Spelling suggestions: "subject:"algèbre"" "subject:"algèbres""
421 |
Histoire du théorème de Jordan de la décomposition matricielle (1870-1930).<br />Formes de représentation et méthodes de décomposition.Brechenmacher, Frederic 09 March 2006 (has links) (PDF)
L'histoire du théorème de Jordan est abordée sous l'angle d'une question d'identité posée sur la période qui sépare la date de 1870 et l'énoncé par Camille Jordan d'une forme canonique des substitutions linéaires des années trente du vingtième siècle au cours desquelles le théorème de Jordan de la décomposition matricielle acquiert une place centrale dans la théorie des matrices canoniques. A partir d'un moment historique de référence, la controverse entre Jordan et Kronecker de 1874, le théorème de Jordan permet de jeter un regard original sur l'histoire de la période 1870-1930 en suivant le rôle joué par des savoirs tacites, des idéaux et des pratiques propres à des réseaux et des communautés. Ce regard permet notamment de mettre en évidence la dynamique d'une tension entre formes canoniques et invariants dans l'évolution de la signification de la notion de forme en mathématiques et contribue à l'histoire de l'algèbre linéaire en décrivant le rôle joué par une méthode de décomposition indissociable d'un mode particulier de représentation : la décomposition matricielle.
|
422 |
Analyse et géométrie des domaines bornés symétriquesKoufany, Khalid 30 November 2006 (has links) (PDF)
Ce mémoire présente un point de vue basé sur la théorie des algèbres de Jordan pour faire une étude analytique, géométrique et topologique de certains espaces homogènes : espaces hermitiens symétriques, leurs frontières de Shilov et espaces symétriques causaux de type Cayley. <br />En particulier, nous passons en revue des résultats sur l'indice de Maslov, de Souriau et d'Arnold-Leray. Nous étudions aussi certaines propriétés de contractions et de compressions de ces espaces.<br />Le prolongement de la série discrète holomorphe est une partie importante du programme de Gelfand-Gindikin. Dans ce contexte, nous étudions les espaces de Hardy des fonctions holomorphes sur certains domaines Stein. Nous donnons en particulier le lien qui existe entre ces espaces de Hardy et les espaces de Hardy classiques des fonctions holomorphes sur les espaces hermitiens symétriques.<br />En dernier lieu, nous étudions la conjecture de Helgason pour la frontière de Shilov des espaces hermitiens symétriques. Plus précisément, nous caractérisons l'image par de la transformation de Poisson des hyperfonctions et des fonctions $L^p$ sur la frontière de Shilov.
|
423 |
Contributions au calcul exact intensifDumas, Jean-Guillaume 20 July 2010 (has links) (PDF)
Le calcul scientifique est souvent associé au calcul numérique. Pourtant dans de nombreuses disciplines scientifiques il est nécessaire d'aller au-delà du calcul approché : nécessité de certification des résultats, calculs dans des structures mathématiques discrètes, instabilité des algorithmique numériques. Le calcul exact s'attache donc à donner des résultats exacts ou certifiés. Cependant, la principale obstruction à l'utilisation du Calcul Formel est bien souvent les faibles performances des systèmes commerciaux y compris pour les opérations fondamentales comme l'algèbre linéaire. L'objectif de ces travaux est donc de réduire l'écart entre le calcul exact et le calcul numérique, tant sur le plan algorithmique, que sur le plan logiciel. Les défis sont multiples : développer une arithmétique efficace dans les structures discrètes ; concevoir des algorithmes ayant un terme dominant de complexité optimal même en tenant compte de la croissance des données intermédiaires ; transcrire ces algorithmes dans des logiciels combinant efficacité pérenne, interfaçage et généricité.
|
424 |
Logique linéaire et classes de complexité sous-polynomialesAubert, Clément 26 November 2013 (has links) (PDF)
Cette recherche en informatique théorique construit de nouveaux ponts entre logique linéaire et théorie de la complexité. Elle propose deux modèles de machines abstraites qui permettent de capturer de nouvelles classes de complexité avec la logique linéaire, les classes des problèmes efficacement parallélisables (NC et AC) et celle des problèmes solutionnables avec peu d'espace, dans ses versions déterministes et non-déterministes (L et NL). La représentation des preuves de la logique linéaire comme réseaux de preuves est employée pour représenter efficacement le calcul parallèle des circuits booléens, y compris à profondeur constante. La seconde étude s'inspire de la géométrie de l'interaction, une délicate reconstruction de la logique linéaire à l'aide d'opérateurs d'une algèbre de von Neumann. Nous détaillons comment l'interaction d'opérateurs représentant des entiers et d'opérateurs représentant des programmes peut être reconnue nilpotente en espace logarithmique. Nous montrons ensuite comment leur itération représente un calcul effectué par des machines à pointeurs que nous définissons et que nous rattachons à d'autres modèles plus classiques. Ces deux études permettent de capturer de façon implicite de nouvelles classes de complexité, en dessous du temps polynomial.
