• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 100
  • 40
  • 2
  • 2
  • 1
  • Tagged with
  • 440
  • 157
  • 120
  • 82
  • 80
  • 80
  • 68
  • 66
  • 66
  • 47
  • 46
  • 44
  • 43
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Group-theoretical investigation of the structural basis for the formation of twinned crystals / L'application de la théorie des groupes pour expliquer la formation des macles

Marzouki, Mohamed Amine 09 September 2015 (has links)
Le travail de cette thèse porte sur les raisons structurales derrière la formation de cristaux maclés. Ce travail ouvre une voie pour un futur développement de protocoles de synthèse afin de réduire l'occurrence de macles. La motivation de cette étude est que la présence de macles affecte négativement les propriétés physico-chimiques des matériaux d'intérêts technologiques et réduit aussi la qualité des données expérimentales sur lesquelles se fonde l'analyse structurelle. Ce dernier problème est particulièrement sensible dans le cas de cristaux ayant des paramètres de maille importantes, comme les macromolécules biologiques. Les principes de symétrie responsables du phénomène de maclage dans le cas d’une macle de transformation ou d'origine mécanique sont bien connues. En revanche dans le cas d’une macle de croissance, le maclage est toujours considéré comme un accident lié aux conditions aléatoires de croissance cristalline où à la cinétique, plutôt qu'à la thermodynamique. Une approche générale connue comme la « théorie réticulaire des macles » a été développée depuis le XIXe siècle, fondée sur l'existence d'un sous-réseau commun aux cristaux maclés, qui donne les conditions  nécessaires pour l'apparition d'une macle. Cette approche est cependant insuffisante pour déterminer la différence entre les macles avec le même degré de chevauchement des réseaux mais montrant une fréquence d'occurrence assez différente. Une approche structurale, fondée sur l'analyse de la symétrie propre des orbites cristallographiques a été proposée il y a plus d'un demi-siècle (Donnay et Curien, 1960), mais est restée à l'état embryonnaire, malgré une certaine reprise récente (Nespolo et Ferraris, 2009). En outre, l'idée qu'une interface commune aux cristaux maclés puisse contenir une opération reliant ces individus a été proposée (Holser, 1958) mais n'a jamais été portée à un plein développement. Dans cette thèse, nous présentons un développement algébrique de ces idées. Nous montrons que les conditions structurales nécessaires pour la formation d'une macle de croissance peuvent être formulées en se basant, notamment, sur la symétrie propre des orbites cristallographiques et sur le groupe sous-périodique de la couche transversale donnant la symétrie d'une couche commune. L'analyse détaillée dans cette thèse de trois macles fréquentes démontre une corrélation claire entre le degré de restauration de la structure par l'opération de maclage et la fréquence d'occurrence des macles. Un exemple négatif, à savoir une macle hypothétique dont on pourrait prévoir la formation  sur la base de la théorie réticulaire a aussi été analysé. Le fait que cette macle n'ait jamais été observée, en raison d’une faible restauration de la structure qui serait produite par l'opération de macle, confirme le bien fondé de l'approche. Nous nous attendons à ce que la généralisation de l'approche présentée dans cette thèse fournisse une procédure semi-automatique pour prévoir la probabilité de formation d'une macle. Cela permettrait aux personnes travaillant dans la synthèse cristalline démoduler la fréquence de maclage. Le procédé fait appel à la modification de la morphologie du cristal pour une plus grande exposition et le développement des faces cristallines qui présentent une interface défavorable pour le maclage. / This thesis addresses the structural rationale behind the formation of growth twins, with the purpose of opening a route to the future development of synthesis protocols to reduce the occurrence frequency of twinning. The reason for this effort is that twinning affects negatively the physico-chemical properties of materials and biomaterials of technological interests and reduces the quality of the experimental data on which the structural investigation is based. While on the one hand the reasons for twinning in transformation and mechanical twins are well understood, in the case of growth twins twinning is still seen as an accident linked to aleatory conditions where kinetics, rather than thermodynamics, plays a principal role. A general approach known as the reticular theory of twinning has been developed since the XIX century, based on the existence of a sublattice common to the twinned crystals, which gives the minimal necessary conditions for the occurrence of a twin. This approach is, however, insufficient to discriminate between twins with the same degree of lattice overlap but showing a fairly different occurrence frequency. A structural approach, based on the analysis of the eigensymmetry of the crystallographic orbits building a crystal structure was proposed more than half a century ago (Donnay and Curien, 1960) but remained at an embryonic state, despite some recent revival (Nespolo and Ferraris, 2009). Also, the idea that a slice common to the twinned individuals may contain an operation mapping these individuals was proposed (Holser, 1958) but never brought to a full development. In this thesis, we present a full development of these ideas and show that the structurally necessary conditions for the formation of a growth twin can be described on the basis of the eigensymmetry of the crystallographic orbits and on the sectional layer group giving the symmetry of the common slice. The detailed analysis of three well-know twins demonstrates a clear correlation between the degree of structural restoration by the twin operation and the occurrence frequency of the twins. The analysis of a negative example, i.e. of a hypothetical twin which one would expect on the basis of the reticular theory but has never been observed, strengthens the evidence of this correlation, because of the low structural restoration one would observe in that twin. We expect that the generalisation of the approach presented in this thesis through a semi-automatic procedure will provide crystal growers with a powerful tool to modulate the occurrence frequency of twinning through a modification of the crystal morphologies towards a larger exposure and development of crystal faces which represent an unfavorable interface for twinning.
152

