• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 29
  • 14
  • 12
  • 8
  • 8
  • 4
  • 3
  • 2
  • Tagged with
  • 287
  • 279
  • 64
  • 60
  • 59
  • 46
  • 44
  • 40
  • 34
  • 32
  • 30
  • 29
  • 25
  • 25
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Introduction and utilization of a gene targeting system in a basidiomycete Pleurotus ostreatus using CRISPR/Cas9 genome editing technology / 担子菌ヒラタケへのCRISPR/Cas9ゲノム編集技術を用いた遺伝子ターゲティング系の導入と利用

BOONTAWON, TATPONG 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23521号 / 農博第2468号 / 新制||農||1087(附属図書館) / 学位論文||R3||N5352(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 本田 与一, 教授 田中 千尋, 准教授 坂本 正弘 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
72

The direct injection of CRISPR/Cas9 system into porcine zygotes for genetically modified pig production

Ryu, Junghyun 16 July 2019 (has links)
The pig has similar features to the human in aspects such as physiology, immunology, and organ size. Because of these similarities, genetically modified pigs have been generated for xenotransplantation. Also, when using the pig as a model for human diseases (e.g. cystic fibrosis transmembrane conductance regulator), the pig exhibited similar symptoms to those that human patients present. The main goal of this work was to examine the efficacy of direct injection of the CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) in pigs and to overcome shortcomings that resulted after direct injection into the cytoplasm of developing zygotes. By using direct injection of CRISPR/Cas9 into developing zygotes, we successfully generated fetuses and piglets containing 9 different mutations. The total number of aborted fetuses was 20 and of live piglets was 55. Moreover, one issue that was encountered during the production of mutated pigs was that insertion or deletion (indel) mutations did not always introduce a premature stop codon because it did not interfere with the codon read. As a result of these triplet indel(s) mutations, a hypomorphic phenotype was presented; consequently, the mutated gene was partially functional. To prevent this hypomorphic phenotype, we introduced two sgRNAs to generate an intended deletion that would remove a DNA fragment on the genome by causing two double-strand breaks (DSB) during non-homologous end joining (NHEJ). The injection of two sgRNAs successfully generated the intended deletion on the targeted genes in embryos and live piglets. Results after using intended deletions, in IL2RG mutation pigs, did not show hypomorphic phenotypes even when a premature stop codon was not present. After using the intended deletion approach, function of the targeted genes was completely disrupted regardless of the presence or absence of a premature stop codon. Our next aim was to introduce (i.e. knock-in) a portion of exogenous (donor) DNA sequence into a specific locus by utilizing the homology direct repair (HDR) pathway. Because of the cytotoxicity of the linear form of the donor DNA, the concentration of the injected donor DNA was adjusted. After concentration optimization, four different donor DNA fragments targeting four different genes were injected into zygotes. Efficiency of knock-in was an average of 35%. Another donor DNA was used in this study which is IL2RG-IA donor DNA carried 3kb of exogenous cassette. It showed 15.6% of knock-in efficiency. IL2RG-IA Donor DNA injected embryos were transferred into surrogates, and a total of 7 pigs were born from one surrogate, but none of the 7 were positive for the knock-in. Future experiments need to be developed to optimize this approach. Overall, the direct injection of CRISPR/Cas9 is advantageous in cost, time, and efficiency for large animal production and for biomedical research. However, there are still unsolved challenges (off-targeting effects, low efficiency of knock-in, and monoallelic target mutation) that need to be elucidated for future application in humans and other species. / Doctor of Philosophy / The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system is commonly used to make genetically modified pigs. The CRISPR/Cas9 system can break the DNA on a desired gene region. During the DNA repair process, random DNA base pairs can be inserted or deleted on the broken regions, thus generating a mutation on the desired gene. Scientists have adopted new methods to disrupt genes in many species. One of these new methods is the direct injection of CRISPR/Cas9 into a fertilized oocyte. In our first project, we used direct injection of the CRISPR/Cas9 system into the fertilized one-cell embryo. A total of 55 live pigs and aborted 20 fetuses with specifically disrupted genes were produced for biomedical research model. During these studies, one critical drawback of the direct injection method was encountered. Partial function of the gene was possible. To prevent this problem, two DNA broken regions were generated by the CRISPR/Cas9 system to remove the middle part the DNA by two DNA breaking. This method successfully removed the middle portion of the DNA targeted region in the pig embryos. Embryos injected with the CRISPR/Cas9 system to cut the two specific DNA regions were transplanted into surrogate pigs, and a total of 15 piglets were produced. All 15 pigs confirmed that a specific part of the gene had been removed by two DNA breakage. Also, no function of the desired gene was found in the 15 pigs. The objective of the last experiment was to introduce a specific exogenous DNA sequences into specific region of DNA using the CRISPR/Cas9 system. For this study, four different exogenous DNA fragments were synthesized for four different genes. When injected, one exogenous DNA along with the CRISPR/Cas9 system, the average integration efficiency of the four exogenous DNA fragments was 35% in the embryo. Another exogenous DNA, which was longer than other four DNA fragments showed 15.6% integration efficiency. The embryos injected with the long exogenous DNA fragment, along with the CRISPR/Cas9 system, were transferred into surrogate pigs. The result was that a total of 7 piglets were born, but the exogenous DNA sequence was not found in none of the seven piglets. In conclusion, the CRISPR/Cas9 system showed effective removal of the entire gene function of specific genes in the pig. However, for future application in the human and other species, some problems (un-wanted region mutation and low efficiency of exogenous DNA integration) continue to emerge and need to be addressed in future experiments.
73

