Spelling suggestions: "subject:"carleman inequality"" "subject:"carleman unequality""
1 |
Controlabilidade exata local para as trajetórias de um sistema não-linear acoplado.Souza, Diego Araujo de 30 September 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:03Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 876230 bytes, checksum: 3a204615891ef1a7232794e0c75afdc8 (MD5)
Previous issue date: 2010-09-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation is devoted to prove the local exact controllability to the trajectories
for a coupled system, of the Boussinesq kind. In the state system, the
unknowns are the velocity field and pressure of the
uid (y; p), the temperature (-)
and an additional variable c that can be viewed as the concentration of a contaminant
solute. We prove several results, that essentially show that it is sufficient to act
locally in space on the equations satisfied by (-) and c. The controllability property
of this system will be obtained by means of a Carleman inequality for apropriate
system and of a inverse function theorem. / Esta dissertação é dedicada a provar a controlabilidade exata local ás trajetórias
para um sistema acoplado do tipo Boussinesq. No sistema estado, as variáveis desconhecidas
são o campo velocidade e pressão do fluido (y; p), a temperatura - e uma
variável adicional c que pode ser vista como uma concentração de um soluto contaminante.
A propriedade de controlabilidade nula desse sistema será obtida por meio
de uma desigualdade de Carleman para um sistema apropriado e de um teorema de
função inversa.
|
2 |
Problèmes inverses pour des problèmes d'évolution paraboliques à coefficients périodiques / Inverse problems for parabolic evolution problems with periodic coefficientsKaddouri, Isma 23 June 2014 (has links)
Ce travail de thèse est constitué de l'étude de deux problèmes inverses associés à des équations paraboliques à coefficients périodiques. Dans la première partie, on a considéré une équation parabolique à coefficients et condition initiale périodiques. Notre travail a consisté à aborder le cas de coefficient à régularité faible et à minimiser les contraintes d'observations requises pour établir notre résultat de reconstruction du potentiel. On a commencé par établir un résultat d'existence et d'unicité de la solution dans un espace d'énergie adéquat. Ensuite, on a énoncé un principe du maximum adapté aux hypothèses du problème étudié et on a travaillé avec des coefficients mesurables et bornés. Enfin, on a reconstruit le potentiel en établissant une inégalité de Carleman. Le résultat d'identification a été obtenu via une inégalité de stabilité de type Lipschitz. Dans le second travail, on s'est intéressé à la détermination d'un coefficient périodique en espace du terme de réaction dans une équation de réaction-diffusion définie dans l'espace entier $mathbb{R}$. On établit un résultat d'unicité en utilisant un nouveau type d'observations. La nature du problème étudié, posé dans l'espace $mathbb{R}$, nous a permis d'utiliser la notion de vitesse asymptotique de propagation. On a prouvé l'existence de cette vitesse et on l'a caractérisé. On a surdéterminé le problème inverse en choisissant une famille de conditions initiales à décroi-ssance exponentielle. Notre principal résultat est que ce coefficient est déterminé de façon unique, à une symétrie près, par l'observation d'un continuum de vitesses asymptotiques de propagation. / This thesis consists in the study of two problems associated to inverse para-bolic equations with periodic coefficients. We are interested in identifying one coefficient by using two different methods. In the first part, we consider a parabolic equation with periodic coefficients and periodic initial condition. Our work consists to consider the case of coefficient with weak regularity and to minimize the constraints of observations which are required to establish our reconstruction result. We establish a result of existence and uniqueness of the solution in adequate energy space. Then we prove a maximum principle adapted to the hypothesis of the problem studied and we work with measurable and bounded coefficients. Finally, we reconstruct the potential by establishing a Carleman estimate. The identification result was achieved via an inequality of stability. In the second work, we are interested to determine a periodic coefficient of the reaction term defined in the whole space $mathbb{R}$. We establish a uniqueness result by using a new type of observations. The nature of the studied problem allowed us to use the notion of asymptotic speed of propagation. We prove the existence of this speed and we give its characterization. We overdetermin the inverse problem by choosing a family of initial conditions exponentially decaying. Our main result is that the coefficient is uniquely determined up to a symmetry, by the observation of a continuum of asymptotic speed of propagation.
