• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 11
  • 3
  • 1
  • Tagged with
  • 33
  • 18
  • 16
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude de la relation entre les conformations et la signalisation des 7TMRs

Berchiche, Yamina A. 12 1900 (has links)
L’interaction d’un ligand avec un récepteur à sept domaines transmembranaires (7TMR) couplé aux protéines G, mène à l’adoption de différentes conformations par le récepteur. Ces diverses conformations pourraient expliquer l’activation différentielle des voies de signalisation. Or, le lien entre la conformation et l’activité du récepteur n’est pas tout à fait claire. Selon les modèles classiques pharmacologiques, comme le modèle du complexe ternaire, il n’existe qu’un nombre limité de conformations qu’un récepteur peut adopter. Afin d’établir un lien entre la structure et la fonction des récepteurs, nous avons choisi dans un premier temps, le récepteur de chimiokine CXCR4 comme récepteur modèle. Ce dernier, est une cible thérapeutique prometteuse, impliqué dans l’entrée du VIH-1 dans les cellules cibles et dans la dissémination de métastases cancéreuses. Grâce au transfert d’énergie par résonance de bioluminescence (BRET) nous pouvons détecter les changements conformationnels des homodimères constitutifs de CXCR4 dans les cellules vivantes. En conséquence, nous avons mesuré les conformations de mutants de CXCR4 dont les mutations affecteraient sa fonction. Nous montrons que la capacité des mutants à activer la protéine Galphai est altérée suite au traitement avec l’agoniste SDF-1. Notamment, ces mutations altèrent la conformation du récepteur à l’état basal ainsi que la réponse conformationnelle induite suite au traitement avec l’agoniste SDF-1, l’agoniste partiel AMD3100 ou l’agoniste inverse TC14012. Ainsi, différentes conformations de CXCR4 peuvent donner lieu à une activation similaire de la protéine G, ce qui implique une flexibilité des récepteurs actifs qui ne peut pas être expliquée par le modèle du complexe ternaire (Berchiche et al. 2007). Également, nous nous sommes intéressés au récepteur de chimiokine CCR2, exprimé à la surface des cellules immunitaires. Il joue un rôle important dans l’inflammation et dans des pathologies inflammatoires telles que l’asthme. CCR2 forme des homodimères constitutifs et possède différents ligands naturels dont la redondance fonctionnelle a été suggérée. Nous avons étudié le lien entre les conformations et les activations d’effecteurs (fonctions) de CCR2. Notre hypothèse est que les différents ligands naturels induisent différentes conformations du récepteur menant à différentes fonctions. Nous montrons que les réponses de CCR2 aux différents ligands ne sont pas redondantes au niveau pharmacologique et que les chimiokines CCL8, CCL7 et CCL13 (MCP-2 à MCP-4) sont des agonistes partiels de CCR2, du moins dans les systèmes que nous avons étudiés. Ainsi, l’absence de redondance fonctionnelle parmi les chimiokines liant le même récepteur, ne résulterait pas de mécanismes complexes de régulation in vivo, mais ferait partie de leurs propriétés pharmacologiques intrinsèques (Berchiche et al. 2011). Enfin, nous nous sommes intéressés au récepteur de chimiokine CXCR7. Récemment identifié, CXCR7 est le deuxième récepteur cible de la chimiokine SDF-1. Cette chimiokine a été considérée comme étant capable d’interagir uniquement avec le récepteur CXCR4. Notamment, CXCR4 et CXCR7 possèdent un patron d’expression semblable dans les tissus. Nous avons évalué l’effet de l’AMD3100, ligand synthétique de CXCR4, sur la conformation et la signalisation de CXCR7. Nos résultats montrent qu’AMD3100, tout comme SDF-1, lie CXCR7 et augmente la liaison de SDF-1 à CXCR7. Grâce au BRET, nous montrons aussi qu’AMD3100 seul est un agoniste de CXCR7 et qu’il est un modulateur allostérique positif de la liaison de SDF-1 à CXCR7. Aussi, nous montrons pour la première fois le recrutement de la beta-arrestine 2 à CXCR7 en réponse à un agoniste. L’AMD3100 est un ligand de CXCR4 et de CXCR7 avec des effets opposés, ce qui appelle à la prudence lors de l’utilisation de cette molécule pour l’étude des voies de signalisation impliquant SDF-1 (Kalatskaya et al. 2009). En conclusion, nos travaux amènent des évidences qu’il existe plusieurs conformations actives des récepteurs et appuient les modèles de structure-activité des récepteurs qui prennent en considération leur flexibilité conformationnelle. / Ligand binding to 7TMRs is thought to induce conformational changes within the receptor that translate into activation of downstream effectors. The link between receptor conformation and activity is still poorly understood, as current models of receptor activation fail to take an increasing amount of experimental data into account. Classical pharmacological models such as the ternary complex model are based on the concept that receptors can only adopt a limited number of conformations. To clarify structure-function relationships in 7TMRs, first we studied chemokine receptor CXCR4. This receptor is an important drug target, involved in HIV-1 entry and cancer metastasis. Bioluminescence Resonance Energy Transfer (BRET) allows us to directly probe conformational changes within pre-formed CXCR4 homodimers in live cells. Using BRET, we measured the conformation of CXCR4 mutants and we also monitored their function by measuring their ability to induce Galphai activation. The analyzed mutants had substitutions in locations which are pivotal molecular switches for receptor conformation and activation. We show that agonist induced Gi activation is altered for most mutants. These mutations also alter CXCR4’s conformation at basal conditions (in absence of ligand) and in the presence of the agonist, SDF-1, the partial agonist, AMD3100 and the inverse agonist, TC14012. Moreover, different conformations of active receptors were detected in the presence of SDF-1, suggesting that different receptor conformations are able to trigger Galphai activity. These data provide biophysical evidence for different active receptor conformations, that cannot be explained by classical models of receptor function (Berchiche et al. 2007). Furthermore, the second part of our work focused on chemokine receptor CCR2. Mainly expressed on immune cells, CCR2 is involved in many inflammatory and vascular diseases. This receptor binds seven natural ligands that have been referred to as redundant. We set out to explore whether the different chemokine ligands of CCR2 receptor induce different conformational changes leading to different functional consequences. Our results show that the different natural ligands of CCR2 are not pharmacologically redundant. Moreover, chemokines CCL8, CCL7 and CCL13 (MCP-2 to MCP-4) are partial agonists of CCR2, at least in the systems we used. Our results support the validity of models for receptor-ligand interactions in which different ligands stabilize different receptor conformations also for endogenous receptor ligands, demonstrating that these natural ligands are not pharmacologically and functionally redundant (Berchiche et al. 2011). As the third part of this work, we studied chemokine receptor CXCR7, the alternative receptor for SDF-1. Until recently, CXCR4 was the only receptor known to bind SDF-1. Moreover, the expression patterns are similar for receptors CXCR4 and CXCR7. Therefore, we investigated the conformational and functional consequences of the synthetic inhibitor of CXCR4, AMD3100, on CXCR7. We show that AMD3100 also binds the alternative SDF-1 receptor, CXCR7. SDF-1 or AMD3100 alone trigger beta-arrestin recruitment to CXCR7, which we identify as a previously unreported signalling pathway of CXCR7. In addition, AMD3100 has positive allosteric effects on SDF-1 binding to CXCR7, on SDF-1-induced conformational rearrangements in the receptor dimer as measured by BRET, and on SDF-1-induced beta-arrestin recruitment to CXCR7. The finding that AMD3100 not only binds CXCR4, but also to CXCR7, with opposite effects on the two receptors, call for caution in the use of this compound as a tool to dissect SDF-1 effects on the respective receptors in vitro and in vivo. Finally, these data provide biophysical evidence for different active receptor conformations, and support models of 7TMR structure-activity relationships that take conformational heterogeneity into account.
22

