• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 33
  • 16
  • 14
  • 13
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Circuit and System Design for mm-wave Radar and Radio Applications

Sarkas, Ioannis 13 August 2013 (has links)
Recent advancements in silicon technology have paved the way for the development of integrated transceivers operating well inside the mm-wave frequency range (30 - 300 GHz). This band offers opportunities for new applications such as remote sensing, short range radar, active imaging and multi-Gb/s radios. This thesis presents new ideas at the circuit and system level for a variety of such applications, up to 145 GHz and in both state-of-the-art nanoscale CMOS and SiGe BiCMOS technologies. After reviewing the theory of operation behind linear and power amplifiers, a purely digital, scalable solution for power amplification that takes advantage of the significant ft/fmax improvement in pFETs as a result of strain engineering in nanoscale CMOS is presented. The proposed Class-D power amplifier, features a stacked, cascode CMOS inverter output stage, which facilitates high voltage operation while employing only thin-oxide devices in a 45 nm SOI CMOS process. Next, a single-chip, 70-80 GHz wireless transceiver for last-mile point-to-point links is described. The transceiver was fabricated in a 130 nm SiGe BiCMOS technology and can operate at data rates in excess of 18 Gbps. The high bitrate is accomplished by taking advantage of the ample bandwidth available at the W-band frequency range, as well as by employing a direct QPSK modulator, which eliminates the need for separate upconversion and power amplification. Lastly, the system and circuit level implementation of a mm-wave precision distance and velocity sensor at 122 and 145 GHz is presented. Both systems feature a heterodyne architecture to mitigate the receiver 1/f noise, as well as self-test and calibration capabilities along with simple packaging techniques to reduce the overall system cost.
22

Silicon-based millimeter-wave front-end development for multi-gigabit wireless applications

Sarkar, Saikat 02 November 2007 (has links)
With rapid advances in semiconductor technologies and packaging schemes, wireless products have become more versatile, portable, inexpensive, and user friendly over last few decades. However, the ever-growing demand of consumers to share information efficiently at higher speeds requires higher data rates, increased functionality, lower cost, and more reliability. The 60-GHz-frequency band, with 7 GHz license-free bandwidth addresses, such demands, and promises a low-cost multi-Gbps wireless transmission with a power budget in the order of 100 mW. This dissertation presents the systematic development of key building blocks and integrated 60-GHz-receiver solutions. Two different approaches are investigated and implemented in this dissertation: (1) low-cost SiGe-based direct-conversion low-power receiver front-end utilizing gain-boosting techniques in the front-end low-noise amplifier, and (2) CMOS-based heterodyne receiver front-end suitable for high-performance single-chip 60 GHz transceiver solution. The ASK receiver chip, implemented using 0.18 ?m SiGe, presents a complete antenna-to-baseband multi-gigabit 60 GHz solution with the lowest reported power budget (25 pJ/bit) to date. The subharmonic direct conversion front-end, implemented using 0.18 ?m SiGe, presents excellent conversion properties with a 4 GHz DSB RF bandwidth. On the other hand, the CMOS heterodyne implementation of the 60 GHz front-end receiver, targeted towards a robust, single-chip, high-performance, low-power, and integrated 60 GHz transceiver solution, presents the most wideband receiver front-end reported to date. Finally, different multi-band and tunable millimeter-wave circuits are presented towards the future implementation of cognitive and multi-band millimeter-wave radio.
23

Modelling, characterisation and application of GaN switching devices

Murillo Carrasco, Luis January 2016 (has links)
The recent application of semiconductor materials, such as GaN, to power electronics has led to the development of a new generation of devices, which promise lower losses, higher operating frequencies and reductions in equipment size. The aim of this research is to study the capabilities of emerging GaN power devices, to understand their advantages, drawbacks, the challenges of their implementation and their potential impact on the performance of power converters. The thesis starts by presenting the development of a simple model for the switching transients of a GaN cascode device under inductive load conditions. The model enables accurate predictions to be made of the switching losses and provides an understanding of the switching process and associated energy flows within the device. The model predictions are validated through experimental measurements. The model reveals the suitability of the cascode device to soft-switching converter topologies. Two GaN cascode transistors are characterised through experimental measurement of their switching parameters (switching speed and switching loss). The study confirms the limited effect of the driver voltage and gate resistance on the turn-off switching process of a cascode device. The performance of the GaN cascode devices is compared against state-of-the-art super junction Si transistors. The results confirm the feasibility of applying the GaN cascode devices in half and full-bridge circuits. Finally, GaN cascode transistors are used to implement a 270V - 28V, 1.5kW, 1 MHz phase-shifted full-bridge isolated converter demonstrating the use of the devices in soft-switching converters. Compared with a 100 kHz silicon counterpart, the magnetic component weight is reduced by 69% whilst achieving a similar efficiency of 91%.
24