Nuclear Localization of Proteins and Genome Editing in the Oomycete Phytophthora sojae

Fang, Yufeng 15 November 2016 (has links)
Oomycetes are fungi-like eukaryotic microorganisms, which are actually phylogenetic relatives of diatoms and brown algae, within the kingdom Stramenopila. Many oomycete species, mainly in the genera Phytophthora, Pythium and downy mildews, are devastating plant pathogens that cause multibillion-dollar losses to agriculture annually in the world. Some oomycetes are also animal pathogens, causing severe losses in aquaculture and fisheries, and occasionally causing dangerous infections of humans. Phytophthora species, represented by the Irish Potato Famine pathogen P. infestans and the soybean pathogen P. sojae, are arguably the most destructive pathogens of dicotyledonous plants among the oomycete species and thus have been extensively studied. This dissertation focuses on the model oomycete pathogen P. sojae to investigate specific aspects of its molecular biology and establish an efficient genetic manipulation tool. Specifically, in Chapter 1, I briefly introduce the basic concepts of oomycete biology and pathology, and summarize the experimental techniques used for studies of oomycete genetics over the past two decades. Because the approach to studying fungi and oomycetes are similar (indeed they were incorrectly placed in the same taxonomic group until recently), a special section reviews the emerging genome editing technology CRISPR/Cas system in these organisms together. Chapter 2 and Chapter 3 focus on one of the most important intracellular activities, nuclear localization of proteins, and describe the characterization of nuclear localization signals (NLSs) in P. sojae. This focus stemmed from my early work on genome editing in P. sojae, when I discovered that conventional NLS signals from SV40 used to target the TAL effector nuclease (TALEN) to the nucleus worked poorly in P. sojae. In the first part of this work (Chapter 2), I used confocal microscopy to identify features of nuclear localization in oomycetes that differ from animals, plants and fungi, based on characterization of two classes of nuclear localization signals, cNLS and PY-NLS, and on characterization of several conserved nuclear proteins. In the second part (Chapter 3), I determined that the nuclear localization of the P. sojae bZIP1 transcription factor is mediated by multiple weak nuclear targeting motifs acting together. In Chapter 4 and Chapter 5, I describe my implementation of nuclease-based technology for genetic modification and control of P. sojae. In Chapter 4, I describe the first use of the CRISPR system in an oomycete, including its use to validate the function of a host specificity gene. This is of particular importance because molecular techniques such as gene knockouts and gene replacements, widely used in other organisms, were not previously possible in oomycetes. The successful implementation of CRISPR provides a major new research capability to the oomycete community. Following up on the studies described in Chapter 4, in Chapter 5, I describe the generalization and simplification of the CRISPR/Cas9 expression strategy in P. sojae as well as methods for mutant screening. I also describe several optimized methodologies for P. sojae manipulation based on my 5 years of experience with P. sojae. / Ph. D. / Oomycetes (water molds) are eukaryotic microorganisms that resemble filamentous fungi (molds), but are actually relatives of diatoms and brown algae, within a different kingdom of life named Stramenopila. The functional relationship between oomycetes and fungi is similar to that between fish and dolphins, which also acquired similar functions via different evolutionary paths. Many families of oomycetes are devastating plant pathogens that cause multibillion-dollar losses to agriculture annually in the world. Other families of oomycetes are animal pathogens, causing severe losses in aquaculture and fisheries, and occasionally causing dangerous infections of humans. <i>Phytophthora</i> species, represented by the Irish Potato Famine pathogen <i>P. infestans</i> and the soybean pathogen <i>P. sojae</i>, are among the most destructive oomycete pathogens of plants and thus have been extensively studied. This dissertation is focused on the model oomycete pathogen <i>P. sojae</i>. It investigates specific aspects of its molecular biology and establishes an efficient genetic manipulation tool. All complex organisms (eukaryotes) package their genetic material in nuclei, which contain proteins as well as DNA. In the first part of my research (Chapter 2 and Chapter 3), I focused on the mechanisms used by <i>P. sojae</i> to target nuclear proteins into the nucleus, particularly the tags (called nuclear localization signals, or NLSs) that are identify the proteins that must travel to the nucleus. I showed that nuclear targeting mechanisms in oomycetes differ in distinct ways from well-studied eukaryotes such as humans. In particular, the nuclear targeting signals in <i>P. sojae</i> proteins are diffused over multiple sites on the proteins, whereas in human proteins there’s usually just a single signal. For one particular oomycete protein, a transcription factor, nuclear targeting involves four weak signals that cooperate synergistically. Two of these four weak signals define a new class of nuclear localization signal. In the second part of my research (Chapter 4 and Chapter 5), I implemented and further optimized a genome editing technology for genetic modification and control of <i>P. sojae</i>. This technology is based on the CRISPR system that has revolutionized genome editing in plants and animals over the last three years. This is of particular importance because genome editing techniques were not previously possible in oomycetes. The successful implementation of CRISPR technology in <i>P. sojae</i> has provided a major new research capability to the oomycete community. In Chapter 5, I also describe several optimized methodologies for <i>P. sojae</i> genetic manipulation based on my 5 years of experience with <i>P. sojae</i>.
74

Biochemical characterization of CRISPR-associated nucleases – what determines the specificity of Cas9?