Regulation of VE-cadherin expression and dynamic in endothelial permeability / Régulation de l’expression et la dynamique de la VE-cadhérine dans la perméabilité endothéliale

Hebda, Jagoda 15 October 2014 (has links)
Les jonctions adhérentes (JA) sont nécessaires à l’élaboration d’une barrière vasculaire sélective dans laquelle la VE-cadhérine joue un rôle crucial. En effet, la VE-cadhérine est une molécule d’adhérence entrant dans la constitution des JA et présente spécifiquement au sein de l’endothélium. Lorsque la VE-cadhérine est exprimée à la surface des cellules endothéliales, l’intégrité de la barrière est préservée. En revanche, des modifications de la VE-cadhérine, comme par exemple sa phosphorylation, provoquent son internalisation, la dissociation des complexes adhésifs ou la désorganisation générale des jonctions endothéliales, défavorisant ainsi la sélectivité de la barrière. De manière générale, une perméabilité vasculaire élevée peut être observée au cours de l’activation de l’endothélium, telle que l’angiogenèse ou la réponse inflammatoire, en conditions physiologiques comme pathologiques. Par exemple, la phosphorylation de la VE-cadhérine provoquée par le facteur VEGF (vascular growth endothelial facteur) entraîne l’augmentation de la perméabilité vasculaire. En outre, une molécule pro-inflammatoire telle que l’interleukine-8 (IL-8) peut également provoquer la phosphorylation de la VE-cadhérine, aboutissant ainsi à l’augmentation de la perméabilité vasculaire. Tandis que les voies de signalisation régissant les effets pro-angiogéniques ou pro-inflammatoires du VEGF et de l’IL-8, respectivement, sont bien caractérisées, les mécanismes moléculaires sous-tendant spécifiquement l’augmentation de perméabilité endothéliale sont moins bien connus. Au cours de mon doctorat, je me suis donc attachée à examiner les interactions moléculaires entre la VE-cadhérine phosphorylée et la molécule d’échafaudage β-arrestine1, dans les cellules endothéliales humaines exposées au VEGF. J’ai également exploré la distribution de la VE-cadhérine dans les cellules endothéliales cérébrales dans un contexte tumoral, récapitulé par le sécrétome de cellules gliomateuses (GB). Mon travail a permis d’identifier la partie C-terminale (C-tail) de la β-arrestine1 qui comporte 43 acides aminés, comme une région interagissant directement avec la VE-cadhérine lorsqu’elle est phosphorylée sur le résidu S665. Cette liaison pourrait conduire alors à l’internalisation de la VE-cadhérine, lors de la stimulation par le VEGF. En outre, nous avons démontré le rôle inattendu du domaine C-tail de la β-arrestine1 dans la régulation négative de l’activité du promoteur de la VE-cadhérine. Ceci se traduit par une réduction des niveaux d’expression de la VE-cadhérine, contribuant ainsi à l’affaiblissement de la barrière endothéliale en réponse au VEGF. En outre, nous avons voulu évaluer l’effet des différents facteurs secrétés par le GB sur la perméabilité vasculaire. L’étude du sécrétome du GB a révélé une production abondante et majoritaire d’IL-8, qui provoque l’internalisation de la VE-cadhérine et la désorganisation des jonctions endothéliales. En plus de son action sur la perméabilité, l’IL-8 favorise la tubulogenèse des cellules endothéliales cérébrales. En conclusion, nous avons mis en évidence un rôle nouveau de la β-arrestine1 dans la régulation de la VE-cadhérine dans les cellules endothéliales humaines. Nous avons également démontré que la sécrétion d’IL-8 par le GB entraîne le remodelage des jonctions de la VE-cadhérine et conduit à une perte de la fonction de barrière des cellules endothéliales cérébrales. L’ensemble de nos résultats a donc permis d’améliorer nos connaissances des mécanismes moléculaires modulant la perméabilité endothéliale. / VE-cadherin is a major adhesion molecule composing endothelial adherens junctions (AJ), which ensure selectivity of the endothelial barrier. Stabilization of the VE-cadherin complex at the surface of endothelial cells plays a pivotal role in the maintenance of vascular homeostasis. Conversely, the disorganization or internalisation of VE-cadherin is a frequent consequence of VE-cadherin modifications (e.g phosphorylation), which promotes in turn vascular permeability. In general, vascular leakage can be observed in both physiological and pathological conditions. Indeed, VE-cadherin phosphorylation caused by pro-angiogenic and pro-permeability factors, among which vascular endothelial growth factor (VEGF) is the prototype, occurs during physiological angiogenesis, as well as tumour-associated angiogenesis. Besides, pro-inflammatory molecules, such as interleukin-8 (IL-8) can also participate in the phosphorylation of VE-cadherin and thereby promote vascular permeability. To best characterise VE-cadherin-mediated increase in vascular permeability under physiological VEGF challenge, we notably investigated the molecular interactions between serine (S665) phosphorylated VE-cadherin and the scaffolding molecule β-arrestin. We also studied the distribution of VE-cadherin in brain endothelial cells under pathological conditions, as provided by the secretome of glioblastoma (GB) brain tumour cells. My work allows the identification of a 43 amino-acid sequence within the C-terminus tail of β-arrestin1 (C-tail) that can directly bind to (S665) phosphorylated VE-cadherin and further triggers its internalisation upon VEGF stimulation. Moreover, we demonstrated the unexpected role of β-arrestin1 C-tail in the down-regulation of the VE-cadherin promoter activity, which results in reduction of VE-cadherin RNA and protein levels, thus contributing to the endothelial barrier properties. Furthermore, in order to evaluate the effects of tumour-secreted factors on the hyper-permeability associated with the tumour microenvironment, we explored the composition and function of the GB secretome on brain endothelial cells. We found that abundant secretion of IL-8 by GB cells causes VE-cadherin-mediated endothelial junction disorganization. Moreover, IL-8 promotes both brain endothelial cell permeability and tubulogenesis. In conclusion, we established a new role for β-arrestin1 in the control of VE-cadherin-based junctions in human endothelial cells. Likewise, we demonstrated that tumour cell-released IL-8 chemokine provokes VE-cadherin-dependent junction remodelling and thereby increases the permeability of human brain endothelial cells. Our results reinforce the central role of VE-cadherin in the modulation of the vascular barrier function in physiological and pathological conditions.
23

