• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 100
  • 38
  • 2
  • 2
  • 1
  • Tagged with
  • 438
  • 155
  • 119
  • 82
  • 80
  • 79
  • 67
  • 66
  • 66
  • 47
  • 45
  • 44
  • 43
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Les parties puissante et libre de carrés d'un entier

Cloutier, Maurice-Étienne 19 April 2018 (has links)
Tout entier positif peut être représenté comme le produit de sa partie puissante et de sa partie libre de carrés. Comme nous le verrons dans ce mémoire, pour la plupart des entiers n, c'est leur partie libre de carrés sq(n), et non leur partie puissante pow(n), qui est la plus « dominante ». C'est ainsi que ∑n≤x sq(n) est de l'ordre de x² tout comme l'est ∑n≤xn-> alors que ∑n≤xPow(n) est beaucoup plus petite, soit de l'ordre de x³/². Notre objectif dans ce mémoire est, dans un premier temps, d'établir le comportement asymptotique de diverses sommations ∑n≤x pow(n)asq(n)b, où a et b sont des entiers donnés. Dans un deuxième temps, nous remarquerons qu'en ajoutant la restriction « n est y-friable » aux sommations ∑n≤x sq(n) et ∑n≤xpow(n), alors c'est l'ordre de grandeur de y (par rapport à x) qui déterminera laquelle des deux sommes est la plus dominante.
162

Création de jeux impliquant des concepts mathématiques de première secondaire et étude des raisonnements mathématiques induits chez les élèves

Makdissi, Emanuelle 27 January 2024 (has links)
Bien que les jeux mathématiques puissent être perçus comme un réel contexte d’apprentissage, surtout au préscolaire, peu de jeux sont créés et analysés dans le but de permettre un apprentissage ciblé quant aux mathématiques du secondaire. L’objectif de cette recherche est de mettre en relief le potentiel didactique des jeux mathématiques exploitant des concepts du début du secondaire dans l’expression des raisonnements mathématiques des élèves. Pour ce faire, deux jeux mathématiques portant sur l’algèbre ont été construits au regard des caractéristiques des jeux relevés chez Piaget (1945/1978), Ascher (1998) et Brousseau (1985). Ces jeux ont alors été testés en classe et les raisonnements de douze élèves (quatre pour le premier jeu et huit pour le second) ont été décrits et analysés sous l’angle du raisonnement mathématique de Jeannotte (2015). Les résultats des analyses des raisonnements des élèves soutiennent l’idée que les jeux mathématiques permettent aux élèves de développer leur raisonnement mathématique en plus de construire leur compréhension du concept de l’algèbre.
163

Sur les lois de composition de Bhargava

Beaudet, Louis 13 April 2018 (has links)
Les percées du professeur Manjul Bhargava constituent non seulement une nouvelle approche des formes quadratiques binaires, mais également un prolongement original et contemporain des travaux de Gauss de 1801 qui furent à cette époque, et qui le sont toujours aujourd'hui, une pierre angulaire de la théorie algébrique des nombres. Par le biais d'une bijection astucieuse, les formes quadratiques sont mises en relation avec l'espace des cubes 2 ¿ 2 ¿ 2 ce qui permettra d'engendrer quatorze lois de composition dont en particulier celle de Gauss qui devient un embranchement spécifique à une théorie encore plus générale. Ces lois, que Bhagarva nomme Higher composition laws, seront traitées dans les deux premiers chapitres de ce mémoire. Nous verrons par la suite comment les classes d'anneaux quadratiques peuvent être repensées à la lumière de ces nouvelles lois en plus d'apporter une interprétation naturelle en ce qui a trait aux classes d'idéaux de ces mêmes anneaux quadratiques. Sera ensuite introduite la notion de résolvante pour les anneaux cubiques et quartiques pour ainsi faciliter une paramétrisation avec les formes quadratiques binaires et ternaires. Cette correspondance sera d'une grande utilité lorsque le temps sera venu de déterminer la structure inhérente à ces deux types d'anneaux. Un travail de paramétrisation analogue sera fait en ce qui concerne les anneaux cubiques. Cette paramétrisation a pour origine les recherches des deux mathématiciens B. N. Delone et D. K. Faddeev et, comme nous le verrons, s'imbriquera naturellement dans celles de Bhargava.
164

Algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Askey-Wilson, et autres centralisateurs de U_q(sl_2)