Bratovič, Majda 17 February 2020 (has links)
CRISPR-Cas ist ein adaptives Immunsystem, dass Bakterien und Archaeen vor eindringenden Nukleinsäuren schützt. Es besteht aus einem sogenannten CRISPR-Array, der als genetisches Gedächtnis vorangegangene Infektionen speichert und einem cas Lokus, welcher für die Abwehr essentielle Proteine codiert. Das CRISPR-assoziierte Protein 9 (Cas9) des Typ II CRISPR-Cas Systems aus Streptococcus pyogenes ist heutzutage das Mittel der Wahl für Gentherapie und Genom-Modifikationen. Allerdings gibt es nach wie vor Probleme mit der Ungenauigkeit dieses Systems, welche für eben genannte Ansätze behoben werden müssen. Aus diesem Grund ist es besonders wichtig zu verstehen, in welcher Weise die Spezifität von Cas9 beeinflusst wird. In dieser Arbeit wurden die Voraussetzungen für eine spezifische Erkennung der Zielsequenz durch drei verschiedene Cas9 Proteine des Typs II-A und ein Cas12a Protein des Typs V-A CRISPR-Cas Systems untersucht. Wir zeigen, dass Arginin Seitenketten der sogenannten „bridge“ Helix in Cas9 von S. pyogenes eine wichtige Rolle in der Bindung und Spaltung der DNS spielen. Diese Seitenketten können in zwei Gruppen unterteilt werden, welche die Spezifität von Cas9 entweder vergrößern oder verkleinern. Die Aminosäuren R63 und R66 reduzieren die Spezifität von Cas9 indem sie den sogenannten R-loop in Anwesenheit einer Fehlpaarung stabilisieren. Wir zeigen außerdem, dass Q768 eine erhöhte Toleranz von Cas9 zu Fehlpaarungen an Position 15 der Zielsequenz vermittelt und dass das Entfernen dieser Aminosäure die Spezifität von Cas9 im Bereich der Zielsequenz, die am weitesten von der PAM entfernt ist, erhöht. Eine Kombination der Mutationen der oben genannten Arginin und Glutamin Seitenketten führt zur Erhöhung der Gesamtspezifität von Cas9. Die Ergebnisse dieser Arbeit tragen zum Verständnis bei, wie Cas9 Fehlpaarungen innerhalb der Zielsequenz detektiert und können dabei helfen weitere Strategien für eine verbesserte Spezifität von Cas9 zu entwickeln. / CRISPR-Cas (CRISPR-associated) systems are adaptive immune systems that have evolved in bacteria and archaea for protection against invading nucleic acids. They consist of a CRISPR array, where the genetic memory of the infection is stored and ultimately transcribed and processed into CRISPR RNAs (crRNAs), and of an operon of cas genes that encodes the Cas proteins. This thesis is focused on class 2 CRISPR-Cas systems that employ single RNA-guided nucleases in the interference phase. Dual-RNA guided CRISPR-associated protein 9 (Cas9) of the type II CRISPR-Cas system has become the tool of choice for genome editing applications in life sciences. However, off-target cleavage by Cas9 is one major issue that needs to be addressed for applications of the CRISPR-Cas9 technology for therapeutic purposes. Therefore, understanding the features that govern Cas9 specificity is of great importance. In this thesis, seed sequence requirements of three Cas9 proteins from the class 2 type II-A and one Cas12a protein from the class 2 type V-A CRISPR-Cas system have been investigated. We analyze the influence of mismatches and show that they affect target binding and/or cleavage by S. pyogenes Cas9. Additionally, we demonstrate that the arginine residues from the bridge helix of S. pyogenes Cas9 are important for target DNA binding and cleavage. Furthermore, these residues comprise two groups that either increase or decrease Cas9 sensitivity to mismatches i.e. specificity. R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. We also show that Q768 mediates Cas9 tolerance to a mismatch at target position 15 and removal of Q768 increases Cas9 specificity in the PAM-distal part of the target. Combination of arginine mutations and Q768A increased overall the sensitivity to mismatches. The results of this thesis elucidate how Cas9 senses PAM-adjacent mismatches and provide a basis to develop strategies for Cas9 variants with enhanced specificity.
75

Development of novel transient Foamy Virus (TraFo) vectors - Combining ancient viruses with bacterial CRISPR nucleases for efficient genome editing