Rôle des ARFs dans la migration et la régulation phénotypique des cellules du muscle lisse vasculaire

Charles, Ricardo 12 1900 (has links)
No description available.
24

Étude de la relation entre les conformations et la signalisation des 7TMRs

Berchiche, Yamina A. 12 1900 (has links)
L’interaction d’un ligand avec un récepteur à sept domaines transmembranaires (7TMR) couplé aux protéines G, mène à l’adoption de différentes conformations par le récepteur. Ces diverses conformations pourraient expliquer l’activation différentielle des voies de signalisation. Or, le lien entre la conformation et l’activité du récepteur n’est pas tout à fait claire. Selon les modèles classiques pharmacologiques, comme le modèle du complexe ternaire, il n’existe qu’un nombre limité de conformations qu’un récepteur peut adopter. Afin d’établir un lien entre la structure et la fonction des récepteurs, nous avons choisi dans un premier temps, le récepteur de chimiokine CXCR4 comme récepteur modèle. Ce dernier, est une cible thérapeutique prometteuse, impliqué dans l’entrée du VIH-1 dans les cellules cibles et dans la dissémination de métastases cancéreuses. Grâce au transfert d’énergie par résonance de bioluminescence (BRET) nous pouvons détecter les changements conformationnels des homodimères constitutifs de CXCR4 dans les cellules vivantes. En conséquence, nous avons mesuré les conformations de mutants de CXCR4 dont les mutations affecteraient sa fonction. Nous montrons que la capacité des mutants à activer la protéine Galphai est altérée suite au traitement avec l’agoniste SDF-1. Notamment, ces mutations altèrent la conformation du récepteur à l’état basal ainsi que la réponse conformationnelle induite suite au traitement avec l’agoniste SDF-1, l’agoniste partiel AMD3100 ou l’agoniste inverse TC14012. Ainsi, différentes conformations de CXCR4 peuvent donner lieu à une activation similaire de la protéine G, ce qui implique une flexibilité des récepteurs actifs qui ne peut pas être expliquée par le modèle du complexe ternaire (Berchiche et al. 2007). Également, nous nous sommes intéressés au récepteur de chimiokine CCR2, exprimé à la surface des cellules immunitaires. Il joue un rôle important dans l’inflammation et dans des pathologies inflammatoires telles que l’asthme. CCR2 forme des homodimères constitutifs et possède différents ligands naturels dont la redondance fonctionnelle a été suggérée. Nous avons étudié le lien entre les conformations et les activations d’effecteurs (fonctions) de CCR2. Notre hypothèse est que les différents ligands naturels induisent différentes conformations du récepteur menant à différentes fonctions. Nous montrons que les réponses de CCR2 aux différents ligands ne sont pas redondantes au niveau pharmacologique et que les chimiokines CCL8, CCL7 et CCL13 (MCP-2 à MCP-4) sont des agonistes partiels de CCR2, du moins dans les systèmes que nous avons étudiés. Ainsi, l’absence de redondance fonctionnelle parmi les chimiokines liant le même récepteur, ne résulterait pas de mécanismes complexes de régulation in vivo, mais ferait partie de leurs propriétés pharmacologiques intrinsèques (Berchiche et al. 2011). Enfin, nous nous sommes intéressés au récepteur de chimiokine CXCR7. Récemment identifié, CXCR7 est le deuxième récepteur cible de la chimiokine SDF-1. Cette chimiokine a été considérée comme étant capable d’interagir uniquement avec le récepteur CXCR4. Notamment, CXCR4 et CXCR7 possèdent un patron d’expression semblable dans les tissus. Nous avons évalué l’effet de l’AMD3100, ligand synthétique de CXCR4, sur la conformation et la signalisation de CXCR7. Nos résultats montrent qu’AMD3100, tout comme SDF-1, lie CXCR7 et augmente la liaison de SDF-1 à CXCR7. Grâce au BRET, nous montrons aussi qu’AMD3100 seul est un agoniste de CXCR7 et qu’il est un modulateur allostérique positif de la liaison de SDF-1 à CXCR7. Aussi, nous montrons pour la première fois le recrutement de la beta-arrestine 2 à CXCR7 en réponse à un agoniste. L’AMD3100 est un ligand de CXCR4 et de CXCR7 avec des effets opposés, ce qui appelle à la prudence lors de l’utilisation de cette molécule pour l’étude des voies de signalisation impliquant SDF-1 (Kalatskaya et al. 2009). En conclusion, nos travaux amènent des évidences qu’il existe plusieurs conformations actives des récepteurs et appuient les modèles de structure-activité des récepteurs qui prennent en considération leur flexibilité conformationnelle. / Ligand binding to 7TMRs is thought to induce conformational changes within the receptor that translate into activation of downstream effectors. The link between receptor conformation and activity is still poorly understood, as current models of receptor activation fail to take an increasing amount of experimental data into account. Classical pharmacological models such as the ternary complex model are based on the concept that receptors can only adopt a limited number of conformations. To clarify structure-function