Vérification de spécifications EB-3 à l'aide de techniques de model-checking / Verification of EB-3 specifications with model checking techniques

Vekris, Dimitrios 10 December 2014 (has links)
EB-3 est un langage de spécification développé pour la spécification des systèmes d'information. Le noyau du langage EB-3comprend des spécifications d'algèbre de processus afin de décrire le comportement des entités du système et des fonctions d'attributs qui sont des fonctions récursives dont l'évaluation se fait sur la trace d'exécution du système décrivant les attributs des entités. La vérification de propriétés temporelles en EB-3 est un sujet de grande importance pour des utilisateurs de EB-3. Dans cette thèse, on se focalise sur les propriétés de vivacité concernant des systèmes d'information exprimant l'éventualité que certaines actions puissent s'exécuter. La vérification des propriétés de vivacité se fait à l'aide de model checking. Dans un premier temps, on présente une sémantique opérationnelle deEB-3, selon laquelle les fonctions d'attributs sont évaluées pendant l'exécution du programme puis stockées. Cette sémantique nous permet de définir une traduction automatique de EB-3 vers LNT, qui est un langage simultané enrichi d'une algèbre de processus. Notre traduction assure la correspondance un à un entre les états et les transitions des systèmes étiquetés de transition correspondent respectivement à des spécifications EB-3 et LNT. Ensuite, on automatise la traduction grâce à l'outil EB3toLNT fournissant aux utilisateurs de EB-3 une tous les outils de vérification fonctionnelle disponible dans CADP. Dans le but d'améliorer les résultats de notre approche concernant le model checking, on explore des techniques d'abstraction dédiées aux systèmes d'information spécifiées en EB-3. En particulier, on se focalise sur une famille spécifique de systèmes qui s'appellent paramétriques dont le comportement varie en fonction de la valeur prédéfinie d'un paramètre du système. Enfin, on applique cette méthode dans le contexte de EB-3 / EB-3 is a specification language for information systems. The core of the EB-3 language consists of process algebraic specifications describing the behaviour of entities in a system, and attribute functions that are recursive functions evaluated on the system execution trace describing entity attributes. The verification ofEB-3 specifications against temporal properties is of great interest to users of EB-3. In this thesis, we focus on liveness properties of information systems, which express the eventuality that certain actions take place. The verification of liveness properties can beachieved with model checking. First, we present an operational semantics for EB-3 programs, in which attribute functions are computed during program evolution and their values are stored into program memory. This semantics permits us to define an automatic translation from EB-3 to LNT, a value-passing concurrent language with classical process algebra features. Our translation ensures the one-to-one correspondence between states and transitions of the labelled transition systems corresponding to theEB-3 and LNT specifications. Then, we automate this translation with the EB-3toLNT tool, thus equipping the EB-3 method with the functional verification features available in the model checking toolbox CADP. With the aim of improving the model checking results of this approach, we explore abstraction techniques for information systems specified inEB-3. In particular, we concentrate on a specific family of systems called parametric, whose behaviour is scaled in keeping with the predefined value of a system parameter. Finally, we apply this method on the EB-3 context
153