Lindel, Fabian 22 January 2025 (has links)
Knowledge on the human genome and specific sequences associated with human diseases is continuously growing. The ability to connect human genetics to cellular mechanisms and physiology raises the need for medicine to get to gene specific therapeutics. In order to achieve gene-specific modification, tools are required to enable sequence-specific DNA cleavage. Not long ago, the RNA-guided endonuclease Cas9 was shown to effectively facilitate gene editing in humans. Cas9 endonuclease, which is naturally part of an adaptable bacterial immune system, can be easily adjusted to recognize and cleave specific DNA sequences in a 20 nt RNA-DNA complementary manner. The easy adjustability and high efficiency of Cas9 gave rise to hopes that this genome engineering tool could pave the way to ‘gene surgery’ in humans. However, to achieve DNA cleavage, the endonuclease and its guiding RNA need to be sufficiently accessible in the nucleus of target cells. Viruses, which evolution has made well adapted to transfer their own genetic information into cells can be exploited for transfer of foreign genetic material. Replication deficient retroviruses therefore represent interesting vehicles for gene delivery. Retroviruses preferentially incorporate their own genetic information in the form of RNA into viral particles. Typically, viral RNA of retroviruses is reverse transcribed into DNA during viral infection and integrated into host cell chromosomes. In this respect, integration-competent or integration-deficient lentiviral (HIV-derived) vectors (ICLV/IDLV) were reported to be efficient ‘gene shuttles’ for Cas9 delivery. In contrast, up to now Foamy viruses (FV), which represent a distinct subfamily in the family of retroviruses have not previously been tested for their efficiency to transduce CRISPR/Cas9 components. FV show several unique characteristics some of which make them interesting candidates for gene therapy, such as high transduction efficiency on a wide variety of human cell lines or a special capability to efficiently transfer and provide non-viral RNA in target cells. In this thesis the unique characteristic of FVs, which allow for the efficient transduction of non-viral RNAs, was exploited for transient FV mediated (TraFo) Cas9 expression. It is shown in this thesis that gene knock-out (KO) achieved with TraFo Cas9 particles appears to have several advantages over ICLV or IDLV mediated Cas9 transduction. In this work, it could be demonstrated that a single application of TraFo Cas9 supernatant results in high efficiency of GFP KO in osteosarcoma cells (U2OS). The efficiency of gene KO with TraFo Cas9 particles exceeded gene KO frequencies achieved with similar volumes of ICLV or IDLV supernatant for Cas9 transduction. In addition, transient Cas9 delivery achieved with TraFo particle supernatant resulted in remarkably reduced Cas9 off-target cleavage compared to corresponding infections with ICLV or IDLV particles. The results show, that TraFo Cas9 represents an interesting addition to the currently utilized methods for transient Cas9 delivery. One particular feature of TraFo particle transduction is especially noteworthy – TraFo mediated transduction does not depend on any particular adjustment on the encapsidated non-viral RNA sequence (such RNA only needs to be present in sufficient amounts during virus assembly) nor does it depend on any modification of viral proteins. The easy adaptability of TraFo mediated non-viral RNA transfer is an especially remarkable feature, since science continues to both developing new variants of Cas9 and continues to find new and interesting members of the pool of CRISPR enzymes. In this regard TraFo particles represent interesting vehicles to transiently provide mRNA transcripts of such new protein candidates in cells. The ability of TraFo particles to provide the RNA sequence needed to guide Cas9 (termed sgRNA) to its target DNA sequence in cells was additionally investigated. It was assumed that typically engaged RNA polymerase (RNAP) III transcription of sgRNAs hampers transduction with TraFo particles, since RNAP III-derived transcripts are not actively exported into the cytoplasm and show low stability. An additional CRISPR enzyme Csy4 was used, which is able to specifically cleave RNA. This enabled TraFo mediated transfer of RNAP II transcripts (with active nuclear export and higher stability than RNAP III transcripts) with embedded sgRNA sequences. It was demonstrated that a simultaneous infection of cells with TraFo particles providing bicistronic transcripts of Cas9 and Csy4 on the one side and RNAP II-derived transcripts with embedded sgRNA sequences on the other, enabled reasonable GFP gene inactivation in U2OS cells. Gene KO with RNAP II transcripts as a result significantly exceeds TraFo transduction of RNAP III-derived sgRNA. Interestingly, with regard to gene KO, it was found that de novo transcription of sgRNAs from viral DNA (by integration-competent or integration-deficient retroviral vector [ICRV/IDRV] transduction) when combined with TraFo Cas9 transduction was superior to a TraFo transduction of sgRNA transcripts. IDRV mediated transduction was optimized in order to minimize the risk of unfavorable genome modification of cells by viral DNA integration. By adding the coding sequence of a fluorescent marker to the viral vector, it was demonstrated that a smaller number of viral particles helps to significantly lower the frequency of viral DNA integration. In addition, the expression of a fluorescent marker opened up the opportunity to further reduce the cell fraction with continuous marker gene expression by flow cytometric cell sorting. The IDRV/ICRV sgRNA and TraFo Cas9 delivery system was then challenged for use on immortalized and primary T cells. Primary T cells represent interesting targets for genetic engineering since modified T cells can be utilized as ‘living drugs’ (by expression of chimeric antigen receptors – CARs) against cancer cells. Efficient gene inactivation was observed on the immortalized T cell line – Jurkat. Transduction of primary T cells pointed to certain restrictions of the split two-virus delivery system for sgRNA and Cas9 transduction. However, despite certain limitations, it was possible to demonstrate that this FV-derived Cas9 delivery system is also feasible on primary tissue, and further optimization could make it an interesting alternative delivery method for CAR therapy. The ability of IDRV vector genomes to provide repair template donor DNA to induce homologous recombination (HR) was additionally investigated. DNA double-strand breaks in eukaryotic cells are typically repaired by the error prone non-homologous end joining pathway (often leading to frame-shift mutations by small insertions or deletions) or HR. Delivery of a homologous DNA sequence during DNA cleavage enables site-specific integration of exogenous DNA sequences. The work of this thesis showed that IDRV vector genomes providing repair template donor DNA allow for HR in a homology length dependent manner. Besides the length of homology, it was also observed, that the length of sequence which should be integrated (KI) remarkably influences the frequency of HR. HR is therefore engaged significantly more frequently if single nucleotides, rather than a whole gene, are provided as sequences within a repair template. In addition, viral vectors were augmented with additional fluorescent marker sequences. It could