an open pit mine planning problem that is based on continuous functions. The resulting formulation is a problem of optimal control subject to viscosity solutions of a partial differential equation of Eikonal Type. The existence of solutions to this problem and auxiliary problems of optimal control subject to regularized, semilinear PDE’s with artificial viscosity is proven. For the latter a first order optimality condition is established and a mild consistency result for the stationary points is proven. Further we study certain problems of optimal control subject to time-independent variational inequalities of the first kind with linear first order differential operators. We discuss solvability and stationarity concepts for such problems. In the latter case, we compare the results obtained by either utilizing penalization-regularization strategies directly on the first order level or considering the limit of systems for viscosity-regularized problems under suitable assumptions. To guarantee the consistency of the original and viscosity-regularized problems of optimal control, we extend known results for solutions to variational inequalities with degenerated differential operators. In both cases, the resulting stationarity concepts are weaker than W-stationarity. We validate the theoretical findings by numerical experiments for several examples. Finally, we extend the results from the time-independent to the case of problems of optimal control subject to VI’s with linear first order differential operators that are time-dependent. After establishing the existence of solutions to the problem of optimal control, a stationarity system is derived by a vanishing viscosity approach under certain boundedness assumptions and the theoretical findings are validated by numerical experiments.
|
193 |
The Cauchy-Riemann equation with support conditions on domains with Levi-degenerate boundariesBrinkschulte, Judith 19 April 2002 (has links)
In einem ersten Teil betrachten wir ein relativ kompaktes Gebiet Omega einer n-dimensionalen Kähler-Mannigfaltigkeit, mit Lipschitz-Rand, welches eine gewisse "log delta"-Pseudokonvexität besitzt. Wir zeigen, dass die Cauchy-Riemann Gleichung mit exaktem Träger in Omega für alle Bigrade (p,q) mit 0< q< n-1 eine Lösung besitzt. Ausserdem ist das Bild des Cauchy-Riemann Operators auf glatten (p,n-1)-Formen mit exaktem Träger in Omega abgeschlossen. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für glatte Formen und Ströme auf Rändern von schwach pseudokonvexen Gebieten Steinscher Mannigfaltigkeiten und für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichungen für Ströme auf Levi-flachen CR Mannigfaltigkeiten beliebiger Kodimension. In einem zweiten Teil untersuchen wir die Cauchy-Riemann Gleichung mit Randbedingung Null entlang einer Hyperfläche mit konstanter Signatur. Wir geben Anwendungen für die Lösbarkeit der tangentialen Cauchy-Riemann Gleichung für glatte Formen mit kompaktem Träger und für Ströme auf der Hyperfläche. Wir zeigen auch, dass das Hartogs-Phänomen in schwach 2-konvex-konkaven Hyperflächen mit konstanter Signatur Steinscher Mannigfaltigkeiten gilt. / In a first part, we consider a domain Omega with Lipschitz boundary, which is relatively compact in an n-dimensional Kaehler manifold and satisfies some "log delta-pseudoconvexity" condition. We show that the Cauchy-Riemann equation with exact support in Omega admits a solution in bidegrees (p,q), 1 < q < n. Moreover, the range of the Cauchy-Riemann operator acting on smooth (p,n-1)-forms with exact support in Omega is closed. Applications are given to the solvability of the tangential Cauchy-Riemann equations for smooth forms and currents for all intermediate bidegrees on boundaries of weakly pseudoconvex domains in Stein manifolds and to the solvability of the tangential Cauchy-Riemann equations for currents on Levi-flat CR manifolds of arbitrary codimension. In a second part, we study the Cauchy-Riemann equation with zero Cauchy data along a hypersurface with constant signature. Applications to the solvability of the tangential Cauchy-Riemann equations for smooth forms with compact support and currents on the hypersurface are given. We also prove that the Hartogs phenomenon holds in weakly 2-convex-concave hypersurfaces with constant signature of Stein manifolds.