Návrh převodníku DA s plně diferenčním výstupem v technologii CMOS / Design of DA converter with fully differential output in CMOS technology

Mácha, Petr January 2017 (has links)
This diploma thesis deals with the design of eight-bit digital to analog coverter with fully differential outputs in technology I3T25 of ON Semiconductor company. The work contains the description of basic structures and characteristics of digital to analog converters. The main focus of the work is to design a converter and auxiliary circuits at the transistor level. The functionality of designed circuits is verified by simulation environment Cadence.
25

A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region

Singh, Rishi Pratap 15 March 2011 (has links) (PDF)
This thesis demonstrates that the composite cascode differential stage, operating in the subthreshold region, can form the basis of a high gain (113 dB) and low-power op amp (28.1 µW). The circuit can be fabricated without adding a compensation capacitance. The advantages of this architecture include high voltage gain, low bandwidth, low harmonic distortion, low quiescent current and power, and small chip area. These advantages suggest that this design might be well-suited for biomedical applications where low power, low noise bio-signal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range is required.
26

Class-e Cascode Power Amplifier Analysis And Design For Long Term Reliability

Kutty, Karan 01 January 2010 (has links)
This study investigated the Class-E power amplifier operating at 5.2 GHz. Since the operation of this amplifier applies a lot of stress on the switching transistor, a cascode topology was applied in order to reduce the drain-source voltage stress. Such an amplifier was designed and optimized in order to improve stability, power added efficiency, and matching. A layout for the said design was then created to be fabrication-ready using the TSMC 0.18 um technology. Post-layout simulations were performed in order to realize a more realistic circuit performance with the layout design in mind. Long-term stress effects, such as oxide breakdown, on the key transistors were modeled and simulated in order to achieve an understanding of how leakage currents affect the overall circuit performance. Simulated results were compared and contrasted against theoretical understanding using derived equations. Recommendations for future advancements were made for modification and optimization of the circuit by the application of other stress reduction strategies, variation in the class-E topology, and improvement of the driver stage.
27

Design of a Low Power, High Performance Track-and-Hold Circuit in a 0.18µm CMOS Technology / Design av en lågeffekts högprestanda track-and-hold krets i en 0.18µm CMOS teknologi.

Säll, Erik January 2002 (has links)
This master thesis describes the design of a track-and-hold (T&H) circuit with 10bit resolution, 80MS/s and 30MHz bandwidth. It is designed in a 0.18µm CMOS process with a supply voltage of 1.8 Volt. The circuit is supposed to work together with a 10bit pipelined analog to digital converter. A switched capacitor topology is used for the T&H circuit and the amplifier is a folded cascode OTA with regulated cascode. The switches used are of transmission gate type. The thesis presents the design decisions, design phase and the theory needed to understand the design decisions and the considerations in the design phase. The results are based on circuit level SPICE simulations in Cadence with foundry provided BSIM3 transistor models. They show that the circuit has 10bit resolution and 7.6mW power consumption, for the worst-case frequency of 30MHz. The requirements on the dynamic performance are all fulfilled, most of them with large margins.
28

Design of a Low Power, High Performance Track-and-Hold Circuit in a 0.18µm CMOS Technology / Design av en lågeffekts högprestanda track-and-hold krets i en 0.18µm CMOS teknologi.

Säll, Erik January 2002 (has links)
<p>This master thesis describes the design of a track-and-hold (T&H) circuit with 10bit resolution, 80MS/s and 30MHz bandwidth. It is designed in a 0.18µm CMOS process with a supply voltage of 1.8 Volt. The circuit is supposed to work together with a 10bit pipelined analog to digital converter. </p><p>A switched capacitor topology is used for the T&H circuit and the amplifier is a folded cascode OTA with regulated cascode. The switches used are of transmission gate type. </p><p>The thesis presents the design decisions, design phase and the theory needed to understand the design decisions and the considerations in the design phase. </p><p>The results are based on circuit level SPICE simulations in Cadence with foundry provided BSIM3 transistor models. They show that the circuit has 10bit resolution and 7.6mW power consumption, for the worst-case frequency of 30MHz. The requirements on the dynamic performance are all fulfilled, most of them with large margins.</p>
29

Analyse et modélisation des phénomènes de mismatch des transistors MOSFET avancées / Analysis and modeling of mismatch phenomena for advanced MOSFET‟s