subsequently be demonstrated that the majority of cells showed accurate sequence-specific DNA integration. Furthermore, several indications were found, which lead to the assumption that the ratio of KI to homologous sequence markedly influences the accuracy of HR. Using the previously obtained knowledge it was further possible to tag an essential human protein by FV vector mediated transient Cas9 and repair template transduction. It was found that the large packaging capacity of FV vectors can be exploited to enable selection and flow cytometric sorting of cells with correct site-specific DNA integration. In summary, the results of this thesis demonstrate for the first time that FV mediated non-viral mRNA Cas9 transduction in combination with retroviral delivery of sgRNA (and repair template sequence) are a promising basis for several different interesting applications with relevance for not only basic research, but also for gene therapy.:1. Introduction 1 1.1 Gene therapy 1 1.2 Viral vectors for gene therapy 2 1.3 History of retroviral research 2 1.4 Taxonomy of Retroviruses 3 1.5 Foamy Viruses 4 1.5.1 Morphology of Foamy Virus 6 1.5.2 Foamy Virus replication 7 1.5.3 Foamy virus proteins, as part of a viral vector system 10 1.6 Genetic engineering 14 1.6.1 ‘DNA scissors’ – Zinc-finger and Transcription-activator like effector nucleases 15 1.6.2 History of CRISPR/Cas9 as a tool for genetic engineering 16 1.7 CRISPR/Cas immunity in prokaryotes 18 1.8 CRISPR/Cas9 functioning 21 1.9 Double-strand break repair in eukaryotic cells 21 1.9.1 Classical NHEJ 23 1.9.2 Homologous recombination 24 1.9.3 DSB repair in vertebrates 26 1.10 DSBs in context of CRISPR/Cas9 cleavage 27 1.11 Thesis Aim: CRISPR/Cas9 transduction with FV particles 28 2. Materials and Methods 30 2.1 Materials 30 2.1.1 Chemicals 30 2.1.2 Buffers and Solutions 30 2.1.3 Bacterial Growth Media 33 2.1.4 Cell Culture Media 34 2.1.5 Antibodies 34 2.1.6 Enzymes 35 2.1.7 Commercial Kits and additional reagents 36 2.1.8 Size Markers 36 2.1.9 Antibiotics 36 2.1.10 Bacterial strains 37 2.1.11 Cell lines 37 2.1.12 Devices and Software 37 2.1.13 Oligonucleotides 38 2.1.14 Plasmids 46 2.1.15 sgRNA sequences 56 2.1.16 Consumable material 57 2.2 Molecular Biology Methods 58 2.2.1 Restriction of DNA 58 2.2.2 Polymerase chain reaction 59 2.2.3 Gibson assembly 60 2.2.4 Agarose gel electrophoresis 60 2.2.5 Ligation 61 2.2.6 Cultivation of bacteria 62 2.2.7 Transformation 62 2.2.8 Plasmid Preparation 63 2.2.9 Sequencing 65 2.3 Cell culture methods 66 2.3.1 Passaging of cells 66 2.3.2 Cell counting 66 2.3.3 Freezing and thawing of cells 66 2.3.4 Seeding and fixation of cells for microscopy 67 2.4 Virological Methods 67 2.4.1 Polyethyleneimine transfection 67 2.4.2 Integration-competent, integration-deficient and ‘transient’ retroviral vectors 68 2.4.3 Infection of adherent cells 70 2.4.4 Infection of suspension cells 71 2.4.5 Flow cytometry 72 2.4.6 Multiplicity of infection (MOI) 72 2.4.7 Particle preparation 73 2.5 Nucleic acid composition in viral particles and culture cells 73 2.5.1 Isolation of total RNA from viral particles 73 2.5.2 RNA isolation from culture cells 73 2.5.3 Reverse transcription of viral or cellular RNA 73 2.5.4 DNA isolation from culture cells 74 2.5.5 Quantitative PCR (qPCR) analysis 74 2.5.6 T7 endonuclease assay 75 2.6 Protein biochemistry methods 76 2.6.1 Cell lysates 76 2.6.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 76 2.6.3 Semi-dry Western Blot 77 2.6.4 Immunodetection 78 2.6.5 Stripping of Western blot membranes 78 2.6.6 Immunostaining of cells for FACS analysis 78 2.7 Microscopy methods 79 2.7.1 Fluorescence microscopy 79 2.7.2 Confocal Laser scanning Microscopy (CLSM) 79 2.7.3 Live-cell imaging 79 3. Results 80 3.1 Transient foamy virus transduction of non-viral mRNA transcripts 80 3.2 Transient foamy virus transduction of Cas9-encoding mRNA transcripts 81 3.3 Cas9-encoding nucleic acids and their ‘effects’ in cells after retroviral transduction 84 3.4 Off-target analysis after TraFo Cas9 delivery 87 3.5 Transient fomy virus transduction of Cas9 and sgRNAs 89 3.6 Retroviral vectors providing sgRNAs and a fluorescent protein 92 3.6.1 Gene knock-out with retroviral vectors under saturated conditions 92 3.6.2 MOI adjusted ID sgRNA vector supernatants for comparison of residual vector integration 94 3.6.3 Gene knock-out in murine embryonic fibroblasts 95 3.7 Influence of Cas9 expression on IDRV vector genome integration 96 3.8 TraFo Cas9 mediated T cell receptor knock-out in immortalized and primary human T cells 97 3.9 Homology-directed repair after FV CRISPR/Cas9 mediated double-strand breaks 99 3.9.1 Length of homologous donor DNA and its influence on HDR 100 3.9.2 Effect of freezing viral supernatants on the frequency of HDR 102 3.9.3 Effect of donor DNA mismatches on the frequency of HDR 104 3.10 Investigation on donor DNA integration with additional fluorescent markers 105 3.11 Lentiviral and foamyviral transduction of HDR donor DNA 107 3.12 HDR mediated single nucleotide substitutions after TraFo CRISPR/Cas9 delivery 109 3.13 Tagging of an endogenous protein after TraFo CRISPR/Cas9 delivery 111 3.13.1 Specific CRISPR/Cas9 mediated cleavage of endogenous hPLK1 gene 111 3.13.2 Homology-directed repair of the hPLK1 gene for endogenous gene tagging 113 3.13.3 Confocal fluorescence microscopy analysis of GFP-Plk1 HeLa cell populations 118 4. Discussion 120 4.1 Genetic engineering – potential and risks 120 Chapter I Transient FV vectors – mRNA delivery vehicles for CRISPR/Cas9 mediated gene editing 122 4.2 Non-viral Cas9-encoding mRNA transfer in foamy virus particles 122 4.2.1 Fate of Cas9-encoding nucleic acids in cells after TraFo Cas9 transduction 124 4.2.2 Potential adjustments to further improve TraFo Cas9 transduction 125 4.2.3 Lentiviral in contrast to TraFo transduction of Cas9-encoding nucleic acids 126 4.3 Efficiency of Cas9-mediated gene knock-out with different retroviral vectors 127 4.4 Type of retroviral Cas transduction and its influence on the specificity of Cas9 cleavage 127 4.5 Alternative approaches to deliver Cas9-encoding mRNA in human cells 129 4.6 Transient sgRNA transduction with TraFo particles 131 Chapter II Delivery of foreign DNA with FV-derived vectors – enabling gene knock-out and homology-directed repair 133 4.7 Gene inactivation by TraFo Cas9 transduction and sgRNA expression from retroviral vector genomes 133 4.7.1 Gene editing in immortalized and primary T cells 135 4.8 Homology-directed repair with IDRV genomes 137 4.8.1 The influence of the length of sequence homology on HR 138 4.8.2 The influence of freezing viral supernatants on HR 139 4.8.3 Widening the applicability of TraFo vector particles for improved HR 140 4.8.4 The influence of mismatching nucleotides on HR 140 4.8.5 Visualization of inaccurate HR or additional dsDNA integration 141 4.8.6 The influence of the ratio of knock-in and homologous sequence on the accuracy of HR 142 4.8.7 Alternatives to double-stranded donor DNA 143 4.9 Endogenous gene tagging with IDPV donor DNA transduction 145 4.9.1 Alternative approaches for endogenous protein tagging 146 5. Conclusion 148 6. Summary 150 6.1 Summary 150 6.2 Zusammenfassung 153 7. Supplementary 157 8. References 159 9. Appendices 182 9.1 Indices 182 9.1.1 Abbreviations 182 9.1.2 Index of Figures 185 9.1.3 Index of Tables 187 9.2 Curriculum Vitae 188 9.3 Publication Record 189 9.4 Congress Contributions 189 9.5 Patent Applications 189 10. Statement of Authorship 190
76