|
3 |
Desigualdade de Carleman global para uma Equação da Onda de Transmissão e Aplicação a um Problema InversoSousa Neto, Gilcenio Rodrigues de 10 May 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1506315 bytes, checksum: c118c0832159e55c3a04343c6d51f74a (MD5)
Previous issue date: 2012-05-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We consider a transmission wave equation in two embedded domains in R2, where
the speed is a1 > 0 in the inner domain and a2 > 0 in the outer domain. We prove a
global Carleman inequality for this problem under the hypothesis that the inner domain is
strongly convex and a1 > a2. As a consequence of this inequality, uniqueness and Lipschitz
stability are obtained for the inverse problem of retrieving a stationary potential for the
wave equation with Dirichlet data and discontinuous principal coeficient from a single time
dependent Neumann boundary measurement. / Considerando uma equação da onda de transmissão em dois domínios imersos em R2,
onde a velocidade é a1 > 0 no domínio interior e a2 > 0 no domínio exterior, provamos
uma desigualdade de Carleman global para este problema sobre a hipótese de o domínio
interior ser fortemente convexo e a1 > a2. Como consequência dessa desigualdade, são
obtidas a unicidade e a estabilidade lipschitziana para o problema inverso de retomar um
potencial estacionário para a equação da onda com dados de Dirichlet e coeficiente principal
descontínuo. Estes dois resultados são obtidos a partir de um único dado (dependente do
tempo) de Neumann na fronteira.
|
4 |
Desigualdade de Carleman e Controlabilidade Nula para uma EDP com Coeficientes Complexos / Carleman Inequality and null controllability for a PDE with complex coefficientsSantos, Maurício Cardoso 31 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:18Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1803826 bytes, checksum: 7e6b888ce249e6a65e6ceb39484c36e5 (MD5)
Previous issue date: 2010-08-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present work, we study controllability results for two problems on the
theory of the partial differential equations. We use global Carleman inequalities
to show the null controllability for the heat equation and for a PDE with complex
principal part. We obtain the control of minimal norm solving a dual minimization
problem. / No presente trabalho, estudaremos resultados de controlabilidade para dois problemas
da teoria das equações diferenciais parciais. Por meio de estimativas globais
de Carleman, mostraremos detalhadamente a controlabilidade nula para a equação
do calor e para uma equação diferencial parcial com parte principal complexa. Obteremos
o controle de norma mínima resolvendo um problema dual de minimização.
|
5 |
Contrôlabilité d'une équation de Korteweg-de Vries et d'un système d'équations paraboliques couplées. Stabilisation en temps fini par des feedbacks instationnaires / Null controllability of a Korteweg-de Vries equation and of a coupled parabolic equations system. Stabilisation in finite time by means of non-stationary feedbackGuilleron, Jean-Philippe 14 November 2016 (has links)
Ce doctorat porte sur trois domaines de la théorie du contrôle : le contrôle par le bord d'une équation de Korteweg-de Vries, le contrôle de trois équations de la chaleur couplées par des termes cubiques et la stabilisation en temps fini de trois systèmes classiques de dimension finie. Pour l'équation de Korteweg-de Vries, on démontre d'abord une inégalité de Carleman en utilisant un poids exponentiel bien choisi, puis on en déduit la contrôlabilité à 0 de l'équation. Pour le système de trois équations de la chaleur couplées par des termes cubiques, on montre la contrôlabilité à 0 globale alors que le linéarisé autour de 0 n'est pas contrôlable. On applique la méthode du retour pour obtenir la contrôlabilité locale : on construit des trajectoires du système de contrôle allant de 0 à 0 et ayant un linéarisé contrôlable. Puis un changement d'échelle permet d'obtenir un résultat global. Enfin, concernant les trois systèmes de dimension finie, il s'agit de systèmes contrôlables mais à linéarisés non contrôlables et qui ne sont pas stabilisables à l'aide de feedbacks stationnaires (continus). On construit des feedbacks explicites dépendant du temps conduisant à une stabilisation en temps fini. Pour cela on s'occupe de différentes parties du systèmes pendant différents intervalles de temps. / This doctoral thesis focuses on three fields of Control Theory: the control on the edge of the Korteweg-de Vries equation, the control of three heat equations coupled by cubic terms, and the stabilisation in finite time of three classic systems of finite dimension. For the KdV equation, we first demonstrate a Carleman inequality using a well-chosen exponential weight, then we deduce the controllability at zero of the equation. For the system of three heat equations coupled by cubic terms, we show the global controllability at zero even though the linearized system around zero is not controllable. We apply the return method to obtain local controllability: we build control system trajectories going from zero to zero and whose linearised systems are controllable. Then a scale change allows us to obtain a global result. Finally, concerning the three systems of finite dimension, these systems are controllable systems but the linearised systems are not controllable and are not stabilised with means of continuous stationary feedback. We construct an explicit time-dependent feedback leading to a stabilisation in finite time. For this we deal with different parts of systems during different intervals of time.