|
194 |
Belyi pairs and scattering constantsPosingies, Anna 27 September 2010 (has links)
Diese Dissertation behandelt nicht-holomorphe Diese Dissertation behandelt nicht-holomorphe Eisensteinreihen und Dessins d''Enfants. Nicht-holomorphe Eisensteinreihen entstehen aus Untergruppen der Modulgruppe, indem man über alle Elemente der Gruppe modulo dem Stabilisator einer Spitze aufsummiert. Die zweite Struktur, Dessins d''Enfants, sind bipartite Graphen die in topologische Flächen eingebettet sind. Dessins d''Enfants stehen in Korrespondenz zu Belyi-Paaren und Untergruppen der Modulgruppe von endlichem Index. Deshalb bestehen zwischen Eisensteinreihen und Dessins d''Enfants Verbindungen und ein Schwerpunkt dieser Arbeit ist es, Informationen und Wissen über das eine Objekt in das andere zu übertragen. Bezüglich Dessins d''Enfants beschäftigen wir uns mit Symmetrien. Wir waren in der Lage, Automorphismen von algebraischen Kurven im assoziierten Dessin, in der zugehörigen Untergruppe sowie insbesondere auf den Spitzen zu interpretieren. Außerdem beschreiben wir die Zusammenhänge zwischen Dessins für Untergruppen, dadurch können wir für zwei Untergruppen anhand ihres Dessins entscheiden, ob sie in einander enthalten sind. In Kombination mit hier erbrachten Resultaten zu den Hauptkongruenzuntergruppen führt dies zu einem implementierten Algorithmus, der prüft, ob eine Gruppe eine Kongruenzuntergruppe ist oder nicht. Auf der Seite der Eisensteinreihen untersucht dieser Text Streukonstanten, Greensche Funktionen und Kroneckergrenzformeln. In der Streumatrix fanden wir Symmetrien (für bestimmte Gruppen). Für Greensche Funktionen wurde eine Spurformel bewiesen. Wir zeigten, dass Eisensteinreihen eine Identität erfüllen, die wir Kroneckergrenzformel nennen; sie vergleicht den konstanten Term der Eisensteinreihe mit Funktionen, die von ausgezeichneten Modulformen kommen. Die Dissertation gipfelt in der Berechnung der Streukonstanten für die Untergruppen assoziiert zu den Fermatkurven, die fast alle Nichtkongruenzuntergruppen sind. / In this dissertation non-holomorphic Eisenstein series and Dessins d''Enfants are considered. Non-holomorphic Eisenstein series are created out of subgroups of the modular group by summing up over all elements modulo the stabilizer of a cusp. The second main object, Dessins d''Enfants, are bipartite graphs that are embedded into topological surfaces. There is a correspondence between Dessins D''Enfants, Belyi pairs and subgroups of the modular group of finite index. Therefore Eisenstein series and Dessins d''Enfants are related and a focus of this work is how to use the one to find information about the other. The main results concerning Dessins d''Enfants in this thesis are investigations of symmetries of Dessins. We have been able to interpret automorphisms of algebraic curves on the associated Dessin, the subgroups and in particular the set of cusps. Furthermore, we describe the relation of Dessins for subgroups. Therefore, with help of the Dessins we can decide if two subgroups are contained in each other. Together with our results on the Dessins for principal congruence subgroups this leads to an implemented algorithm that checks if a subgroup is a congruence subgroup or not. On the side of Eisenstein series we consider scattering constants, Green''s functions and Kronecker limit formulas. We found symmetries in the scattering matrix for certain groups. For Green''s functions we established a trace formula. We showed that Eisenstein series fulfill an identity we call Kronecker limit formula in which they are compared with functions coming from certain modular forms. Most of the work done in this thesis culminates in the calculation of the scattering constants for the subgroups associated to Fermat curves; most of these groups are non-congruence.