|
425 |
Matrices de décomposition des algèbres d'Ariki-Koike et isomorphismes de cristaux dans les espaces de FockGerber, Thomas 01 July 2014 (has links) (PDF)
Cette thèse est consacrée à l'étude des représentations modulaires des algèbres d'Ariki-Koike, et des liens avec la théorie des cristaux et des bases canoniques de Kashiwara via le théorème de catégorification d'Ariki. Dans un premier temps, on étudie, grâce à des outils combinatoires, les matrices de décomposition de ces algèbres en généralisant les travaux de Geck et Jacon. On classifie entièrement les cas d'existence et de non-existence d'ensembles basiques, en construisant explicitement ces ensembles lorsqu'ils existent. On explicite ensuite les isomorphismes de cristaux pour les représentations de Fock de l'algèbre affine quantique de type A affine. On construit alors un isomorphisme particulier, dit canonique, qui permet entre autres une caractérisation non-récursive de n'importe quelle composante connexe du cristal. On souligne également les liens avec la combinatoire des mots sous-jacente à la structure cristalline des espaces de Fock, en décrivant notamment un analogue de la correspondance de Robinson-Schensted-Knuth pour le type A affine.
|
426 |
Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiquesThomé, Emmanuel 13 December 2012 (has links) (PDF)
Le problème de la factorisation et celui du logarithme discret sont deux fondements essentiels de nombreux algorithmes de la cryptographie à clé publique. Dans le champ des algorithmes pour attaquer ces problèmes éminemment ardus, le crible algébrique et ses algorithmes cousins occupent une place de première importance. La première partie de ce mémoire est consacrée à la présentation de la " famille " du crible algébrique, et à plusieurs de mes contributions dans ce domaine. D'autres travaux sont abordés dans la partie suivante, notamment en lien avec le problème du logarithme discret sur les jacobiennes de courbes, et à ma contribution à de nouveaux algorithmes pour ce problème dans certains cas particuliers. La partie 3 du mémoire aborde mes travaux sur le thème de l'algèbre linéaire creuse sur les corps finis, motivés par le contexte d'application des algorithmes précédemment cités. La partie 4, enfin, traite de mes travaux dans le domaine de l'arithmétique, notamment concernant l'arithmétique des polynômes sur GF(2). La proximité des travaux apparaissant dans ces parties 3 et 4 avec des problématiques d'implantation indique le souci permanent, dans mes travaux, de ne pas laisser de côté cet aspect.
|
427 |
La théorie des courbes et des équations dans la Géométrie cartésienne : 1637-1661. [version corrigée]Maronne, Sebastien 19 September 2007 (has links) (PDF)
Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par " Géométrie cartésienne ", nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers les controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales.
|
428 |
La théorie des courbes et des équations dans la Géométrie cartésienne : 1637-1661. [version déposée]Maronne, Sebastien 19 September 2007 (has links) (PDF)
Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par " Géométrie cartésienne ", nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers les controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales.