Zaimi, Meri 08 1900 (has links)
Mémoire par articles. / Ce mémoire contient trois articles reliés par l'idée sous-jacente d'une généralisation de la dualité de Schur-Weyl. L'objectif principal est d'obtenir une description algébrique du centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles, lorsque q n'est pas une racine de l'unité. La relation entre une algèbre de Askey-Wilson étendue AW(3) et ce centralisateur est examinée à cet effet. Dans le premier article, les éléments du centralisateur de l'action de U_q(sl_2) dans son produit tensoriel triple sont définis à l'aide de la matrice R universelle de U_q(sl_2). Il est montré que ces éléments respectent les relations définissantes de AW(3). Dans le deuxième article, la matrice R universelle de la superalgèbre de Lie osp(1|2) est utilisée de manière similaire avec l'algèbre de Bannai-Ito BI(3). Dans ce cas, le formalisme de la matrice R permet de définir l'algèbre de Bannai-Ito de rang supérieur BI(n) comme le centralisateur de l'action de osp(1|2) dans son produit tensoriel n-fois. Le troisième article propose une conjecture qui établit un isomorphisme entre un quotient de AW(3) et le centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles quelconques. La conjecture est prouvée pour plusieurs cas, et les algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Temperley-Lieb à une frontière sont retrouvées comme quotients de l'algèbre de Askey-Wilson. / This master thesis contains three articles related by the underlying idea of a generalization of the Schur-Weyl duality. The main objective is to obtain an algebraic description of the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of three irreducible representations, when q is not a root of unity. The connection between a centrally extended Askey-Wilson algebra AW(3) and this centralizer is examined for this purpose. In the first article, the elements of the centralizer of the action of U_q(sl_2) in its threefold tensor product are defined with the help of the universal R-matrix of U_q(sl_2). These elements are shown to satisfy the defining relations of AW(3). In the second article, the universal R-matrix of the Lie superalgebra osp(1|2) is used in a similar fashion with the Bannai-Ito algebra BI(3). In this case, the formalism of the R-matrix allows to define the higher rank Bannai-Ito algebra BI(n) as the centralizer of the action of osp(1|2) in its n-fold tensor product. The third article proposes a conjecture that establishes an isomorphism between a quotient of AW(3) and the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of any three irreducible representations. The conjecture is proved for several cases, and the Temperley-Lieb, Birman-Murakami-Wenzl and one-boundary Temperley-Lieb algebras are recovered as quotients of the Askey-Wilson algebra.
165

Etude et Classification des algèbres Hom-associatives / Study and Classification of Hom-associative algebras

Abdou Damdji, Ahmed Zahari 24 May 2017 (has links)
La thèse comporte six chapitres. Dans le premier chapitre, on rappelle les bases de la théorie et on étudie la structure des algèbres Hom-associatives ainsi que les différentes constructions comme la composition avec des endomorphismes qui nous permet de construire de nouveaux objets et d’établir certaines nouvelles propriétés. Parmi les résultats originaux, on peut signaler l’étude des algèbres Hom-associatives simples ainsi que leurs constructions. On a montré que toutes les algèbres Hom-associatives multiplicatives simples s’obtiennent par composition d’algèbres simples et d’automorphismes. Dans le deuxième chapitre, on commence par étudier les propriétés des changements de base dans ces structures algébriques. On a calculé la base de Gröbner de l’idéal engendrant la variété algébrique des algèbres Hom-associatives de dimension 2 où la multiplication µ et l’application linéaire α sont identifiées à leurs constantes de structure relativement à une base donnée. La classification, à isomorphisme près, des algèbres Hom-associatives unitaires et non unitaires est établie en dimension 2 et 3. On a aussi décrit les algèbres de type associatif en se basant sur le théorème de twist de Yau. Dans le troisième chapitre, on étudie certaines propriétés et invariants comme les dérivations, αk-dérivations où k est un entier positif. Dans le quatrième chapitre, on établit la cohomologie de ces algèbres. On a pu lister les algèbres rigides grâce à leur classe de cohomologie puis on s'est 'intéressé aux déformations infinitésimales et dégénérations. D’une part, la cohomologie et déformation de ces algèbres nous a permis d’identifier les algèbres rigides dont le deuxième groupe de cohomologie est nulle, et d’autre part de caractérisation de composante irréductible. Dans le cinquième chapitre, on s’intéresse aux structures Rota-Baxter de poids λ ϵK de ces algèbres. Enfin, dans le dernier chapitre, on a travaillé sur les structures Hom-bialgèbres et leurs invariants. / The purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied.
166