Decidable characterizations for tree logics / Caractérisation décidables de logiques sur les arbres

Place, Thomas 10 December 2010 (has links)
Dans cette thèse nous étudions le pouvoir d'expression de plusieurs logiques sur les arbres finis. En particulier, nous cherchons à obtenir une compréhension précise du pouvoir d'expression de la logique du premier ordre sur les arbres finis. Nous étudions un nombre important de logiques- pour cette raison nous procédons par comparaison avec une logique qui les contient et nous sert de référence: la logique monadique du second-ordre. Chaque logique que nous considérons est un fragment de la logique monadique du second ordre. MSO est liée à la théorie des langages formels. A chaque formule logique correspond un langage d'arbre: celui des arbres satisfaisant la formule. De plus, étant donné une logique nous pouvons lui associer une classe de langages d'arbres: la classe des langages définissables par une formule de cette logique. Dans le cadre des arbres finis, MSO correspond exactement à la classe des langages réguliers. Étant donné une logique, nous cherchons en fait à obtenir une caractérisation décidable de la classe de langages définissable par celle-ci. Par caractérisation décidable nous entendons un algorithme résolvant le problème suivant: pour un automate d'arbre finis, décider si le langage appartient à la classe en question. Nos caractérisations décidables sont en fait obtenue en exhibant pour chaque classe un ensemble de propriétés de clôture vérifiées par un langage si et seulement si celui-ci appartient à la classe en question. Nous montrons ensuite que chaque propriété de clôture est décidable. Énoncer et prouver de telles propriétés de clôture permet généralement d'obtenir une bonne compréhension du pouvoir de la logique correspondante. Le problème ouvert principal de ce domaine de recherche est l'obtention d'une caractérisation décidable pour la logique du premier ordre. Nous présentons des caractérisation décidables pour plusieurs fragment de FO. Nous commençons par la présentation de trois caractérisations décidable pour des classes de langages d'arbres de rang borné. La première classe que nous considérons est celle des langages définissables par la logique EF + F-1. Cette logique permet de naviguer dans l'arbre en se déplaçant soit vers un ancêtre, soit vers un descendant. La second classe est celle des arbres de rang borné définissables par la logique du premier ordre en n'utilisant qu'une seule alternance de quantificateurs. La dernière classe est celle des langages définissables par une combinaison booléenne de formules existentielles du premier ordre. Dans le cadre des forêts, nous étudions la classe des langages définissable par la logique du premier ordre à deux variables et deux prédicats correspondants respectivement à la relation ancêtre et la relation frère suivant. Nous présentons une caractérisation pour cette logique. La dernière classe pour laquelle nous présentons une caractérisation décidable est celle des langages localement testables (LT). UN langage est dans LT si l'appartenance d'un arbre à celui-ci ne dépends que des voisinages d'une certaine taille fixée dans l'arbre. / In this thesis we investigate the expressive power of several logics over finite trees. In particular we want to understand precisely the expressive power of first-order logic over finite trees. Because we study many logics, we proceed by comparison to a logic that subsumes them all and serves as a yardstick: monadic second-order logic. Each logic we consider is a fragment of monadic second-order logic. MSO is linked to the theory of formal languages. To each logical formula corresponds a tree language, which is the language of trees satisfying this formula. Furthermore, given a logic we can associate a class of tree languages: the class of languages definable by a formula of this logic. In the setting of finite trees MSO corresponds exactly to the class of regular tree languages. Given a logic, we actually look for a decidable characterization of the class of languages defined in this logic. By decidable characterization, we mean an algorithm for solving the following problem: given as input a finite tree automaton, decide if the recognized language belongs to the class in question. We will actually obtain our decidable characterizations by exhibiting for each class a set of closure properties such that a language is in the class under investigation if and only if it satisfies these closure properties. Each such closure property is then shown to be decidable. Stating and proving such closure properties usually yields a solid understanding of the expressive power of the corresponding logic. The main open problem in this research area is to obtain a decidable characterization for the class of tree languages that are definable in first-order logic. We provide decidable characterizations for several fragments of FO. First we provide three decidable characterizations for classes of regular languages of trees of bounded rank. The first class we consider is the class of languages definable in the temporal logic EF+F^-1. It essentially navigates the trees using two modalities for moving to a descendant node or an ancestor node. The second class we consider is the class of trees of bounded rank definable using one quantifier alternation. The last class, is the class of languages definable using a boolean combination of existential first order formulas. In the setting of forests, we investigate the class of languages definable in first-order logic using only two variables and two prediactes corresponding respectively to the ancestor and following sibling relations. We provide a characterization for this logic. The last class for which we provide a decidable characterization is the class of locally testable language (LT). A language L is in LT if membership in L depends only on the presence or absence of neighborhoods of a certain fixed size in the tree. We define notions of LT for both unranked trees and trees of bounded rank by adapting the definition of neighborhood to each setting. Then we provide a decidable characterization for both notions of LT.
154