relationships in 7TMRs, first we studied chemokine receptor CXCR4. This receptor is an important drug target, involved in HIV-1 entry and cancer metastasis. Bioluminescence Resonance Energy Transfer (BRET) allows us to directly probe conformational changes within pre-formed CXCR4 homodimers in live cells. Using BRET, we measured the conformation of CXCR4 mutants and we also monitored their function by measuring their ability to induce Galphai activation. The analyzed mutants had substitutions in locations which are pivotal molecular switches for receptor conformation and activation. We show that agonist induced Gi activation is altered for most mutants. These mutations also alter CXCR4’s conformation at basal conditions (in absence of ligand) and in the presence of the agonist, SDF-1, the partial agonist, AMD3100 and the inverse agonist, TC14012. Moreover, different conformations of active receptors were detected in the presence of SDF-1, suggesting that different receptor conformations are able to trigger Galphai activity. These data provide biophysical evidence for different active receptor conformations, that cannot be explained by classical models of receptor function (Berchiche et al. 2007). Furthermore, the second part of our work focused on chemokine receptor CCR2. Mainly expressed on immune cells, CCR2 is involved in many inflammatory and vascular diseases. This receptor binds seven natural ligands that have been referred to as redundant. We set out to explore whether the different chemokine ligands of CCR2 receptor induce different conformational changes leading to different functional consequences. Our results show that the different natural ligands of CCR2 are not pharmacologically redundant. Moreover, chemokines CCL8, CCL7 and CCL13 (MCP-2 to MCP-4) are partial agonists of CCR2, at least in the systems we used. Our results support the validity of models for receptor-ligand interactions in which different ligands stabilize different receptor conformations also for endogenous receptor ligands, demonstrating that these natural ligands are not pharmacologically and functionally redundant (Berchiche et al. 2011). As the third part of this work, we studied chemokine receptor CXCR7, the alternative receptor for SDF-1. Until recently, CXCR4 was the only receptor known to bind SDF-1. Moreover, the expression patterns are similar for receptors CXCR4 and CXCR7. Therefore, we investigated the conformational and functional consequences of the synthetic inhibitor of CXCR4, AMD3100, on CXCR7. We show that AMD3100 also binds the alternative SDF-1 receptor, CXCR7. SDF-1 or AMD3100 alone trigger beta-arrestin recruitment to CXCR7, which we identify as a previously unreported signalling pathway of CXCR7. In addition, AMD3100 has positive allosteric effects on SDF-1 binding to CXCR7, on SDF-1-induced conformational rearrangements in the receptor dimer as measured by BRET, and on SDF-1-induced beta-arrestin recruitment to CXCR7. The finding that AMD3100 not only binds CXCR4, but also to CXCR7, with opposite effects on the two receptors, call for caution in the use of this compound as a tool to dissect SDF-1 effects on the respective receptors in vitro and in vivo. Finally, these data provide biophysical evidence for different active receptor conformations, and support models of 7TMR structure-activity relationships that take conformational heterogeneity into account.
25

Etude des mécanismes d'adhérence et d'activation des plaquettes sanguines appliquée à l'identification de nouvelles cibles anti-thrombotiques plus sûres

Schaff, Mathieu 07 December 2012 (has links) (PDF)
L'adhérence, l'activation et l'agrégation des plaquettes sanguines sont essentielles à l'hémostase mais peuvent également conduire à la thrombose artérielle sur plaque d'athérosclérose, aujourd'hui première cause de mortalité dans le monde. Les anti-thrombotiques actuels, dirigés contre l'activation et l'agrégation plaquettaires, ont une efficacité reconnue mais ont pour inconvénient d'augmenter le risque de saignement. L'objectif de cette thèse a été d'explorer de nouvelles stratégies réduisant la thrombose tout en préservant l'hémostase. L'utilisation de souris modifiées génétiquement a mis en évidence que l'intégrine alpha6 beta1, impliquée dans l'adhérence des plaquettes aux laminines, joue un rôle critique en thrombose expérimentale mais pas en hémostase. De plus, nous avons montré dans un système de perfusion de sang qu'une protéine préférentiellement exprimée dans les plaques d'athérosclérose, la ténascine-C, permet l'adhérence et l'activation des plaquettes. En revanche, la beta-arrestine-1, une protéine de signalisation, ne contribue que modestement aux fonctions plaquettaires et à la thrombose. En conclusion, ce travail a permis de dégager deux nouvelles pistes anti-thrombotiques potentiellement capables de préserver l'hémostase, basées sur le ciblage de l'intégrine alpha6 beta1 ou de l'interaction plaquette/ténascine-C.
26