Contributions à l’étude algébrique et géométrique des structures et théories du premier ordre / Contributions to the algebraic and geometric study of first order structures and theories

Berthet, Jean 03 December 2010 (has links)
La notion de T-radical d’un idéal permet à G.Cherlin de démontrer un Nullstellensatz dans les théories inductives d’anneaux. Nous proposons une analyse modèle-théorique de phénomènes connexes. En premier lieu, une réciproque de ce théorème nous conduit à une caractérisation des corps algébriquement clos, suggérant une version “positive” du travail de Cherlin, la théorie des idéaux T-radiciels. Ceux-ci se caractérisent par un théorème de représentation et sont associés à un théorème des zéros “positif”. Ces résultats se généralisent à la logique du premier ordre : grâce à la notion de classe spéciale, nous développons ensuite une théorie logique des idéaux. On peut encore parler d’idéaux premiers et radiciels, relativement à une classe de structures. Dans ce cadre, le théorème de représentation est une propriété intrinsèque des classes spéciales et le théorème des zéros une propriété de préservation logique, que nous appelons “complétude géométrique” et qui entretient des rapports étroits avec la modèle-complétude positive. Les algèbres basées en groupes de P.Higgins permettent d’appliquer ces résultats aux théories modèle-complètes de corps avec opérateurs additionnels. Dans certains cas “noethériens”, l’algèbre de coordonnées est un invariant algébrique des “variétés affines”. Enfin, il est possible à partir d’un ensemble de formules E de généraliser les classes spéciales et autres classes de structures. Notre théorie des idéaux logiques est de plus un cas particulier du phénomène de localisation étudié par M.Coste ; dans certaines situations, un bon choix de formules permet d’identifier les types complets d’une “algèbre” à des types de localisation / The notion of T-radical of an ideal allows G.Cherlin to prove a Nullstellensatz for inductive ring theories.We present here a model-theoretic analysis of closely related phenomena. At first, a reverse of this theorem leeds us to a characterization of algebraically closed fields, suggesting a “positive” version of Cherlin’s work, the theory of T-radical ideals. These are characterized by a representation theorem and associated to a “positive” Nullstellensatz. Those results are generalized to first order logic : thanks to the notion of special class, we then develop a logical theory of ideals. One may still speak about prime and radical ideals, relatively to a class of structures. In this setting, the representation theorem is an intrinsic property of special classes and the Nullstellensatz a logical preservation property, which we call “geometric completeness” and which is closely linked to positive model-completeness. The group-based algebras of P.Higgins allow us to apply these results to model-complete theories of fields with additional operators. In certain “noetherian” cases, the coordinate algebra is an algebraic invariant of “affine algebraic sets”. At last, it is possible from a set of formulas E to generalize special and other classes of structures. Moreover, our theory of logical ideals is a particular case of the localisation phenomenon studied by M.Coste ; in certain situations, a good choice of formulasleeds to an identification of the complete types of a given “algebra” with some localisation types
167

Variétés de drapeaux et opérateurs différentiels

Jauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.
168

Algebras of Relations : from algorithms to formal proofs / Algèbres de relations : des algorithmes aux preuves formelles