Poisson and coisotropic structures in derived algebraic geometry / Structures de Poisson et coïsotropes en géométrie algébrique dérivée

Melani, Valerio 30 September 2016 (has links)
Dans cette thèse, on définit et on étudie les notions de structure de Poisson et coïsotrope sur un champ dérivé, dans le contexte de la géométrie algébrique dérivée. On considère deux présentations différentes de structure de Poisson : la première est purement algébrique, alors que la deuxième est plus géométrique. On montre que les deux approches sont en fait équivalentes. On introduit aussi la notion de structure coïsotrope sur un morphisme de champs dérivés, encore une fois en présentant deux définitions équivalentes : la première est basée sur une généralisation appropriée de l'opérade Swiss-Cheese de Voronov, tandis que la deuxième est formulée en termes de champs de multivecteurs rélatifs. En particulier, on montre que le morphisme identité admet une unique structure coïsotrope ; cela produit une application d'oubli des structures de Poisson n-décalées aux structures de Poisson (n-1)-décalées. On montre aussi que l'intersection de deux morphismes coïsotropes dans un champ de Poisson n-décalée est naturellement equipée d'une structure de Poisson (n-1)-décalée canonique. En outre, on fournit une équivalence entre l'espace de structures coïsotropes non-dégénérées et l'espace des structures Lagrangiennes en géométrie dérivée, introduites dans les travaux de Pantev-Toën-Vaquié-Vezzosi. / In this thesis, we define and study Poisson and coisotropic structures on derived stacks in the framework of derived algebraic geometry. We consider two possible presentations of Poisson structures of different flavour: the first one is purely algebraic, while the second is more geometric. We show that the two approaches are in fact equivalent. We also introduce the notion of coisotropic structure on a morphism between derived stacks, once again presenting two equivalent definitions: one of them involves an appropriate generalization of the Swiss Cheese operad of Voronov, while the other is expressed in terms of relative polyvector fields. In particular, we show that the identity morphism carries a unique coisotropic structure; in turn, this gives rise to a non-trivial forgetful map from n-shifted Poisson structures to (n-1)-shifted Poisson structures. We also prove that the intersection of two coisotropic morphisms inside a n-shifted Poisson stack is naturally equipped with a canonical (n-1)-shifted Poisson structure. Moreover, we provide an equivalence between the space of non-degenerate coisotropic structures and the space of Lagrangian structures in derived geometry, as introduced in the work of Pantev-Toën-Vaquié-Vezzosi.
155

Towards a homotopical algebra of dependent types / Vers une algèbre homotopique des types dépendants