Rahhal, Lama 06 November 2014 (has links)
Afin de réaliser correctement leur fonction, certains blocs analogiques ou numériques comme les miroirs de courant ou les SRAM, nécessitent des paires de transistors MOS électriquement identiques. Cependant, les dispositifs sur silicium, même appariés, subissent des variations locales aléatoires ce qui fait varier leurs performances électriques. Ce phénomène est connu sous le nom désappariement. L'objectif de cette thèse est de comprendre les causes physiques de ce désappariement, de le quantifier et de proposer des solutions pour le réduire. Dans ce contexte, quatre thèmes principaux sont développés. Le premier thème se focalise sur l'optimisation des méthodologies de mesures des phénomènes de désappariement. Une nouvelle méthode de mesure du désappariement de Vt et de β ainsi qu'un nouveau modèle de désappariement de ID sont proposés, analysés et appliqués à des données mesurées sur des technologies 28nm Bulk et FD SOI. Le second thème se concentre sur la caractérisation des différentes configurations de transistor MOS afin de proposer l'architecture optimale en fonction des applications visées. Ainsi, la possibilité de remplacer le LDEMOS par une configuration cascode est analysée en détail. Le troisième thème se focalise sur l'analyse et la modélisation des phénomènes de désappariement des transistors MOS avancés. Trois aspects sont analysés : 1) l'introduction du Ge dans le canal P des technologies 28nm BULK, 2) la suppression de la contribution de la grille sur le désappariement de Vt en utilisant la technologie 20 nm métal-Gate-Last 3) un descriptif des principaux contributeurs au désappariement de Vt, β et ID dans les technologies 28 et 14nm FD SOI. Le dernier thème traite du comportement du désappariement des transistors MOS après vieillissement. Un vieillissement NBTI a été appliqué sur des PMOS de la technologie 28nm FD SOI. Des modèles de comportement de Vt et de β en fonction du nombre de charges fixes ou d'états d'interfaces induits à l'interface Si/SiO2 ou dans l'oxyde sont proposés et analysés. / For correct operation, certain analog and digital circuits, such as current mirrors or SRAM, require pairs of MOS transistors that are electrically identical. Real devices, however, suffer from random local variations in the electrical parameters, a problem referred to as mismatch. The aim of this thesis is to understand the physical causes of mismatch, to quantify this phenomenon, and to propose solutions that enable to reduce its effects. In this context, four major areas are treated. The first one focuses on the optimization of mismatch measurement methodologies. A new technique for the measurement of Vt and β mismatch and an ID mismatch model are proposed, analyzed and applied to experimental data for 28 nm Bulk and FD SOI technologies. The second area focuses on the characterization of different configurations of MOS transistors in order to propose design architectures that are optimized for certain applications. Specifically, the possibility of replacing LDEMOS with transistors in cascode configuration is analyzed. The third area focuses on the analysis and modeling of mismatch phenomena in advanced Bulk and SOI transistors. Three aspects are analyzed: 1) the impact of the introduction of germanium in P channel of 28nm BULK transistors; 2) the elimination of the metal gate contribution to Vt mismatch by using 20nm Gate-last Bulk technology; 3) a descriptive study of the principal contributions to Vt, β and ID mismatch in 28 and 14 nm FD SOI technologies. The last area treats the mismatch trends with transistor aging. NBTI stress tests were applied to PMOS 28nm FD SOI transistors. Models of the Vt and β mismatch trends as a function of the induced interface traps and fixed charges at the Si/SiO2 interface and in the oxide were developed and discussed.
30

Power-Efficient Settling Time Reduction Techniques for a Folded-Cascode Amplifier in 1.8 V, 0.18 um CMOS / Energi-effektiva metoder för att minska insvängningstiden för en folded-cascodeförstärkare i 1.8V, 0.18um CMOS

Johansson, Jimmy January 2017 (has links)
Testability is crucial in today’s complex industrial system on chips (SoCs), where sensitive on-chip analog voltages need to be measured. In such cases, an operational amplifier (opamp) is required to sufficiently buffer the signals before they can drive the chip pad and probe parasitics. A single-stage opamp offers an attractive choice since it is power efficient and eliminates the need for frequency compensation. However, it has to satisfy demanding specifications on its stability, input common mode range, output swing, settling time, closed-loop gain and offset voltage. In this work, the settling time performance of a conventional folded-cascode (FC) opamp is substantially improved. Settling time of an opamp consists of two major components, namely the slewing period and the linear settling period. In order to reduce the settling time significantly without incurring excessive area and power penalty, a prudent circuit implementation that minimizes both these constituents is essential. In this work, three different slew rate enhancement (SRE) circuits have been evaluated through extensive simulations. The SRE candidate providing robust slew rate improvement was combined with a current recycling folded cascode structure, resulting in lower slewing and linear settling time periods. Exhaustive simulations on a FC cascode amplifier with complementary inputs illustrate the effectiveness of these techniques in settling time reduction over all envisaged operating conditions.

Page generated in 0.0195 seconds