Study of chikungunya virus entry and host response to infection / Étude de l'entrée du virus du chikungunya et de la réponse de l'hôte à l'infection

Cresson, Marie 15 April 2019 (has links)
Les alphavirus sont un groupe de virus enveloppés à ARN simple brin positif retrouvés sur la totalité du globe et responsables de nombreuses maladies humaines et animales. Durant la dernière décennie, une réémergence du virus du chikungunya (CHIKV) a été observée causant de nombreuses épidémies sur tous les continents. Malgré les nombreuses études, les mécanismes moléculaires de réplication du CHIKV et les interactions hôte-virus restent peu caractérisées. L’objectif de mon travail était de mieux comprendre et caractériser l’entrée du virus du chikungunya et les facteurs de l’hôte impliqués dans la réplication chez les mammifères. Plusieurs approches distinctes ont été utilisées dans ce projet. Dans un premier temps, nous avons mis en avant une diminution de l’infection du CHIKV après un traitement avec du fer sous forme de citrate d’ammonium ferrique et nous avons étudié le rôle potentiel dans l’entrée virale de NRAMP2 et TFRC, deux protéines impliquées dans le transport cellulaire du fer et connus comme récepteurs d’entrée de plusieurs virus. D’autre part, nous nous sommes intéressés à deux autres protéines, CD46 et TM9SF2, identifiés à travers un criblage par ARNi réalisé en collaboration, dans le but de déterminer si elles sont utilisées comme facteurs d’entrée par le virus du chikungunya. Dans un dernier axe, nous avons mis en place et réaliser un criblage perte de fonction sur le génome entier en utilisant la technologie CRISPR/Cas9 afin d’identifier des facteurs de l’hôte importants pour l’entrée du CHIKV, sa réplication ou la mort viro-induite. Bien qu’il soit apparu que l’approche utilisée pour le criblage devrait être optimisée, nous avons pu identifier des candidats potentiellement nécessaires pour l’infection par le CHIKV. Ces candidats sont testés individuellement afin de confirmer leur implication dans la biologie du virus / Alphaviruses are a group of enveloped, positive-sense RNA viruses which are distributed almost worldwide and are responsible for a considerable number of human and animal diseases. Among these viruses, the Chikungunya virus (CHIKV) has recently re-emerged and caused several outbreaks on all continents in the past decade. Despite many studies, molecular mechanisms of chikungunya virus replication and virus-host interactions remain poorly understood. The aim of my project was to better understand and characterize the CHIKV entry and the host factors involved during replication steps in mammals. Several different approaches have been used in this work. As a first step, we have demonstrated a decrease of CHIKV infection after iron treatment in form of ferric ammonium citrate and we have studied the potential role in viral entry of NRAMP2 and TFRC, two proteins involved in iron transport and known receptors for other viruses. On the other hand, we have also focused on two proteins, CD46 and TM9SF2, identified through an RNAi screen in collaboration, in order to determine if they are required as entry factors for chikungunya virus. In a last axis, we have set up and carried out a genome-wide loss of function screen with the CRISPR/Cas9 technology in order to identify host factors important for chikungunya virus entry, replication or virus-induced cell death. Although it appears that screen conditions should be optimized, we have identified potential candidates required for CHIKV infection and we are currently testing them
77