Cagne, Pierre 07 December 2018 (has links)
Cette thèse est consacrée à l'étude des interactions entre les structures homotopiques en théorie des catégories et les modèles catégoriques de la théorie des types de Martin-Löf. Le mémoire s'articule selon trois axes: les bifibrationos de Quillen, les catégories homotopiques des bifibrations de Quillen, et les tribus généralisées. Le premier axe définit une nouvelle notion de bifibration classifiant les pseudo foncteurs avec de bonnes propriétés depuis un catégorie de modèles et à valeurs dans la 2-catégorie des catégories de modèles et adjonctions de Quillen entre elles. En particulier on montre comment équipper d'une structure de modèle la construction de Grothendieck d'un tel pseudo foncteur. Le théorème principal de cette partie est une caractérisation des bonnes propriétés qu'un pseudo foncteur doit posséder pour supporter cette structure de catégorie de modèles sur sa construction de Grothendieck. En ce sens, on améliore les deux théorèmes précédemment existants dans la littérature qui ne donnent que des conditions suffisantes alors que nous donnons des conditions nécessaires et suffisantes. Le second axe se concentre sur le foncteur induit entre les catégories homotopiques des catégories de modèles mises en oeuvre dans une bifibration de Quillen. On y prouve que cette localization peut se faire en deux étapes au moyen d'un quotient homotopique à la Quillen itéré. De manière à rendre cette opération rigoureuse, on a besoin de travailler dans un cadre légèrement plus large que celui imaginé par Quillen : en se basant sur le travail d'Egger, on utilise des catégories de modèles sans nécessairement tous les (co)égalisateurs. Le chapitre de prérequis sert précisément à reconstruire la théorie basique des l'algèbre homotopique à la Quillen dans ce cadre élargi. Les structures mis à nu dans cette partie imposent de considérer des versions "homotopique" des poussés en avant et des tirés en arrière qu'on trouve habituellement dans les (op)fibrations de Grothendieck. C'est le point de départ pour le troisième axe, dans lequel on définit une nouvelle structure, appelée tribu relative, qui permet d'axiomatiser des versions homotopiques de la notion de flèche cartésienne et cocartésienne. Cela est obtenu en réinterprétant les (op)fibrations de Grothendieck en termes de problèmes de relèvement. L'outil principal dans cette partie est une version relative des systèmes de factorisation stricts ou faibles usuels. Cela nous permet en particulier d'expérimenter un nouveau demodèle de la théorie des types dépendants intentionnelle dans lequelles types identités sont donnés par l'exact analogue homotopique du prédicat d'égalité dans les hyperdoctrines de Lawvere. / This thesis is concerned with the study of the interplay between homotopical structures and categorical model of Martin-Löf's dependent type theory. The memoir revolves around three big topics: Quillen bifibrations, homotopy categories of Quillen bifibrations, and generalized tribes. The first axis defines a new notion of bifibrations, that classifies correctly behaved pseudo functors from a model category to the 2-category of model categories and Quillen adjunctions between them. In particular it endows the Grothendieck construction of such a pseudo functor with a model structure. The main theorem of this section acts as a charaterization of the well-behaved pseudo functors that tolerates this "model Gothendieck construction". In that respect, we improve the two previously known theorems on the subject in the litterature that only give sufficient conditions by designing necessary and sufficient conditions. The second axis deals with the functors induced between the homotopy categories of the model categories involved in a Quillen bifibration. We prove that this localization can be performed in two steps, by means of Quillen's construction of the homotopy category in an iterated fashion. To that extent we need a slightly larger framework for model categories than the one originally given by Quillen: following Egger's intuitions we chose not to require the existence of equalizers and coequalizers in our model categories. The background chapter makes sure that every usual fact of basichomotopical algebra holds also in that more general framework. The structures that are highlighted in that chapter call for the design of notions of "homotopical pushforward" and "homotopical pullback". This is achieved by the last axis: we design a structure, called relative tribe, that allows for a homotopical version of cocartesian morphisms by reinterpreting Grothendieck (op)fibrations in terms of lifting problems. The crucial tool in this last chapter is given by a relative version of orthogonal and weak factorization systems. This allows for a tentative design of a new model of intentional type theory where the identity types are given by the exact homotopical counterpart of the usual definition of the equality predicate in Lawvere's hyperdoctrines
156

Combinatoire des fonctions de parking : espèces, énumération d’automates et algèbres de Hopf / Parking functions combinatorics : apecies, automata enumeration and Hopf algebras

