• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 175
  • 109
  • 26
  • 19
  • 4
  • 1
  • Tagged with
  • 334
  • 107
  • 94
  • 90
  • 90
  • 78
  • 63
  • 61
  • 60
  • 58
  • 54
  • 53
  • 52
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Homology-Based Functional Proteomics By Mass Spectrometry and Advanced Informatic Methods

Liska, Adam J. 16 November 2003 (has links) (PDF)
Functional characterization of biochemically-isolated proteins is a central task in the biochemical and genetic description of the biology of cells and tissues. Protein identification by mass spectrometry consists of associating an isolated protein with a specific gene or protein sequence in silico, thus inferring its specific biochemical function based upon previous characterizations of that protein or a similar protein having that sequence identity. By performing this analysis on a large scale in conjunction with biochemical experiments, novel biological knowledge can be developed. The study presented here focuses on mass spectrometry-based proteomics of organisms with unsequenced genomes and corresponding developments in biological sequence database searching with mass spectrometry data. Conventional methods to identify proteins by mass spectrometry analysis have employed proteolytic digestion, fragmentation of resultant peptides, and the correlation of acquired tandem mass spectra with database sequences, relying upon exact matching algorithms; i.e. the analyzed peptide had to previously exist in a database in silico to be identified. One existing sequence-similarity protein identification method was applied (MS BLAST, Shevchenko 2001) and one alternative novel method was developed (MultiTag), for searching protein and EST databases, to enable the recognition of proteins that are generally unrecognizable by conventional softwares but share significant sequence similarity with database entries (~60-90%). These techniques and available database sequences enabled the characterization of the Xenopus laevis microtubule-associated proteome and the Dunaliella salina soluble salt-induced proteome, both organisms with unsequenced genomes and minimal database sequence resources. These sequence-similarity methods extended protein identification capabilities by more than two-fold compared to conventional methods, making existing methods virtually superfluous. The proteomics of Dunaliella salina demonstrated the utility of MS BLAST as an indispensable method for characterization of proteins in organisms with unsequenced genomes, and produced insight into Dunaliella?s inherent resilience to high salinity. The Xenopus study was the first proteomics project to simultaneously use all three central methods of representation for peptide tandem mass spectra for protein identification: sequence tags, amino acids sequences, and mass lists; and it is the largest proteomics study in Xenopus laevis yet completed, which indicated a potential relationship between the mitotic spindle of dividing cells and the protein synthesis machinery. At the beginning of these experiments, the identification of proteins was conceptualized as using ?conventional? versus ?sequence-similarity? techniques, but through the course of experiments, a conceptual shift in understanding occurred along with the techniques developed and employed to encompass variations in mass spectrometry instrumentation, alternative mass spectrum representation forms, and the complexities of database resources, producing a more systematic description and utilization of available resources for the characterization of proteomes by mass spectrometry and advanced informatic approaches. The experiments demonstrated that proteomics technologies are only as powerful in the field of biology as the biochemical experiments are precise and meaningful.
232

Congenital Disorders of Glycosylation IIj (CDG-IIj): Identifizierung eines Defekts der COG6-Untereinheit des Conserved Oligomeric Golgi-Komplexes / Congenital Disorders of Glycosylation IIj (CDG-IIj): identification of a defect in COG6 subunit of conserved oligomeric Golgi complex

Lübbehusen, Jürgen 23 April 2009 (has links)
No description available.
233

Structural and functional analysis of exportin-cargo recognition / Strukturelle und funktionelle Analyse der Exportin-Kargo-Erkennung

Güttler, Thomas 17 September 2010 (has links)
No description available.
234

Untersuchungen zur Wirkstoffproduktion extremophiler Mikroorganismen sowie Biosynthese und Derivatisierung ausgewählter mikrobieller Naturstoffe / Investigations on the Production of Bioactive Metabolites by Extremophilic Microorganisms as well as Biosynthesis and Derivatization of Selected Microbial Natural Products

Kubicek-Pejic, Adrijana 31 October 2007 (has links)
No description available.
235