Estudo funcional da proteína RNF-113A (ZNF183) no spliceossomo em células de mamíferos. / Functional study of RNF113A (ZNF183) in mammalian cells spliceosomes.

Silva, Guilherme Henrique Gatti da 17 March 2017 (has links)
O splicing do pré- RNAm é o processo pelo qual os introns são removidos e os exons são unidos para produzir um RNAm maduro. Esse processo é catalisado por um complexo denominado spliceossomo. RNF113A é uma proteína detectada em complexos pré- e pós-catalíticos. Neste trabalho analisamos a participação de RNF113A no spliceossomo de mamíferos e suas interações com outros componentes do spliceosomo. Nossos resultados mostraram que a super- expressão de RNF113A em células HEK293T aumentam o nível dos snRNAs U1, U2, U5 e U6 e de PRPF19. A imunoprecipitação de RNF113A revelou maior concentração de PRPF19, hBRR2 e SF3b2. Além disso, observamos maior quantidade dos snRNAs U5 e U6 associados à RNF113A. As frações de imunoprecipitação foram analisadas por espectrometria de massas e mostraram interação de RNF113A com proteínas que participam na transcrição, ubiquitinação, maturação do pré-RNAm e splicing. Estes resultados indicam que a associação de RNF113A ao spliceossomo ocorre a partir de suas interações com os snRNAs U5 e U6 e com proteínas relacionadas, como a hBRR2. / Splicing of pre-mRNA is the process by which introns are removed and exons are joined together to produce a mature mRNA competent for translation. It is catalyzed by the complex called spliceosome. RNF113A is a protein detected in pre- and post-catalytic complexes. In this work we analyzed RNF113A participation on spliceosome and its interactions with other spliceosome components. Our results showed that overexpression of RNF113A in HEK293T led to increased levels of U1, U2, U5, U6 snRNAs and PRPF19. RNF113A also associates to PRPF19, hBRR2 and SF3b2, as observed by immunoprecipitation followed by RT-qPCR and western blot. Consistently, U5 and U6 snRNAs were observed in association with RNF113A. Immunoprecipitation fractions were also analyzed by mass spectrometry and results showed interaction of RNF113A with proteins that participate in processes such as transcription, ubiquitination, pre-mRNA maturation and splicing. These results suggest RNF113A associates to spliceosome by interacting with U5 and U6 snRNAs and with related proteins, for example hBRR2.
78

Molecular mechanisms involved in the bacterial talking and maize growth promotion / Mecanismos moleculares envolvidos na comunicação bacteriana e na promoção de crescimento de milho