|
195 |
Local rigid cohomology of weighted homogeneous hypersurface singularitiesOuwehand, David 16 March 2017 (has links)
Das Ziel dieser Dissertation ist die Erforschung einer gewissen Invariante von Singularitäten über einem Grundkörper k von positiver Charakteristik. Sei x \in X ein singulärer Punkt auf einem k-Schema. Dann ist die lokale rigide Kohomologie im Grad i definiert als H^i_{rig, {x}}(X), also als die rigide Kohomologie von X mit Träger in der Teilmenge {x}. In Kapitel 2 zeigen wir, dass die lokale rigide Kohomologie tatsächlich eine Invariante ist. Das heißt: Sind x'' \in X'' und x \in X kontaktäquivalente singuläre Punkte auf k-Schemata, dann sind die Vektorräume H_{rig, {x}}(X) und H_{rig, {x''}}(X'') zueinander isomorph. Dieser Isomorphismus ist kompatibel mit der Wirkung des Frobenius auf der rigiden Kohomologie. In den Kapiteln 3 und 4 beschäftigen wir uns mit gewichtet homogenen Singularitäten von Hyperflächen. Der Hauptsatz des dritten Kapitels besagt, dass die lokale rigide Kohomologie einer solchen Singularität isomorph ist zu dem G-invarianten Teil von H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}). Hier bezeichnet \widetilde{S}_{\infty} \subset \Proj^{n-1}_k eine gewisse glatte projektive Hyperfläche und G ist eine endliche Gruppe, die auf der rigiden Kohomologie des Komplements wirkt. Dank einem Algorithmus von Abbott, Kedlaya und Roe ist es möglich, den Frobenius-Automorphismus auf H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}) annähernd zu berechnen. In Kapitel 4 formulieren wir eine Anpassung dieses Algorithmus, mithilfe derer Berechnungen auf dem G-invarianten Teil gemacht werden können. Der angepasste Algorithmus kann vollständig mithilfe gewichtet homogener Polynome formuliert werden, was für unsere Anwendungen sehr natürlich scheint. In Kapitel 5 formulieren wir einige Vermutungen und offene Probleme, die mit den Ergebnissen der früheren Kapitel zusammenhängen. / The goal of this thesis is to study a certain invariant of isolated singularities over a base field k of positive characteristic. This invariant is called the local rigid cohomology. For a singular point x \in X on a k-scheme, the i-th local rigid cohomology is defined as H^i_{rig, {x}}(X), the i-th rigid cohomology of X with supports in the subset {x}. In chapter 2 we show that the local rigid cohomology is indeed an invariant. That is: if x'' \in X'' and x \in X are contact-equivalent singularities on k-schemes, then the local rigid cohomology spaces H_{rig, {x}}(X) and H_{rig, {x''}}(X'') are isomorphic. The isomorphism that we construct is moreover compatible with the Frobenius action on rigid cohomology. In chapters 3 and 4 we focus our attention on weighted homogeneous hypersurface singularities. Our goal in chapter 3 is to show that for such a singularity, the local rigid cohomology may be identified with the G-invariants of a certain rigid cohomology space $H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}). Here \widetilde{S}_{\infty} \subset \Proj^{n-1}_k is a smooth projective hypersurface, and G is a certain finite group acting on the rigid cohomology of its complement. It is known that the rigid cohomology of a smooth projective hypersurface is amenable to direct computation. Indeed, an algorithm by Abbott, Kedlaya and Roe allows one to approximate the Frobenius on such a rigid cohomology space. In chapter 4 we will modify this algorithm to deal with the G-invariant part of cohomology. The modified algorithm can be formulated entirely in terms of weighted homogeneous polynomials, which seems natural for our applications. Chapter 5 is a collection of conjectures and open problems that are related to the earlier chapters.
|
196 |
The small-deformation limit in elasticity and elastoplasticity in the presence of cracksGussmann, Pascal 25 June 2018 (has links)
Der Grenzwert kleiner Deformationen in Anwesenheit eines gegebenen Risses wird in drei verschiedenen kontinuumsmechanischen Modellen betrachtet. Erstens wird für rein statische Elastizität mit finiter Spannung im Grenzwert kleiner Belastung bewiesen, dass die Nebenbedingung globaler Injektivität im Sinne der Gamma-Konvergenz eine lokale Nichtdurchdringungsbedingung auf dem Riss ergibt. Zweitens wird Deformationsplastizität mit finiten Spannungen und multiplikativer Zerlegung des Spannungstensors behandelt und die Gamma-Konvergenz zu linearisierter Deformationsplastizität mit Rissbedingungen gezeigt. Drittens wird die ratenunabhängige Evolution der Elastoplastizität betrachtet mit einer allgemeineren Klasse globaler Injektivitätsbedingungen für den finiten Fall. Hierbei wird einerseits die evolutionäre Gamma-Konvergenz unter Vernachlässigung der Nebenbedinung gezeigt, andererseits eine Vermutung aufgestellt, unter deren Voraussetzung die evolutionäre Gamma-Konvergenz auch mit Rissbedingungen gilt. / The small-deformation limit in presence of a given crack is considered in three distinct continuummechanical models. First, a purely static finite-strain elasticity model is considered in the limit of small loading, where the constraint of global injectivity is shown to converge in the sense of Gamma-convergence to a local constraint of non-interpenetration along the crack. Second, finitestrain deformation plasticity based on the multiplicative decomposition of the strain tensor is shown to Gamma-converge to linearized deformation elastoplasticity with crack conditions. Third, the rate-independent evolution of elastoplasticity is considered with a generalized class of global injectivity constraints for the finite-strain model. On the one hand, neglecting the constraints the evolutionary Gamma-converge to linearized elastoplasticity is proven. On the other hand, a conjecture is made, subject to which the evolutionary Gamma-convergence with constraints still holds.