|
6 |
Contrôle d'équations dispersives pour les ondes de surface / Control of dispersive equations for surface wavesCapistrano Filho, Roberto De Almeida 20 February 2014 (has links)
Dans cette thèse, nous prouvons des résultats concernant le contrôle et la stabilisation d'équations dispersives étudiées sur un intervalle borné. Pour commencer, nous étudions la stabilisation interne du système de Gear-Grimshaw, qui est un système de deux équations de Korteweg-de-Vries (KdV) couplées. Nous obtenons une décroissance exponentielle de l'énergie totale associée au modèle en introduisant une fonction de Lyapunov convenable. Nous prouvons aussi des résultats de contrôlabilité à zéro et exacte pour l'équation de Korteweg-de Vries avec un contrôle distribué à support dans un sous-intervalle du domaine. Pour la contrôlabilité à zéro du système linéarisé, nous utilisons l'approche classique basée sur la dualité qui ramène le problème à l'étude d'une inégalité d'observabilité qui, dans ce travail, est établie à l'aide d'une inégalité de Carleman. Ensuite, utilisant des fonctions plateau, nous prouvons un résultat de contrôlabilité exacte. Dans les deux cas, le résultat concernant le système non linéaire est obtenu à l'aide d'un argument de point fixe. Enfin, dans la lignée du résultat de contrôlabilité au bord obtenu par L. Rosier pour KdV, nous prouvons que le système linéaire de Boussinesq de type KdV-KdV est exactement contrôlable lorsque des contrôles sont appliqués au bord. Notre méthode repose sur l'utilisation de multiplicateurs et l'approche de la dualité mentionnée ci-dessus. Lorsqu'un mécanisme d'amortissement est introduit au bord, nous montrons que le système non linéaire est aussi exactement contrôlable et que l'énergie associée au modèle décroit exponentiellement / This work is devoted to prove a series of results concerning the control and stabilization properties of dispersive models posed on a bounded interval. Initially, we study the internal stabilization of a coupled system of two Korteweg-de Vries equations (KdV), the so-called Gear-Grimshaw system. Defining a convenient Lyapunov function we obtain the exponential decay of the total energy associated to the model. We also prove results of null and exact controllability for the Korteweg-de Vries equation with a control acting internally on a subset of the domain. In the case of the null controllability for the linear model, we use a classical duality approach which reduces the problem to the study of an observability inequality that, in this work, is proved by means of a Carleman inequality. Then, making use of cut-off functions, the exact controllability is also investigated. In both cases, the result for the nonlinear system is obtained by means of fixed-point argument. Finally, in view of the result of the boundary controllability obtained by L. Rosier for the KdV equation, we prove that the linear Boussinesq system of KdV-KdV type is exactly controllable when the controls act in the boundary conditions. Our analysis is performed using multipliers and the duality approach mentioned above. Adding a damping mechanism in the boundary, it is proved that the nonlinear system is also exactly controllable and that the energy associated to the model decays exponentially
|
7 |
Controlabilidade para alguns modelos da mecânica dos fluidosSouza, Diego Araújo de 20 March 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T14:37:42Z
No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5) / Made available in DSpace on 2016-03-28T14:37:42Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2200397 bytes, checksum: fa2b77afd6348b68a616a33acb7c7cb2 (MD5)
Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The aim of this thesis is to present some controllability results for some fluid
mechanic models. More precisely, we will prove the existence of controls that steer the
solution of our system from a prescribed initial state to a desired final state at a given
positive time. The two first Chapters deal with the controllability of the Burgers-α
and Leray-α models. The Leray-α model is a regularized variant of the Navier-Stokes
system (α is a small positive parameter), that can also be viewed as a model for
turbulent flows; the Burgers-α model can be viewed as a related toy model of Leray-α.