Exploration des mécanismes responsables de la dichotomie entre la chimiotaxie et la division cellulaire

Rhainds, David 10 1900 (has links)
No description available.
27

Dégradation de CXCL11 et CXCL10 par les lymphocytes T activés

Girard, Mélanie 08 1900 (has links)
Suite à leur activation par des cellules présentatrices d’antigène, les lymphocytes T expriment le récepteur de chimiokines CXCR3 et peuvent alors infiltrer les tissus enflammés. Pour ce faire, CXCR3 permet aux cellules de détecter et de chimiotaxer vers des gradients de concentration croissants des chimiokines CXCL11 et CXCL10 retrouvées dans le milieu extracellulaire. Les gradients de chimiokines doivent être régulés afin d’assurer une réponse immunitaire adéquate. Toutefois, comment ces gradients sont formés, maintenus et éliminés n’est pas très bien compris. Il a été montré que certaines cellules participent à la régulation des gradients de chimiokines dans d’autres contextes. Pour ce faire, elles expriment des récepteurs de chimiokines spécialisés qui séquestrent les chimiokines, réduisant leur niveau dans le milieu extracellulaire. Ces récepteurs sont classés comme étant atypiques et n’induisent pas la chimiotaxie. Dans ce travail, nous proposons un mécanisme de régulation pour les chimiokines CXCL11 et CXCL10 qui est en ligne avec un mécanisme d’auto-génération de gradients de chimiokines par les lymphocytes T activés. / During the immune response, T lymphocytes are activated in lymph nodes by antigen-presenting cells. Following activation, T cells up-regulate the chemokine receptor CXCR3, which allows them to infiltrate inflamed tissues by a migratory process named chemotaxis. To do so, CXCR3 allows the cells to detect concentration gradients of the chemokines CXCL11 and CXCL10 which are secreted locally, at the inflammation site. The chemokine gradient represents a directional cue, indicating to cells in which direction to migrate. Chemokine gradients must be regulated to assure an appropriate immune response. However, how these gradients are formed, maintained and eliminated is not well understood. It has been shown in other contexts that cells participate in gradient shaping. To do so, they express specialised chemokine receptors who scavenge chemokines, reducing chemokine levels in the environment. These receptors are considered atypical because they do not induce chemotaxis. In this work, we provide evidence for the regulation of the chemokines CXCL11 and CXCL10 that is in line with self-generation of chemokine gradients by chemotaxing activated T cells.
28

Investigation of the non-canonical roles and regulation mechanisms of β-arrestin 1/2

Sokrat, Badr 04 1900 (has links)
Les récepteurs couplés aux protéines G (RCPG) constituent la plus grande famille de récepteurs à domaines transmembranaires et sont impliqués dans divers processus biologiques, ce qui en fait une cible privilégiée pour le développement de médicaments. Parmi les protéines qui régulent la signalisation des RCPG, les β-arrestines sont impliquées dans plusieurs fonctions canoniques telles que la désensibilisation, l'internalisation et le trafic des récepteurs. En outre, la β-arrestine accomplit aussi des fonctions non-canoniques en agissant comme un échafaudage pour des complexes de signalisation notamment pour la voie MAPK et ainsi favorise certaines voies de signalisation intracellulaire. La présente thèse visait à explorer des fonctions non-canoniques et de nouveaux mécanismes possibles de régulation de la β-arrestine induite par l'activation des RCPG. Le premier projet visait à mettre en évidence le mécanisme de trafic des protéines G de la membrane plasmique vers les endosomes et le rôle que joue la β-arrestine dans ce processus. Nous avons montré que la sous-unité Gαs se dissocie de la membrane plasmique indépendamment de la β-arrestine après l'activation des récepteurs, alors que le dimère Gβγ nécessite la présence de la β-arrestine. Nous avons également mis en évidence la formation d'un complexe composé du récepteur V2 de la vasopressine, de la β-arrestine et de l'hétérodimère Gβγ et que ce complexe est crucial pour la translocation des protéines G vers les endosomes. Cette étude met en évidence le rôle de la β-arrestine dans le trafic endosomal des protéines G et établit les bases pour expliquer sa contribution dans la médiation de la signalisation soutenue des protéines G dans les endosomes. Le second projet avait pour objectif d'explorer le rôle de l'ubiquitination du récepteur du glucagon (GCGR) sur sa signalisation et les fonctions de la β-arrestine. Nous avons montré que l'état d'ubiquitination de ce récepteur cause un biais de signalisation, car le GCGR déubiquitiné présente une diminution du couplage et de l'activité des protéines G alors que la liaison à la β-arrestine est augmentée. Ceci contribue à l’activation de la voie de signalisation MAPK p38 de manière dépendante