|
197 |
Estimating the quadratic covariation from asynchronous noisy high-frequency observationsBibinger, Markus 30 August 2011 (has links)
Ein nichtparametrisches Schätzverfahren für die quadratische Kovariation von hochfrequent nicht-synchron beobachteter Itô-Prozessen mit einem additiven Rauschen wird entwickelt. Für eine artverwandte Folge von statistischen Experimenten wird die lokal asymptotische Normalität (LAN) im Sinne von Le Cam bewiesen. Mit dieser lassen sich optimale Konvergenzraten und Effizienzschranken für asymptotische Varianzen ableiten. Der vorgestellte Schätzer wird auf Grundlage von zwei modernen Verfahren, für die Anwendung bei nicht-synchronen Beobachtungen zum einen, und einem additiven Rauschen zum anderen, entwickelt. Der Hayashi-Yoshida Schätzer wird in einer neuen Darstellung eingeführt, welche einen Synchronisierungsalgorithmus mit einschließt, der für die kombinierte Methode ausgelegt werden kann. Es wird eine stabiles zentrales Grenzwerttheorem bewiesen, wobei spezieller Wert auf die Analyse des Einflusses der Nicht-Synchronität auf die asymptotische Varianz gelegt wird. Nach diesen Vorbereitungen wird das kombinierte Schätzverfahren für den allgemeinsten Fall nicht-synchroner verrauschter Beobachtungen vorgestellt. Dieses beruht auf Subsampling- und Multiskalenmethoden, die auf Mykland, Zhang und Aït-Sahalia zurück gehen. Es vereint positive Eigenschaften der beiden Ursprünge. Das zentrale Resultat dieser Arbeit ist der Beweis, dass der Schätzfehler stabil in Verteilung gegen eine gemischte Normalverteilung konvergiert. Für die asymptotische Varianz wird ein konsistenter Schätzer angegeben. In einer Anwendungsstudie wird eine praktische Implementierung des Schätzverfahrens, die die Wahl von abhängigen Parametern beinhaltet, getestet und auf ihre Eigenschaften im Falle endlicher Stichprobenumfänge untersucht. Neuen fortgeschrittenen Entwicklungen auf dem Forschungsfeld von Seite anderer Autoren wird Rechnung getragen durch Vergleiche und diesbezügliche Kommentare. / A nonparametric estimation approach for the quadratic covariation of Itô processes from high-frequency observations with an additive noise is developed. It is proved that a closely related sequence of statistical experiments is locally asymptotically normal (LAN) in the Le Cam sense. By virtue of this property optimal convergence rates and efficiency bounds for asymptotic variances of estimators can be concluded. The proposed nonparametric estimator is founded on a combination of two modern estimation methods devoted to an additive observation noise on the one hand and asynchronous observation schemes on the other hand. We reinvent this Hayashi-Yoshida estimator in a new illustration that can serve as a synchronization method which is possible to adapt for the combined approach. A stable central limit theorem is proved focusing especially on the impact of non-synchronicity on the asymptotic variance. With this preparations on hand, the generalized multiscale estimator for the noisy and asynchronous setting arises. This convenient method for the general model is based on subsampling and multiscale estimation techniques that have been established by Mykland, Zhang and Aït-Sahalia. It preserves valuable features of the synchronization methodology and the estimators to cope with noise perturbation. The central result of the thesis is that the estimation error of the generalized multiscale estimator converges with optimal rate stably in law to a centred mixed normal limiting distribution on fairly general regularity assumptions. For the asymptotic variance a consistent estimator based on time transformed histograms is given making the central limit theorem feasible. In an application study a practicable estimation algorithm including a choice of tuning parameters is tested for its features and finite sample size behaviour. We take account of recent advances on the research field by other authors in comparisons and notes.