We prove that the Leray-α and Burgers-α models are locally null controllable, with
controls uniformly bounded in α. We also prove that, if the initial data are sufficiently
small, the pair state-control (that steers the solution to zero) for the Leray-α system
(resp. the Burgers-α system) converges as α → 0+ to a pair state-control(that steers
the solution to zero) for the Navier-Stokes equations (resp. the Burgers equation). The
third Chapter is devoted to the boundary controllability of inviscid incompressible fluids
for which thermal effects are important. They will be modeled through the so called
Boussinesq approximation. In the zero heat diffusion case, by adapting and extending
some ideas from J.-M. Coron [14] and O. Glass [45], we establish the simultaneous
global exact controllability of the velocity field and the temperature for 2D and 3D
flows. When the heat diffusion coefficient is positive, we present some additional results
concerning exact controllability for the velocity field and local null controllability of
the temperature. In the last Chapter, we prove the local exact controllability to the
trajectories for a coupled system of the Boussinesq kind, with a reduced number of
controls. In the state system, the unknowns are: the velocity field and pressure of the
fluid (y, p), the temperature θ and an additional variable c that can be viewed as the
concentration of a contaminant solute. We prove several results, that essentially show
that it is sufficient to act locally in space on the equations satisfied by θ and c. / O objetivo desta tese é apresentar alguns resultados controlabilidade para alguns
modelos da mecânica dos fluidos. Mais precisamente, provaremos a existência
de controles que conduzem a solução do nosso sistema de um estado inicial prescrito
à um estado final desejado em um tempo positivo dado. Os dois primeiros Capítulos
preocupam-se com a controlabilidade dos modelos de Burgers-α e Leray-α. O modelo
de Leray-α é uma variante regularizada do sistema de Navier-Stokes (α é umparâmetro
positivo pequeno), que pode também ser visto como um modelo de fluxos turbulentos;
já o modelo Burgers-α pode ser visto como um modelo simplificado de Leray-α.
Provamos que os modelos de Leray-α e Burgers-α são localmente controláveis a zero,
com controles limitados uniformemente em α. Também provamos que, se os dados
iniciais são suficientemente pequenos, o par estado-controle (que conduz a solução a
zero) para o sistema de Leray-α (resp. para o sistema de Burgers-α) converge quando
α → 0+ a um par estado-controle (que conduz a solução a zero) para as equações de
Navier-Stokes (resp. para a equação de Burgers). O terceiro Capítulo é dedicado à
controlabilidade de fluidos incompressíveis invíscidos nos quais os efeitos térmicos são
importantes. Estes fluidos são modelados através da então chamada Aproximação de
Boussinesq. No caso emque não há difusão de calor, adaptando e estendendo algumas
idéias de J.-M. Coron [14] e O. Glass [45], estabelecemos a controlabilidade exata global
simultaneamente do campo velocidade e da temperatura para fluxos em 2D e 3D.
Quando o coeficiente de difusão do calor é positivo, apresentamos alguns resultados
sobre a controlabilidade exata global para o campo velocidade e controlabilidade nula
local para a temperatura. No último Capítulo, provamos a controlabilidade exata local
à trajetórias de um sistema acoplado do tipo Boussinesq, com um número reduzido de
controles. Nesse sistema, as incógnitas são: o campo velocidade e a pressão do fluido
(y, p), a temperatura θ e uma variável adicional c que pode ser vista como a concentração
de um soluto contaminante. Provamos vários resultados, que essencialmente
mostram que é suficiente atuar localmente no espaço sobre as equações satisfeitas por
θ e c.
|
8 |
Controlabilidade, problema inverso, problema de contato e estabilidade para alguns sistemas hiperbólicos e parabólicosSousa Neto, Gilcenio Rodrigues de 30 November 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:00:02Z
No. of bitstreams: 1
arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5) / Made available in DSpace on 2017-08-23T16:00:02Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5)
Previous issue date: 2016-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we study controllability results, asymptotic behavior and inverse problem
related to some problems of the theory of partial di erential equations. Two particular systems
are the focus of the study: the Mindin-Timoshenko system, describing the vibrational motion
of a plate or a beam, and the phase eld system describing the temperature and phase of a
medium having two distinct physical states.
The rst chapter is devoted to the study of the 1-D Mindlin-Timoshenko system with
discontinuous coe cient. A Carleman inequality is obtained under the assumption of monotonicity
on the beam speed. Subsequently, two applications are provided: the controllability
of the control system acting on the boundary and Lipschitzian stability of the inverse problem
of recovering a potential from a single measurement of the solution.