Priez, Jean-Baptiste 07 December 2015 (has links)
Cette thèse se situe dans les domaines de la combinatoire algébrique, bijective et énumérative.Elle s'intéresse à l'étude des fonctions de parking généralisées suivant ces trois axes.medskip. Dans une première partie, on s'intéresse aux fonctions de parking généralisées en tant qu'espèce de structures combinatoires (théorie introduite par A.nom{Joyal} et développée F. nom{Bergeron}, G. nom{Labelle} et P.nom{Leroux}). On définit cette espèce à partir d'une équation fonctionnelle faisant intervenir l'espèce des séquences d'ensembles.On obtient un relèvement non-commutatif de la série indicatrice de cycles dans les fonctions symétriques non-commutatives, exprimé dans différentes bases.Par spécialisation, on obtient de nouvelles formules d'énumérations des fonctions de parking généralisées et de leurs types d'isomorphismes.En remplaçant l'espèce des ensembles par d'autres espèces dans l'équation fonctionnelle, on définit de nouvelles structures: les $seqPF$-tables de parking. Dans les cas particuliers où $seqPF : m mapsto a + b(m-1)$, on établit une bijection entre les $seqPF$-tables de parking et de nouvelles structures arborescentes, généralisant la bijection de C. H.nom{Yan} entre les $seqPF$-fonctions de parking et les séquences de $a$forêts de $b$-arbres.medskip. Dans une seconde partie, on s'intéresse à l'énumération d'automates. On commence par construire une bijection simple entre les automates(non-initiaux) et les séquences d'ensembles. À partir de cette bijection, on extrait la sous-famille des automates quasi-distingués (c'est-à-dire les automates pour lesquels les couples status de terminaison et fonction de transition des états sont distincts). L'énumération de ces automates quasi-distingués fournit une meilleure borne supérieure pour le nombre d'automates minimaux que celle obtenue par M.nom{Domaratzki} & textit{al}. Ensuite, on construit une nouvelle bijection entre les $2m^k$-fonctions de parking et les automates acycliques (non-initiaux) sur un alphabet à $k$ symboles. De cette dernière, on extrait, directement sur les fonctions parking, denombreuses informations de structure sur les automates, en particulier des informations liées à la minimalité.À partir de ces informations, on déduit une formule d'énumération des automates acycliques minimaux.medskipDans une troisième partie, on formalise la technique commune de réalisation polynomiale des algèbres de Hopf: fqsym, wqsym, pqsym, etc. Pour ceci, ondéfinit la notion de type d'alphabet et d'application partitionnante. La notion d'application partitionnante formalise les bonnes propriétés de la standardisation, le tassement, la parkisation, etc associées à ces précédentes algèbres de Hopf. On montre que certaines opérations, produit cartésien, coloration, union ouencore intersection, stabilisent ces notions.À partir de celles-ci, on définit deux constructions d'algèbres de Hopf combinatoire en dualité; et l'on montre qu'elles sont automatiquement munies de structures d'algèbres dendriformes et du produit $#$. En guise d'applications, on définit, pour toute famille de $seqPF$-fonctions deparking, une application généralisant la parkisation. On montre que cette dernière est une application partitionnante si et seulement si $seqPF : nmapsto 1 + m(n-1)$. Ceci permet de retrouver les algèbres de Hopf sur les$m$-fonctions de parking généralisées de J.-C. nom{Novelli} et J-.Y.nom{Thibon}. / This thesis comes within the scope of algebraic, bijective and enumerative combinatorics. It deals with the study of generalized parking functions following those axes.In the first part, we are interested in generalized parking as a species of combinatorial structures. We define this species from a functional equation involving the species of set sequences. We lift the cycle index serie to the non-commutative symmetric functions, express in several bases. By specialization, we obtain new enumeration formula of generalized parking and their isomorphism types.In the functional equation, the species of sets can be replaced by some other species. This defines new structures: the $chi$-parking tables. In particular cases with $chi : m mapsto a + b(m-1)$, we define a bijection between the $chi$-parking tables and new tree structures. This defines a generalization of the C. H. Yan bijection.In the second part, we are interested in the enumeration of automata. Firstly, we construct a simple bijection between (non-initial) automata and sequences of sets. From this bijection we extract a subfamily of quasi-distinguished automata. We obtain a better upper bound of the number of minimal automata than the one of M. Domaratzki.Then we construct a new bijection between $2m^k$-parking functions and (non-initial) acyclic automata over an alphabet of $k$ symbols. From this bijection we extract, from parking function, informations about automata structures. We deduce an enumeration formula of the minimal acyclic automata.In a third part, we formalize the common technique of polynomial realization of Hopf algebras: FQSym, WQSym, PQSym, etc.. We define a notion of type of alphabet and partitioning map. We highlight some operation which stabilizes these notions. Based on this, we define two constructions of dual combinatorial Hopf algebra; and we show that they are automatically endowed of dendriform coalgebra, and $#$-product.As an application, we define, for every family of $chi$-parking functions, a generalization of the parkization. We show that this is a partitionning map if and only if $chi : m mapsto 1 + b(m-1)$.
157

Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra / Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative

Armenta Armenta, Marco 10 September 2019 (has links)
Dans cette thèse nous démontrons que le calcul de Tamarkin-Tsygan d’une algèbre `associative de dimension finie sur un corps est un invariant dérivé. En d’autres mots, le résultat principal de ce travail est le suivant : une équivalence dérivée entre deux algèbres de dimension finie sur un corps induit un isomorphisme entre l’homologie de Hochschild et la cohomologie de Hochschild qui respecte simultanément le cup produit, le cap produit, le crochet de Gerstenhaber et la ´différentielle de Connes. / In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensionalassociative algebra over a field is a derived invariant. In other words, the mainresult of this work goes as follows: a derived equivalence between two finite dimensional associative algebras over a field induces an isomorphism betweenHochschild homology and Hochschild cohomology that respects simultaneouslythe cup product, the cap product, the Gerstenhaber bracket and the Connes differential.
158

Decomposability and stability of multidimensional persistence / Décomposabilité et stabilité de la persistance multidimensionnelle

Cochoy, Jérémy 10 December 2018 (has links)
Dans un contexte où des quantités toujours plus colossales de données sont disponibles,extraire des informations significatives et non triviales devient toujours plus difficile. Afin d’améliorer la classification, régression, ou encore l’analyse exploratoire de données, l’approche fournie par l’analyse topologique de données (TDA) est de rechercher la présence de formes dans le jeu de données.Dans cette thèse nous étudions les propriétés des modules de persistance multidimensionnelle dans le but d’obtenir une meilleure compréhension des sommandes et décompositions de ces derniers. Nous introduisons un foncteur qui plonge la catégorie des représentations de carquois dont le graphe est un arbre enraciné dans la catégorie des modules de persistance indexé sur ℝ². Nous enrichissons la structure de module de persistance provenant de l’application du foncteur cohomologie à une filtration en une structure d’algèbre de persistance.Enfin, nous généralisons l’approche de Crawley Beovey à la multipersistance et identifions une classe de modules de persistance indexé sur ℝ² qui possède des descripteurs simples et analogues au théorème de décomposition existant en persistance1-dimensionnelle. / In a context where huge amounts of data are available, extracting meaningful and non trivial information is getting harder. In order to improve the tasks of classification, regression, or exploratory analysis, the approach provided by topological data analysisis to look for the presence of shapes in data set.In this thesis, we investigate the properties of multidimensional persistence modules in order to obtain a better understanding of the summands and decompositions of such modules. We introduce a functor that embeds the representations category of any quiver whose graph is a rooted tree into the category of ℝ²-indexed persistence modules. We also enrich the structure of persistence module arising from the cohomology of a filtration to a structure of persistence algebra.Finally, we generalize the approach of Crawley Beovey to multipersistence and identify a class of persistencemodules indexed on ℝ² which have simple descriptor and an analog of the decomposition theorem available in one dimensional persistence.
159