|
429 |
Essays in international trade and energy / Essais dans le commerce international et l'énergieMonastyrenko, Evgenii 24 September 2018 (has links)
Dans le chapitre 1, j’examine les résultats des fusions entre producteurs européens d’énergie en termes d’efficacité. Je calcule l’éco-efficacité en utilisant l’analyse de l’enveloppement des données et l’indice de productivité Malmquist-Luenberger. Je trouve que les fusions horizontales nationales, qui sont soigneusement réglementées, n’ont pas d’impact. Les fusions horizontales transfrontalières nuisent à l’éco-efficacité à court terme mais la stimulent deux ans après l’achèvement. Les fusions verticales nuisent à l’éco-efficacité. Je présente des suggestions de politiques concernant la réglementation des fusions. Le chapitre 2 est un travail conjoint avec Julian Hinz. Nous enquêtons sur les effets de l’embargo russe auto-imposé sur les importations de produits alimentaires en provenance des pays occidentaux. Nous construisons un modèle ricardien avec des liens sectoriels, des échanges de biens intermédiaires et une hétérogénéité sectorielle dans la production. L’étalonnage du modèle avec des données réelles permet de simuler les résultats de l’embargo en termes de changements de bien-être et de prix. Nous quantifions en outre l’impact sur les prix à la consommation en Russie à l’aide de la méthode des doubles différences. Le chapitre 3 est basé sur un article co-écrit avec Cristina Herghelegiu. Nous enquêtons sur l’utilisation des conditions commerciales internationales (Incoterms). Ce sont les schémas prédéfinis de la répartition des coûts et des risques entre les acheteurs et les vendeurs. Nous nous appuyons sur un ensemble de données très détaillées sur les exportations russes durant la période 2012-2015. Nous constatons que les grandes entreprises sont plus susceptibles d’assumer des responsabilités. Les gros acheteurs assument plus de responsabilités, quelle que soit la taille du vendeur, alors que les gros vendeurs le font uniquement lorsque leur partenaire est petit. C’est plus probable que les risques et les coûts sont sur les acheteurs dans les transactions de biens intermédiaires et de biens d’équipement. / In Chapter 1 I investigate firm-level efficiency outcomes of mergers between the European energy producers. I compute eco-efficiency using data envelopment analysis and the Malmquist-Luenberger productivity index. I find that carefully regulated domestic horizontal mergers do not have a statistically significant impact. Cross-border horizontal mergers hamper eco-efficiency in the short run but stimulate it two years after completion. Vertical mergers are detrimental to eco-efficiency. I put forward policy suggestions regarding the regulation of mergers. Chapter 2 is joint work with Julian Hinz. We investigate the effects of self-imposed Russian embargo on food import from Western countries. We build a Ricardian model with sectoral linkages, trade in intermediate goods and sectoral heterogeneity in production. The calibration of the model with real data allows to simulate the outcomes of embargo in terms of changes in welfare and prices. We further quantify the impact on consumer prices in Russia with the difference-in-differences estimator. Chapter 3 is based on a paper co-written with Cristina Herghelegiu. We investigate the use of International Commercial Terms. They are pre-defined schemes of repartition of costs and risks between buyers and sellers, which serve to mitigate the uncertainty. We rely on a highly detailed dataset on Russian exports over the 2012-2015 period. We find that big firms are more likely to take on responsibilities. Big buyers bear more responsibilities regardless of the seller size, whereas big sellers do so only when their partner is small. Risks and costs are more likely on buyers in transactions of intermediate and capital goods.
|
430 |
Matrices de décomposition des algèbres d'Ariki-Koike et isomorphismes de cristaux dans les espaces de Fock / Decomposition matrices for Ariki-Koike algebras and crystal isomorphisms in Fock spacesGerber, Thomas 01 July 2014 (has links)
Cette thèse est consacrée à l’étude des représentations modulaires des algèbres d’Ariki-Koike, et des liens avec la théorie des cristaux et des bases canoniques de Kashiwara via le théorème de catégorification d’Ariki. Dans un premier temps, on étudie, grâce à des outils combinatoires, les matrices de décomposition de ces algèbres en généralisant les travaux de Geck et Jacon. On classifie entièrement les cas d’existence et de non-existence d’ensembles basiques, en construisant explicitement ces ensembles lorsqu’ils existent. On explicite ensuite les isomorphismes de cristaux pour les représentations de Fock de l’algèbre affine quantique Uq(sle). On construit alors un isomorphisme particulier, dit canonique, qui permet entre autres une caractérisation non-récursive de n’importe quelle composante connexe du cristal. On souligne également les liens avec la combinatoire des mots sous-jacente à la structure cristalline des espaces de Fock, en décrivant notamment un analogue de la correspondance de Robinson-Schensted-Knuth pour le type A affine. / This thesis is devoted to the study of modular representations of Ariki-Koike algebras, and of the connections with Kashiwara’s crystal and canonical bases theory via Ariki’s categorification theorem. First, we study, using combinatorial tools, the decomposition matrices associated to these algebras, generalising the works of Geck and Jacon. We fully classify the cases of existence and non-existence of canonical basic sets, and we explicitely construct these sets when they exist. Next, we make explicit the crystal isomorphisms for Fock spaces representations of the quantum affine algebra Uq(sle). We then construct of a particular isomorphism, so-called canonical, which gives, inter alia, a non-recursive description of any connected component of the crystal. We also stress the links with the combinatorics of words underlying the crystal structure of Fock spaces, by describing notably an analogue of the Robinson-Schensted-Knuth correspondence for affine type A.
|
Page generated in 0.0358 seconds