In the second chapter we consider a contact problem characterized by the behavior of a
two-dimensional plate whose board makes contact with a rigid obstacle. The formulation of
this problem is presented by the 2-D Mindlin-Timoshenko system with boundary conditions
and suitable damping terms. Concerning such system, is proved via penalty techniques,
the existence of solution and that the system energy has exponential decay when the time
approaches in nity.
In the third chapter, the study is aimed at a nonlinear phase- eld system de ned in a real
open interval. Here we present some controllability results when a single control acts, by means
of Dirichlet conditions, on the temperature equation of the system on one of the endpoints
of the interval. To prove the results is used the method of moments, plus a spectral study of
operators associated to the system and xed point theory to deal with the nonlinearity. / Nesta tese estudamos resultados de controlabilidade, comportamento assintótico e problema
inverso relacionados a alguns problemas da teoria de equações diferenciais parciais.
Dois sistemas particulares são foco do estudo: o sistema de Mindin-Timoshenko, que descreve
o movimento vibratório de uma placa ou viga, e o sistema de campo de fases que descreve a
temperatura e a fase de um meio onde ocorrem dois estados físicos distintos.
O primeiro capítulo é dedicado ao estudo do sistema de Mindlin-Timoshenko 1-D com
coe ciente descontínuos. Uma desigualdade de Carleman é obtida sob a hipótese de monotonicidade
sobre velocidade da viga. Posteriormente, são fornecidas duas aplicações: a
controlabilidade do sistema com controles agindo na fronteira e a estabilidade Lipschitziana
do problema inverso de recuperar um potencial através de uma única informação obtida sobre
a solução.
No segundo capítulo consideramos um problema de contato caracterizado pelo comportamento
de uma placa bidimensional cujo bordo faz contato com um obstáculo rígido. A
formulação deste problema é apresentada pelo sistema de Mindlin-Timoshenko 2-D com condi
ções de fronteira e termos de amortecimento (damping) adequados. Sobre tal sistema, é
provada, através de técnicas de penalização, a existência de solução e, posteriormente, que
sua energia possui decaimento exponencial quando o tempo tende ao in nito.
No terceiro capítulo o estudo é voltado a um sistema de campo de fases não-linear de nido
em um intervalo aberto real. Neste espaço apresentamos alguns resultados de controlabilidade
quando um único controle age, sob condições de Dirichlet, na equação da temperatura em um
dos bordos do intervalo. Para provar os resultados é utilizado o método dos momentos, além
de uma estudo espectral de operadores associados ao sistema e teoria de ponto xo para lidar
com a não-linearidade.
|
9 |
Controle hierárquico via estratégia de Stackelberg-Nash para controlabilidade de sistemas parabólicos e hiperbólicosSilva, Luciano Cipriano da 31 March 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-05-03T13:44:12Z
No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5) / Made available in DSpace on 2018-05-03T13:44:12Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 1150863 bytes, checksum: a7e25ab87986c9d088c0fe224303f97f (MD5)
Previous issue date: 2017-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we presents results on the exact controllability of the partial Di erential Equations
(PDEs) of the parabolic and hyperbolic type, in the context of hierarchic control, using
the Stackelberg-Nash strategy. In every problems we consider a main control (leader) and
two secondary controls (followers). To each leader we obtain a correnponding Nash equilibrium,
associated to a bi-objective optimal control problem; then we look for a leader of
minimal cost that solves the exact controllability problem. For the parabolic problems we
have distributed and boundary controls, now in the hyperbolics every controls are distributed.
We consider linear and semilinear cases, which we solve using observability inequality
obtained combining right Carleman inequalities. Also we use a xed point method. / Nesta tese apresentamos resultados sobre controlabilidade exata de Equações Diferenciais
Parciais (EDPs) dos tipos parabólico e hiperbólico, no contexto de controle hierárquico,
usando a estratégia de Stackelberg-Nash. Em todos os problemas consideramos um controle
principal (líder) e dois controles secundários (seguidores). Para cada líder obtemos um equil
íbrio de Nash correspondente, associado a um problema de controle ótimo bi-objetivo; então
buscamos o líder de custo que resolve o problema de controlabilidade. Para os problemas
parabólicos temos controles distribuídos e na fronteira, já nos hiperbólico todos os controles
são distribuídos. Consideramos casos lineares e semilineares, os quais resolvemos usando
desigualdade de observabilidade obtidas combinando desigualdades de Carleman adequadas.
Também usamos um método de ponto xo.
|
Page generated in 0.0682 seconds