de la β-arrestine 1. Nous avons également montré que le biais en faveur de la β-arrestine ne réduit pas la sécrétion d'insuline médiée par le GCGR dans les cellules β pancréatiques. Cette étude suggère que la sécrétion d’insuline dépendante du GCGR implique à la fois une signalisation dépendante des protéines G, mais aussi de la β-arrestine. Le statut d'ubiquitination du GCGR oriente la signalisation du récepteur par différents effecteurs pour réguler la sécrétion d'insuline et l'homéostasie du glucose. Le troisième projet visait à identifier de nouveaux interacteurs des β-arrestines 1/2 et à caractériser le rôle de ces interactions dans le contexte de la signalisation des RCPG. Nous avons identifié plus de 100 nouveaux interacteurs potentiels des β-arrestines 1/2 en utilisant l'approche protéomique BioID. Nous avons confirmé l'interaction de l'enzyme atypique de conjugaison de l'ubiquitine UBE2O avec les β-arrestines. Nous avons également montré que UBE2O module le trafic des β-arrestines entre la membrane plasmique et les endosomes. Cette étude ouvre de nouvelles voies pour explorer des fonctions potentielles des β-arrestines médiées par leurs liaisons à des interacteurs jusqu'alors non identifiés. Les résultats compilés dans cette thèse permettent de dresser un tableau plus étendu des mécanismes régulant les fonctions de la β-arrestine ainsi que de nouveaux rôles potentiels que cette protéine joue dans la signalisation des RCPG. La caractérisation des fonctions non-canoniques et des mécanismes de régulation de la β-arrestine est une avenue prometteuse qui pourrait mener au développement de thérapies ciblant les RCPG. / G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are involved in various biological processes, making them an interesting target for drug discovery. GPCR signaling is regulated by various proteins, including the β-arrestin family that mediate various canonical functions such as receptor desensitization, internalization, and trafficking. β-arrestin also fulfills certain non-canonical roles and has been shown to trigger intracellular signaling by acting as a scaffold for signaling complexes such as for the MAPK pathway. The present thesis aimed to explore non-canonical functions and possible novel mechanism of regulation of β-arrestin following GPCR activation. The objective of the first project was to uncover G protein trafficking mechanism from the plasma membrane to the endosomes and the role that β-arrestin plays in this process. We showed that the Gαs subunit dissociates from the plasma membrane independently of β-arrestin after receptor activation while the Gβγ dimer requires β-arrestin for its trafficking. We also revealed the formation of a complex composed of the vasopressin V2 receptor, β-arrestin, and the Gβγ heterodimer and that this complex is critical for G protein translocation to the endosomes. This study highlights the role of β-arrestin in Gβγ trafficking and lays the basis for explaining the role of β-arrestin in mediating sustained endosomal G protein signaling. The aim of the second project was to explore the role of the glucagon receptor (GCGR) ubiquitination on signaling and β-arrestin functions. We showed that the ubiquitination state of the receptor controls signaling bias as a deubiquitinated GCGR exhibits decreased G protein coupling and activity while β-arrestin binding is enhanced. Deubiquitinated GCGR signaling is also redirected to a β-arrestin 1-dependent p38 MAPK pathway. We also revealed that this β-arrestin bias does not reduce GCGR-mediated insulin secretion in pancreatic β-cells. This study suggests that GCGR-dependent insulin secretion involves both G-protein and β-arrestin-dependent signaling. The ubiquitination status of GCGR directs signaling through different effectors to regulate insulin secretion and glucose homeostasis. The third project aimed to identify novel interactors of β-arrestin 1/2 and characterize the role of these interactions in the context of GPCR signaling. We identified over 100 new β-arrestin 1/2 potential interactions using the BioID proteomic approach. We confirmed the interaction of the atypical ubiquitin conjugating enzyme UBE2O with β-arrestin by co-immunoprecipitation and by BRET. We also showed that UBE2O modulates β-arrestin trafficking between the plasma membrane and early endosomes. The results of this study open new avenues to explore novel functions and regulation mechanisms of β-arrestin mediated by their interactions with previously unidentified interactors. The findings compiled in this thesis shed light on a broader picture of the mechanisms regulating β-arrestin functions, as well as the potential novel roles this protein plays in GPCR signaling. The characterization of non-canonical functions and regulatory mechanisms of β-arrestin is an exciting avenue that could be important in the development of future therapies targeting GPCRs.
29