Brunet, Paul 04 October 2016 (has links)
Les algèbres de relations apparaissent naturellement dans de nombreux cadres, en informatique comme en mathématiques. Elles constituent en particulier un formalisme tout à fait adapté à la sémantique des programmes impératifs. Les algèbres de Kleene constituent un point de départ : ces algèbres jouissent de résultats de décidabilités très satisfaisants, et admettent une axiomatisation complète. L'objectif de cette thèse a été d'étendre les résultats connus sur les algèbres de Kleene à des extensions de celles-ci.Nous nous sommes tout d'abord intéressés à une extension connue : les algèbres de Kleene avec converse. La décidabilité de ces algèbres était déjà connue, mais l'algorithme prouvant ce résultat était trop compliqué pour être utilisé en pratique. Nous avons donné un algorithme plus simple, plus efficace, et dont la correction est plus facile à établir. Ceci nous a permis de placer ce problème dans la classe de complexité PSpace-complete.Nous avons ensuite étudié les allégories de Kleene. Sur cette extension, peu de résultats étaient connus. En suivant des résultats sur des algèbres proches, nous avons établi l'équivalence du problème d'égalité dans les allégories de Kleene à l'égalité de certains ensembles de graphes. Nous avons ensuite développé un modèle d'automate original (les automates de Petri), basé sur les réseaux de Petri, et avons établi l'équivalence de notre problème original avec le problème de comparaison de ces automates. Nous avons enfin développé un algorithme pour effectuer cette comparaison dans le cadre restreint des treillis de Kleene sans identité. Cet algorithme utilise un espace exponentiel. Néanmoins, nous avons pu établir que la comparaison d'automates de Petri dans ce cas est ExpSpace-complète. Enfin, nous nous sommes intéressés aux algèbres de Kleene Nominales. Nous avons réalisé que les descriptions existantes de ces algèbres n'étaient pas adaptées à la sémantique relationnelle des programmes. Nous les avons donc modifiées pour nos besoins, et ce faisant avons trouvé diverses variations naturelles de ce modèle. Nous avons donc étudié en détails et en Coq les ponts que l'on peut établir entre ces variantes, et entre le modèle “classique” et notre nouvelle version / Algebras of relations appear naturally in many contexts, in computer science as well as in mathematics. They constitute a framework well suited to the semantics of imperative programs. Kleene algebra are a starting point: these algebras enjoy very strong decidability properties, and a complete axiomatisation. The goal of this thesis was to export known results from Kleene algebra to some of its extensions. We first considered a known extension: Kleene algebras with converse. Decidability of these algebras was already known, but the algorithm witnessing this result was too complicated to be practical. We proposed a simpler algorithm, more efficient, and whose correctness is easier to establish. It allowed us to prove that this problem lies in the complexity class PSpace-complete.Then we studied Kleene allegories. Few results were known about this extension. Following results about closely related algebras, we established the equivalence between equality in Kleene allegories and equality of certain sets of graphs. We then developed an original automaton model (so-called Petri automata), based on Petri nets. We proved the equivalence between the original problem and comparing these automata. In the restricted setting of identity-free Kleene lattices, we also provided an algorithm performing this comparison. This algorithm uses exponential space. However, we proved that the problem of comparing Petri automata lies in the class ExpSpace-complete.Finally, we studied Nominal Kleene algebras. We realised that existing descriptions of these algebra were not suited to relational semantics of programming languages. We thus modified them accordingly, and doing so uncovered several natural variations of this model. We then studied formally the bridges one could build between these variations, and between the existing model and our new version of it. This study was conducted using the proof assistant Coq
169

Variétés de drapeaux et opérateurs différentiels

Jauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0. In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem. We also present a detailled construction of the sheaf of differential operators on a variety.
170

LAS - Un langage de programmation et un environnement de développement destinés à l'apprentissage assité par ordinateur de l'analyse matricielle des structures

Lapointe, Éric January 2009 (has links)
Structural engineers interact daily with"black box" type software. These programs, which are more user-friendly than ever, are used to draw a structure and to define loads, material properties and dynamic properties. The program analyses and designs the structure in matter of seconds. All the calculation process is hidden from the engineer. Educational softwares are therefore required to teach the internal processes of theses blackboxes. This thesis presents LAS, which stands for Language for Analysis of Structures . LAS is a high-level programming language and a development environment (software) for learning matrix structural analysis, dynamics of structures and the finite elements method. LAS is a flexible learning environment for structural or numerical analyses because users must fully program their own solution to solve a problem. The programming language includes matrix variables, powerful operators, conditional branches, conditional loops, and several functions. These functions carry-out matrix manipulation, resolution of linear equations, eigenvalue problems, singular value decomposition, frequency analysis (fast Fourier transforms & spectrums), generation of finite element matrices, direct stiffness assembly of these matrices and static and dynamic analysis. The latter can be accomplished in the time domain, modal domain or frequency domain. The development environment is a program used to create, edit and execute LAS code as well as finite element postprocessing and data visualization. It contains a calculator module and a graphical user interface. The latter includes a code editor, an output viewer, a matrix manager, a finite element post-processor and a Fourier-analysis tool. At the time of writing, LAS was used in the"Dynamics of structures" course (graduate) and was scheduled to be used in"Structures II" course (undergraduate). The language and development environment will be updated according to the needs of their users.

Page generated in 0.0711 seconds