|
198 |
Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolutionSöhl, Jakob 03 May 2013 (has links)
Zentrale Grenzwertsätze und Konfidenzmengen werden in zwei verschiedenen, nichtparametrischen, inversen Problemen ähnlicher Struktur untersucht, und zwar in der Kalibrierung eines exponentiellen Lévy-Modells und im Dekonvolutionsmodell. Im ersten Modell wird eine Geldanlage durch einen exponentiellen Lévy-Prozess dargestellt, Optionspreise werden beobachtet und das charakteristische Tripel des Lévy-Prozesses wird geschätzt. Wir zeigen, dass die Schätzer fast sicher wohldefiniert sind. Zu diesem Zweck beweisen wir eine obere Schranke für Trefferwahrscheinlichkeiten von gaußschen Zufallsfeldern und wenden diese auf einen Gauß-Prozess aus der Schätzmethode für Lévy-Modelle an. Wir beweisen gemeinsame asymptotische Normalität für die Schätzer von Volatilität, Drift und Intensität und für die punktweisen Schätzer der Sprungdichte. Basierend auf diesen Ergebnissen konstruieren wir Konfidenzintervalle und -mengen für die Schätzer. Wir zeigen, dass sich die Konfidenzintervalle in Simulationen gut verhalten, und wenden sie auf Optionsdaten des DAX an. Im Dekonvolutionsmodell beobachten wir unabhängige, identisch verteilte Zufallsvariablen mit additiven Fehlern und schätzen lineare Funktionale der Dichte der Zufallsvariablen. Wir betrachten Dekonvolutionsmodelle mit gewöhnlich glatten Fehlern. Bei diesen ist die Schlechtgestelltheit des Problems durch die polynomielle Abfallrate der charakteristischen Funktion der Fehler gegeben. Wir beweisen einen gleichmäßigen zentralen Grenzwertsatz für Schätzer von Translationsklassen linearer Funktionale, der die Schätzung der Verteilungsfunktion als Spezialfall enthält. Unsere Ergebnisse gelten in Situationen, in denen eine Wurzel-n-Rate erreicht werden kann, genauer gesagt gelten sie, wenn die Sobolev-Glattheit der Funktionale größer als die Schlechtgestelltheit des Problems ist. / Central limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
|
199 |
Robust stochastic analysis with applicationsPrömel, David Johannes 02 December 2015 (has links)
Diese Dissertation präsentiert neue Techniken der Integration für verschiedene Probleme der Finanzmathematik und einige Anwendungen in der Wahrscheinlichkeitstheorie. Zu Beginn entwickeln wir zwei Zugänge zur robusten stochastischen Integration. Der erste, ähnlich der Ito’schen Integration, basiert auf einer Topologie, erzeugt durch ein äußeres Maß, gegeben durch einen minimalen Superreplikationspreis. Der zweite gründet auf der Integrationtheorie für rauhe Pfade. Wir zeigen, dass das entsprechende Integral als Grenzwert von nicht antizipierenden Riemannsummen existiert und dass sich jedem "typischen Preispfad" ein rauher Pfad im Ito’schen Sinne zuordnen lässt. Für eindimensionale "typische Preispfade" wird sogar gezeigt, dass sie Hölder-stetige Lokalzeiten besitzen. Zudem erhalten wir Verallgemeinerungen von Föllmer’s pfadweiser Ito-Formel. Die Integrationstheorie für rauhe Pfade kann mit dem Konzept der kontrollierten Pfade und einer Topologie, welche die Information der Levy-Fläche enthält, entwickelt werden. Deshalb untersuchen wir hinreichende Bedingungen an die Kontrollstruktur für die Existenz der Levy-Fläche. Dies führt uns zur Untersuchung von Föllmer’s Ito-Formel aus der Sicht kontrollierter Pfade. Para-kontrollierte Distributionen, kürzlich von Gubinelli, Imkeller und Perkowski eingeführt, erweitern die Theorie rauher Pfade auf den Bereich von mehr-dimensionale Parameter. Wir verallgemeinern diesen Ansatz von Hölder’schen auf Besov-Räume, um rauhe Differentialgleichungen zu lösen, und wenden die Ergebnisse auf stochastische Differentialgleichungen an. Zum Schluß betrachten wir stark gekoppelte Systeme von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs) und erweitern die Theorie der Existenz, Eindeutigkeit und Regularität der sogenannten Entkopplungsfelder auf Markovsche FBSDEs mit lokal Lipschitz-stetigen Koeffizienten. Als Anwendung wird das Skorokhodsche Einbettungsproblem für Gaußsche Prozesse mit nichtlinearem Drift gelöst. / In this thesis new robust integration techniques, which are suitable for various problems from stochastic analysis and mathematical finance, as well as some applications are presented. We begin with two different approaches to stochastic integration in robust financial mathematics. The first one is inspired by Ito’s integration and based on a certain topology induced by an outer measure corresponding to a minimal superhedging price. The second approach relies on the controlled rough path integral. We prove that this integral is the limit of non-anticipating Riemann sums and that every "typical price path" has an associated Ito rough path. For one-dimensional "typical price paths" it is further shown that they possess Hölder continuous local times. Additionally, we provide various generalizations of Föllmer’s pathwise Ito formula. Recalling that rough path theory can be developed using the concept of controlled paths and with a topology including the information of Levy’s area, sufficient conditions for the pathwise existence of Levy’s area are provided in terms of being controlled. This leads us to study Föllmer’s pathwise Ito formulas from the perspective of controlled paths. A multi-parameter extension to rough path theory is the paracontrolled distribution approach, recently introduced by Gubinelli, Imkeller and Perkowski. We generalize their approach from Hölder spaces to Besov spaces to solve rough differential equations. As an application we deal with stochastic differential equations driven by random functions. Finally, considering strongly coupled systems of forward and backward stochastic differential equations (FBSDEs), we extend the existence, uniqueness and regularity theory of so-called decoupling fields to Markovian FBSDEs with locally Lipschitz continuous coefficients. These results allow to solve the Skorokhod embedding problem for a class of Gaussian processes with non-linear drift.