Étude des déterminants moléculaires de la signalisation des récepteurs couplés aux protéines G et développement d'outils pour l'étude de l'effecteur bêta-arrestine.

Audet, Martin 08 1900 (has links)
Les récepteurs couplés aux protéines G (RCPG) constituent la plus grande famille de protéines membranaires du génome humain. Ils transmettent les signaux extracellulaires provenant de plusieurs stimuli comme les odeurs, les ions, les hormones et les neurotransmetteurs, à l'intérieur des cellules. En se liant aux RCPGs, ces molécules contribuent à la stabilisation des changements conformationnels activateurs qui se propagent jusqu'au domaine intracellulaire des récepteurs. Ces derniers engagent ensuite un ou plusieurs effecteurs, comme les protéines G hétérotrimériques et les β-arrestines (βarrs), qui activent une cascade d'événements moléculaires menant à la réponse cellulaire.Récemment, la publication de structures cristallines de RCPGs liant des ligands diffusibles a offert une opportunité de raffiner à une résolution atomique les modèles des mécanismes de transduction des signaux. Dans la première partie de cette thèse, nous avons donc exploré les déterminants de la signalisation du récepteur prototypique β2-adrénergique (β2AR), induite par les β-bloqueurs. En ne tenant compte que de leur efficacités sur le β2AR dans les voies de l'adénylate cyclase (AC) et des protéines kinases activées par les facteurs mitogéniques (MAPK), les β-bloqueurs peuvent être classés en 3 groupes distincts (agoniste inverse AC / agoniste MAPK, antagoniste neutre AC / agoniste MAPK et agoniste inverse AC / agoniste inverse MAPK). Afin de déterminer le lien entre leur efficacité et leur mode de liaison, nous avons réalisé des expériences d'arrimages moléculaires in silico entre des β-bloqueurs de chacun des groupes et la structure cristalline du β2AR liée au carazolol. De manière intéressante, les ligands à l'intérieur d'un groupe partagent un mode de liaison, alors que ceux des ligands entre les groupes divergent, suggérant que le mode de liaison des β-bloqueurs pourrait être utilisé pour prédire leur l'efficacité. En accord avec cette hypothèse, nous avons prédit et confirmé l'efficacité agoniste MAPK du carazolol, un inverse agoniste AC du β2AR se liant au récepteur de manière similaire au groupe inverse agoniste AC / agoniste MAPK. De manière intéressante, le groupement aryl des ligands agonistes inverses agonistes AC / agoniste MAPK, le seul groupement chimique variable de ce groupe, est prédite pour lier la région des 3e et 5e hélices transmembranaires (TM3 et TM5). Nous avons donc émis l'hypothèse que cette région pourrait être un déterminant de l'efficacité de ces ligands. En accord avec cette dernière, la mutation de 2 résidus (T118I, S203A) localisés proches du site de liaison des groupements aryls des β-bloqueurs, prévient l'efficacité agoniste inverse de l'ICI-118551 sur la voie de l'AC sans affecter l'efficacité d'un agoniste, indiquant que cette région est importante pour la transmission de l'effet agoniste inverse, du moins sur la voie de l'AC. Les βarrs sont des protéines d'échafaudage qui coordonnent la formation de complexes avec plusieurs dizaines d'effecteurs de signalisation. Originalement identifiées pour leur rôle dans la désensibilisation et l'internalisation des RCPGs, elles sont aussi d'importants effecteurs de la signalisation des RCPGs indépendante des protéines G hétérotrimériques. Cependant, contrairement aux protéines G hétérotrimériques, il n'existe que peu d'outils pour les étudier. Ainsi, la deuxième partie de la thèse est dédiée au développement d'outils pour l'étude des βarrs. À cette fin, nous avons d'abord tenté de transposer une méthode de mesure de l'interaction entre 2 protéines par la technologie de transfert d'énergie de bioluminescence par résonance (BRET) en microscopie et chez des souris transgéniques afin de mesurer de manière subcellulaire et dans un contexte natif l'engagement de la βarr à des RCPGs. Ainsi, nous avons établi les preuves de principe que le BRET peut être utilisé pour localiser l'interaction entre la βarr et le récepteur de la vasopressine de type 2 (V2R) sur une cellule au microscope et pour détecter l'interaction entre la βarr et le β2AR sur des tissus de souris transgéniques exprimant ces protéines fusionnées avec des partenaires BRET. Finalement, il n'existe aucun inhibiteur pharmacologique ciblant les βarrs. Ainsi, grâce à la combinaison d'approches de criblage virtuel sur un modèle de la structure des βarrs et d'essais de validation cellulaire, nous avons développé un inhibiteur pharmacologique des βarrs. À l'aide de cet outil, nous avons confirmé l'implication des βarrs dans l'activation des MAPK par le V2R, mais aussi montré un nouveau rôle des βarrs dans le recyclage du β2AR. Les connaissances et outils développés dans cette thèse permettront de mieux comprendre les déterminants moléculaires de la signalisation des RCPGs et entre autres, grâce à des nouvelles approches pour étudier le rôle cellulaire et physiologique des βarrs. / G Protein-Coupled Receptors (GPCR) are members of the largest family of membrane protein in the human genome. They transduce the signal from a variety of stimuli like odors, ions, hormones and neurotransmitters, inside the cells. By binding directly to the receptors, these molecules stabilize activating conformational changes that are allosterically propagated through transmembrane to intracellular domains. Effectors like heterotrimeric G protein and β-arrestins (βarrs) are then engaged by activated receptors and trigger a cascade of signalling events leading to a cellular response. Recently, the resolution of the crystal structure of GPCR that bind to freely diffusible ligands provided the opportunity to refine at an atomic level the models describing the mecanisms of receptor signal transduction. In the first section of this thesis, we have explored the determinants of the prototypical β2-adrenergic receptor (β2AR) signalling induced by β-blockers. Given their efficacy on Adenylate Cyclase (AC) and Mitogen-Activated Protein Kinase (MAPK) pathways, β-blockers can be classified within 3 signalling groups (AC inverse agonist / MAPK agonist, AC neutral antagonist / MAPK agonist and inverse agonist for AC and MAPK). In order to gain insight on the relation between their efficacy and binding mode, we performed in silico binding experiments between β-blockers from each group and the β2AR crystal structure bound to carazolol. Interestingly, ligands within a group share similar binding mode in contrast to those of different groups, suggesting that β-blockers binding mode could be used to predict their efficacy. In accordance to this hypothesis, we have predicted and confirmed that carazolol, an AC inverse agonist that bind to β2AR in a similar way than the AC inverse agonist / MAPK agonist group, is indeed an agonist for MAPK pathway. Moreover, aryl chemical function from AC inverse agonist / MAPK agonist ligands, barely the only variable structure feature of this group, was predicted to bind β2AR nearby the transmembrane helices 3 and 5 (TM3 and TM5). We thus have predicted that this region would be a determinant of the AC inverse agonist / MAPK agonist ligand efficacy. Accordingly, we found that mutation of 2 residues (T118I, S203A) close to the aryl moiety binding site prevents inverse agonist efficacy of ICI-118551 on AC pathway, without affecting agonist efficacy, indicating that this receptor region is important for the efficacy of these group of β-blockers, at least on AC inverse agonism.βarrs are scaffolding proteins that coordinate protein complex formation with dozen of signalling effectors. First identified for their role on GPCR desensitization and internalization, βarrs are also an important heterotrimeric G protein independent GPCR signalling effectors. However, in contrast to heterotrimeric G protein, only a few tools are available for their study. Thus, the second section of this thesis aim at developing tools for the study of βarrs. For this purpose, we had attempted to transpose a method to measure protein-protein interaction that use Bioluminescence Resonance Energy Transfer (BRET) technology, in microscopy and in transgenic mice, in order to detect subcellular localization and in a native context the engagement of βarr to RCPGs. Thus, we have established a proof of principle that BRET can be combined with microscopy to locate an interaction between βarr and the type 2 vasopressin receptor (V2R) within a cell. Moreover, we have established a second proof of principle that we can detect βarrs recruitment to β2AR on cells extracted from tissues of transgenic mice expressing these proteins fused to BRET partner. Finally, there is no pharmacological inhibitor of βarrs. Thus, using a combination of virtual screening and cellular validation approches, we have developed the first pharmacological βarrs inhibitor. With this novel tool, we have confirmed the implication of βarrs in V2R-mediated MAPK activation, but also showed a new role of βarrs in β2AR recycling.The finding and the tools presented in this thesis should allow to better understand the molecular determinants of GPCR signalling, and among other things, by proposing new tools to study βarrs cellular and physiological roles.
30