Tryptamines as Ligands and Modulators of the Serotonin 5‑HT2A Receptor and the Isolation of Aeruginascin from the Hallucinogenic Mushroom Inocybe aeruginascens / Tryptamine als Liganden und Modulatoren des 5‑HT2A Serotonin-Rezeptors und die Isolierung von Aeruginascin aus dem halluzinogenen Pilz Inocybe aeruginascens

Jensen, Niels 04 November 2004 (has links)
No description available.
236

Sticky triangles: New tools for experimental phasing of biological macromolecules / Sticky triangles: Neue Werkzeuge für die experimentelle Phasierung von biologischen Makromolekülen

Beck, Tobias 16 September 2010 (has links)
No description available.
237

Optimising His-tags for purification and phasing / Optimierte His-tags für Aufreinigung und Phasierung

Groβe, Christian 05 October 2010 (has links)
No description available.
238

Homology-Based Functional Proteomics By Mass Spectrometry and Advanced Informatic Methods

Liska, Adam J. 16 December 2003 (has links)
Functional characterization of biochemically-isolated proteins is a central task in the biochemical and genetic description of the biology of cells and tissues. Protein identification by mass spectrometry consists of associating an isolated protein with a specific gene or protein sequence in silico, thus inferring its specific biochemical function based upon previous characterizations of that protein or a similar protein having that sequence identity. By performing this analysis on a large scale in conjunction with biochemical experiments, novel biological knowledge can be developed. The study presented here focuses on mass spectrometry-based proteomics of organisms with unsequenced genomes and corresponding developments in biological sequence database searching with mass spectrometry data. Conventional methods to identify proteins by mass spectrometry analysis have employed proteolytic digestion, fragmentation of resultant peptides, and the correlation of acquired tandem mass spectra with database sequences, relying upon exact matching algorithms; i.e. the analyzed peptide had to previously exist in a database in silico to be identified. One existing sequence-similarity protein identification method was applied (MS BLAST, Shevchenko 2001) and one alternative novel method was developed (MultiTag), for searching protein and EST databases, to enable the recognition of proteins that are generally unrecognizable by conventional softwares but share significant sequence similarity with database entries (~60-90%). These techniques and available database sequences enabled the characterization of the Xenopus laevis microtubule-associated proteome and the Dunaliella salina soluble salt-induced proteome, both organisms with unsequenced genomes and minimal database sequence resources. These sequence-similarity methods extended protein identification capabilities by more than two-fold compared to conventional methods, making existing methods virtually superfluous. The proteomics of Dunaliella salina demonstrated the utility of MS BLAST as an indispensable method for characterization of proteins in organisms with unsequenced genomes, and produced insight into Dunaliella?s inherent resilience to high salinity. The Xenopus study was the first proteomics project to simultaneously use all three central methods of representation for peptide tandem mass spectra for protein identification: sequence tags, amino acids sequences, and mass lists; and it is the largest proteomics study in Xenopus laevis yet completed, which indicated a potential relationship between the mitotic spindle of dividing cells and the protein synthesis machinery. At the beginning of these experiments, the identification of proteins was conceptualized as using ?conventional? versus ?sequence-similarity? techniques, but through the course of experiments, a conceptual shift in understanding occurred along with the techniques developed and employed to encompass variations in mass spectrometry instrumentation, alternative mass spectrum representation forms, and the complexities of database resources, producing a more systematic description and utilization of available resources for the characterization of proteomes by mass spectrometry and advanced informatic approaches. The experiments demonstrated that proteomics technologies are only as powerful in the field of biology as the biochemical experiments are precise and meaningful.
239

Mechanisms of proton translocation in Methanosarcina mazei Gö1 / Mechanismen der Protonentranslokation in Methanosarcina mazei Gö1

Bäumer, Sebastian Andreas 22 June 2001 (has links)
No description available.
240

The tyrosine regulated DAHP synthase and the biosynthetic pathway of aromatic amino acids in Saccharomyces cerevisiae / Die Tyrosin regulierte DAHP Synthase und der Biosyntheseweg der aromatischen Aminosäuren in Saccharomyces cerevisiae

Grzeganek, Andrea 02 November 2005 (has links)
No description available.

Page generated in 0.0488 seconds