Correspondence theorems in Hopf-Galois theory for separable field extensions

Bui, Hoan-Phung 10 September 2020 (has links) (PDF)
La théorie de Galois a eu un impact sur les mathématiques plus important que ce qu'elle laissait présager au départ. Son résultat le plus important est le théorème de correspondance qui s'énonce de la manière suivante :si L/K est une extension de corps finie galoisienne et si G = Gal(L/K) est son groupe de Galois, alors il existe une correspondance biunivoque entre les corps intermédiaires de L/K et les sous-groupes de G. Explicitement, si G_0 est un sous-groupe de G, alors on lui associe l'ensemble des G_0-invariants L^(G_0) qui est un corps intermédiaire de L/K. D'autre part, si L_0 est un corps intermédiaire de L/K, alors on lui associe le groupe de Galois Gal(L/L_0) qui est un sous-groupe de G.Il existe de nombreuses manières de généraliser la théorie de Galois, celle que nous avons choisie utilise les algèbres de Hopf. L'idée, introduite par Chase et Sweedler, est de remplacer l'action de groupe G par une action d'algèbre de Hopf H. De telles extensions sont appelées Hopf-galoisiennes.La première étape vers la généralisation du théorème de correspondance est due à Chase et Sweedler :si L/K est une extension Hopf-galoisienne d'algèbre de Hopf H et si H_0 est une sous-algèbre de Hopf de H, alors on peut construire l'ensemble des H_0-invariants L^(H_0) qui est un corps intermédiaire de L/K. Malheureusement, contrairement au cas des extensions galoisiennes, tous les corps intermédiaires de L/K ne s'obtiennent pas de cette manière et une caractérisation des corps de la forme L^(H_0) ne semble pas être connue.Le but de cette thèse est de généraliser le théorème de correspondance pour des extensions Hopf-galoisiennes finies séparables. Dans ce but, nous avons caractérisé de manière naturelle et intrinsèque les corps intermédiaires de L/K qui peuvent s'écrire sous la forme L^(H_0) pour une certaine sous-algèbre de Hopf H_0 de H. Ainsi, nous avons pu prouver un théorème de correspondance tout à fait analogue à celui de la théorie de Galois. Nous avons également établi, à l'instar de la théorie de Galois, une variante du théorème de correspondance pour les sous-algèbres de Hopf qui sont normales.Un apport essentiel à cette thèse est fourni par les travaux de Greither et Pareigis. Ceux-ci ont associé un groupe à une extension Hopf-galoisienne finie séparable. Nous avons prouvé qu'il était possible de traduire le théorème de correspondance en termes de ce groupe. De plus, ce groupe nous a permis de construire une structure Hopf-galoisienne alternative nous aidant à mieux comprendre le théorème de correspondance.Enfin, nous avons proposé une définition d'extensions Hopf-galoisiennes pour des extensions de corps infinies séparables et avons obtenu des résultats encourageants. Cela ouvre un nouveau champ de possibilités pour des recherches futures. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
160

Création de jeux impliquant des concepts mathématiques de première secondaire et étude des raisonnements mathématiques induits chez les élèves

Makdissi, Emanuelle 27 January 2024 (has links)
Bien que les jeux mathématiques puissent être perçus comme un réel contexte d’apprentissage, surtout au préscolaire, peu de jeux sont créés et analysés dans le but de permettre un apprentissage ciblé quant aux mathématiques du secondaire. L’objectif de cette recherche est de mettre en relief le potentiel didactique des jeux mathématiques exploitant des concepts du début du secondaire dans l’expression des raisonnements mathématiques des élèves. Pour ce faire, deux jeux mathématiques portant sur l’algèbre ont été construits au regard des caractéristiques des jeux relevés chez Piaget (1945/1978), Ascher (1998) et Brousseau (1985). Ces jeux ont alors été testés en classe et les raisonnements de douze élèves (quatre pour le premier jeu et huit pour le second) ont été décrits et analysés sous l’angle du raisonnement mathématique de Jeannotte (2015). Les résultats des analyses des raisonnements des élèves soutiennent l’idée que les jeux mathématiques permettent aux élèves de développer leur raisonnement mathématique en plus de construire leur compréhension du concept de l’algèbre.

Page generated in 0.0455 seconds