|
200 |
Consistent initialization for index-2 differential algebraic equations and its application to circuit simulationSchwarz, Diana Estévez 13 July 2000 (has links)
Zur numerischen L\"osung von Algebro-Differentialgleichungen (ADGln) m\"ussen konsistente Anfangswerte berechnet werden. Diese Arbeit befasst sich mit einem Ansatz zur Behandlung dieses Problems f\"ur Index-2 DAEs unter Verwendung von Projektoren auf die zur DAE zugeh\"origen Unterr\"aume. Die Arbeit hat zwei Schwerpunkte.\\ Zum einen werden neue Struktureigenschaften aus schwachen Voraussetzungen hergeleitet. Anschlie{\ss}end wird eine Vorgehensweise zur Auswahl von geeigneten Gleichungen einer Index-2 ADGln vorgeschlagen, deren Differentiation zu einer Indexreduktion f\"uhrt. Diese Indexreduktion liefert neue Existenz- und Eindeutigkeitsergebnisse f\"ur L\"osungen von Index-2 ADGln. Die Ergebnisse umfassen eine allgemeinere Aufgabenklasse als die bisherigen Resultate. Beruhend auf dieser Vorgehensweise wird ein stufenweiser Ansatz zur Berechnung konsistenter Anfangswerte hergeleitet. Auf diese Weise werden neue Einsichten hinsichtlich der Ausnutzung von Struktureigenschaften von Index-2 ADGln gewonnen. Insbesondere stellt sich heraus, dass im Vergleich zu Index-1 ADGln der zus\"atzliche Schritt oft in der L\"osung eines linearen Systems besteht. Die sich hieraus ergebenden numerischen Folgen werden f\"ur zwei in der Schaltungssimulation h\"aufig verwendete Verfahren, das implizite Eulerverfahren und die Trapezregel, erl\"autert. \\ Zum anderen wird die Anwendung der erhaltenen Ergebnisse auf die Gleichungen, die bei der Schaltungssimulation mittels modifizierter Knotenanalyse entstehen, ausgearbeitet. Abschlie{\ss}end wird eine kurze \"Ubersicht der durchgef\"uhrten Umsetzung gegeben.\\ / For solving DAEs numerically, consistent initial values have to be calculated. This thesis deals with an approach for handling this problem for index-2 DAEs by considering projectors onto the spaces related to the DAE. There are two major aspects in this work.\\ On the one hand, new structural properties are deduced from weak assumptions. Subsequently, a method is proposed to choose suitable equations of an index-2 DAE, whose differentiation leads to an index reduction. This index reduction yields new theoretical results for the existence and uniqueness of solutions of index-2 DAEs which apply to a wider class of applications than previous results. Based on this method, a step-by-step approach to compute consistent initial values is developed. In this way, we gain new insights about how to deal with structural properties of index-2 DAEs. In particular, it turns out that, in comparison to index-1 DAEs, the additional step that has to be undertaken in practice often consists in solving a linear system. The numerical consequences of this fact are exemplified for two methods commonly used in circuit simulation, the implicit Euler method and the trapezoidal rule.\\ On the other hand, the application of the obtained results to the equations arising in circuit simulation by means of the modified nodal analysis (MNA) is worked out. Finally, a short overview of the specifics of their realization is given.
|
Page generated in 0.0722 seconds