Novel insights on ghrelin receptor signaling in energy homeostasis and feeding behavior using the GhsrQ343X mutant rat model / Nouvelles perspectives sur la signalisation du récepteur ghréline dans l’homéostasie énergétique et le comportement alimentaire grâce au modèle de rat mutant GhsrQ343X

Marion, Candice 30 October 2017 (has links)
La ghréline acylée, une hormone produite par l’estomac, favorise la prise de poids corporel, majoritairement sous forme de masse grasse, par le biais de divers mécanismes centraux et périphériques via le récepteur sécrétagogue de l’hormone de croissance (GHSR). Le GHSR est un récepteur couplé aux protéines G qui, en plus de répondre à la ghréline acylée, possède une signalisation indépendante de la ghréline par le biais de son activité constitutive ou par une modulation de réponses dopaminergiques via oligomérisation du GHSR avec des récepteurs dopaminergiques. Malgré les puissantes réponses pharmacologiques à la ghréline acylée, des modèles animaux capables d’appréhender la complexité du système ghréline acylée-GHSR in vivo manquent, ce qui a considérablement ralenti l’élucidation des rôles physiologiques de cette hormone et de son récepteur. En effet, les modèles génétiques murins générés jusqu’à présent manquent de spécificité au niveau de l’hormone (incapacité à discriminer la ghréline acylée de la ghréline désacylée), et/ou au niveau du GHSR (incapacité à discriminer les différents modes de signalisation du GHSR). Dans ce contexte, de nouveaux modèles qui impacteraient de façon différentielle les voies de signalisation du GHSR seraient des outils pertinents pour contribuer au déchiffrage du système ghréline acylée-GHSR in vivo. Nous nous sommes ainsi attachés à caractériser un modèle de rats porteur d’une mutation ponctuelle dans le Ghsr qui prédit la délétion d’un domaine régulateur dans l’extrémité C-terminale du GHSR (GhsrQ343X). Dans des modèles cellulaires, nous avons montré que cette mutation découple le GHSR des processus d’internalisation du récepteur et de recrutement de la β-arrestine induits par la ghréline acylée, tout en augmentant la réponse aux agonistes du GHSR dans la voie des protéines G. Conformément à ce mécanisme, les rats mutants homozygotes GhsrM/M ont une réponse accrue à l’administration d’agonistes du GHSR sur le plan de la libération d’hormone de croissance, de la prise alimentaire ou de l’activité locomotrice. L’exploration physiologique et comportementale des rats GhsrM/M indique que la mutation GhsrQ343X est associée à une augmentation du poids et de l’adiposité indépendamment de la prise alimentaire, une diminution de l’oxydation globale des acides gras, de la flexibilité métabolique et de la tolérance au glucose, sans impact critique sur la prise alimentaire homéostatique. En outre, étant donné que la mutation GhsrQ343X n’augmente pas les niveaux circulants de ghréline, le phénotype métabolique général des rats GhsrM/M est en accord avec une sensibilité augmentée du GHSR en réponse au tonus endogène de ghréline acylée. Enfin, des résultats préliminaires suggèrent que la mutation GhsrQ343X pourrait être associée à des altérations relatives aux fonctions de récompense et de mémoire dont les mécanismes sous-jacents restent à décrypter. En résumé, nous proposons le modèle de rat mutant GhsrQ343X comme un nouvel outil, plus spécifique que les modèles murins d’invalidation génétique, pour explorer in vivo la signalisation du GHSR dans diverses fonctions biologiques, et à plus long terme aider au design de composés pharmacologiques ciblant le GHSR efficaces dans un cadre clinique. / The stomach-derived hormone acyl ghrelin promotes body weight gain, mostly in the form of fat mass, by means of several central and peripheral mechanisms mediated by the growth hormone secretagogue receptor (GHSR). The GHSR is a G protein-coupled receptor that, in addition to respond to acyl ghrelin, displays agonist-independent signaling through high constitutive activity and possibly heteromerization with dopamine receptors. Despite the potent biological properties of exogenous acyl ghrelin, the lack of animal models able to apprehend the complexity of the acyl ghrelin-GHSR system in vivo has been hampering the elucidation of its physiological roles. Indeed, genetic mouse models generated so far lack specificity either at the level of the hormone (not able to discriminate between acyl ghrelin versus desacyl ghrelin) and/or at the level of the GHSR (not able to discriminate between GHSR signaling modes). In this context, new models differentially affecting GHSR signaling pathways would represent valuable tools to decipher the acyl ghrelin-GHSR system in vivo. We therefore aimed at characterizing a new rat model carrying a point mutation in Ghsr that predicts truncation of a regulatory domain in the C-terminus, the GhsrQ343X mutation. In cellular models, this mutation was found to uncouple the GHSR from agonist-dependent receptor internalization and β-arrestin recruitment, while enhancing GHSR responsiveness in the G protein pathway. Accordingly, homozygous mutant GhsrM/M rats show enhanced responsiveness to exogenous GHSR agonists in terms of growth hormone release, food intake and locomotor activity. Physiological and behavioral exploration of GhsrM/M rats supports that the GhsrQ343X mutation is associated with increased body weight gain and adiposity independently of calorie intake, reduced whole-body fat oxidation, metabolic flexibility and glucose tolerance, without any critical impact on homeostatic feeding behavior. Moreover, given that circulating ghrelin levels are not increased by the GhsrQ343X mutation, the overall metabolic phenotype of GhsrM/M rats is consistent with enhanced GHSR sensitivity to the endogenous tone of acyl ghrelin. Furthermore, preliminary results suggest that the GhsrQ343X mutation could be associated with behavioral alterations related to reward and memory functions, through mechanisms that remain to be elucidated. Altogether, we propose the GhsrQ343X mutant rat model as a novel tool, more specific than knockout mouse models in its mechanism-of-action, to explore GHSR signaling across biological functions in vivo, and ultimately help in the design of efficient GHSR-targeting drugs.

Page generated in 0.0457 seconds