Almeida, Jaqueline Raquel de 06 September 2018 (has links)
With the increase of agricultural production, there is an improvement in the use of mineral fertilizers, which may cause different environmental problems, besides the soil salinization. A possible alternative for reducing the application of these products is the use of plant growth-promoting bacteria (PGPB), that can be used alone or in co-inoculation, resulting in an alternative environmentally and economically feasible. Better results can be obtained if the interaction among bacteria-bacteria and bacteria-plant be elucidated, and strategy developed to optimize these interactions. Thus, the plant growth-promoting Bacillus sp. RZ2MS9, previous described as a potential PGPB in maize and soybean, was GFP-tagged and monitored alone and co-inoculated with Azospirillum brasilense (Ab-v5::pWM1013) during maize colonization. The interaction of tagged strains in maize were monitored by fluorescent microscopy (FM) and quantitative PCR (qPCR), demonstrating an endophytic behavior of Bacillus sp. RZ2MS9. Although the non-detection of Ab-v5::pWM1013, the co-inoculation resulted in the best increase in root and shoot dried weight, root volume and in root diameter, showing that inoculation with more than one strain can be a good choice to development of bio-fertilizers. One important system to bacterial interaction is the quorum sensing (QS). The QS is an important cell-cell communication system that allows bacterial cells to recognize their own population and modulate their gene expression. This, system is also involved in the interspecific communication, including other bacterial species and plants. In the other hand, enzymes able to detect and degrade these molecules evolved, the called quorum quenching (QQ) system, that has been evolved in some bacteria as competitive advantage for niches colonization. The aiiA gene, was one of the first gene related with the QQ in Bacillus. The aiiA was found in Bacillus sp. RZ2MS9 genome. Through construction of a new QQ biosensor, Agrobacterium tumefaciens At11006, and validated by A. tumefaciens NTL4, the ability of RZ2MS9 to degrade QS molecules was confirmed. The knockout of aiiA gene was performed using the CRISPR-Cas9 system, confirming this gene function. By these results, the influence of QQ system of Bacillus sp. RZ2MS9 during maize colonization and RZ2MS9 - A. brasilense - maize can be better investigated, opens the possibility to better understand the role of QQ system in the interaction among PGPB and plants. / Concomitantemente ao aumento da produção agrícola, há o aumento do uso de fertilizantes minerais, que pode acarretar no desenvolvimento de diferentes problemas ambientais, além de causar a salinização dos solos. Uma possível alternativa para tentar reduzir a aplicação desses produtos é o uso de bactérias promotoras de crescimento de plantas (BPCPs), que podem ser usadas isoladamente ou em co-inoculação com outras bactérias, tornando-as uma alternativa ambientalmente e economicamente viável. Melhores resultados podem ser obtidos se a interação bactéria-bactéria e bactéria-planta for elucidada, permitindo que estratégias sejam desenvolvidas para otimizar essas interações. Em vista disso, a bactéria Bacillus sp. RZ2MS9, previamente descrita como uma potencial BPCP em milho e soja, foi marcada com GFP e monitorada durante a colonização de milho inoculada sozinha, bem como em co-inoculação com Azospirillum brasilense (Ab-v5::pWM1013). A interação dessas linhagens marcadas em milho, foi monitorada por microscopia de fluorescência (FM) e PCR quantitativo (qPCR), revelando um comportamento endofítico de Bacillus sp. RZ2MS9. Em plantas co-inoculadas, apesar da linhagem Ab-v5::pWM1013 não ter sido detectada por qPCR, a co-inoculação resultou no aumento do peso seco das raízes e da parte aérea, no volume e no diâmetro do sistema radicular, demonstrando que a inoculação com mais de uma linhagem bacteriana pode ser uma boa alternativa para o desenvolvimento de bio-fertilizantes. O quorum sensing (QS) é um importante sistema de comunicação célula-célula que permite que as bactérias reconheçam sua própria população e modulem sua expressão gênica. Este sistema também está envolvido na comunicação interespecífica, incluindo outras espécies bacterianas e plantas. Co-evolutivamente, enzimas capazes de detectar e degradar essas moléculas evoluíram, dando origem ao chamado quorum quenching (QQ), sistema que evoluiu em algumas bactérias como uma vantagem competitiva para a colonização de nichos. O gene aiiA, foi um dos primeiros genes relacionados ao sistema QQ descrito no gênero Bacillus, gene este que foi anotado no genoma de RZ2MS9. Através da construção de uma nova linhagem biossensora de QQ, Agrobacterium tumefaciens At11006, e validada através da linhagem A. tumefaciens NTL4, a capacidade de RZ2MS9 de degradar moléculas de QS foi confirmada. O knockout do gene aiiA foi realizado utilizando o sistema CRISPR-Cas9, confirmando a função desse gene. Através dos resultados obtidos neste trabalho, a influência do sistema QQ de Bacillus sp. RZ2MS9 durante a colonização do milho, bem como a interação RZ2MS9 - A. brasilense - milho pode ser melhor investigada, abrindo a possibilidade de uma melhor compreensão do papel do sistema QQ na interação entre bactérias promotoras de crescimento e plantas.
79

Assemblage de répétitions de la séquence 601 dans le génome de Saccharomyces cerevisiae pour dicter l'espacement des nucléosomes in vivo / Repeats assembly of the 601 sequence into Saccharomyces cerevisiae's genome to dictate nucleosome spacing in vivo

Lancrey, Astrid 18 May 2018 (has links)
Le positionnement des nucléosomes le long des génomes eucaryotes est crucial étant donné qu’il affecte l’accessibilité de l’ADN à des protéines impliquées dans la transcription, la réplication, ou encore la réparation de l’ADN. Si il est aujourd’hui admis que les remodeleurs de chromatine ainsi que les préférences des nucléosomes pour certains motifs d’ADN constituent les deux principaux déterminants du positionnement des nucléosomes in vivo, leur importance relative fait encore l’objet de controverses. Dans le cadre de cette problématique nous avons développé une stratégie d’assemblage de répétitions de la séquence 601 positionnante de nucléosome directement dans le génome de Saccharomyces cerevisiae. Cette technique assistée par la technologie CRISPR/Cas9 et des oligonucléotides chevauchants s’est révélée très efficace et a permis d’assembler des répétitions sur une étendue d’environ 15 kilobases. Nous avons ainsi pu isoler trois souches se caractérisant par trois longueurs d’ADN de liaison de respectivement 20, 50 et 90 paires de bases séparant deux 601 consécutifs tout le long des répétitions. Ces longueurs d’ADN de liaison ont été choisies du fait de leur compatibilité avec les modèles de la fibre de 30 nm étudiés in vitro et parce qu’elles sont fréquemment observées chez les eucaryotes. Nous avons ensuite regardé si ces répétitions de la séquence 601 suffisent à dicter la succession des nucléosomes de S. cerevisiae selon le pas de chromatine attendu. Pour cela, nous avons eu recours à une approche de MNase-seq afin d’analyser les positions des dyades des nucléosomes dans les répétitions. Les résultats de ces analyses révèlent de façon intéressante l’incapacité de la séquence 601 à positionner le nucléosome dans ce contexte cellulaire et cela malgré l’étendue de la région de 601 répétés constituée. Nous avons également analysé le positionnement des nucléosomes chez ces trois mêmes souches suite à l’inactivation de Chd1, l’un des deux principaux architectes du paysage nucléosomal chez la levure, afin de s’affranchir de son potentiel effet sur le positionnement des nucléosomes dans la région 601. Nos résultats montrent que l’absence de Chd1 ne permet pas de rétablir un positionnement des nucléosomes sur les monomères de 601, suggérant que le 601 n’est pas positionnant in vivo ou que la région répétée est sous l’influence d’autres facteurs de remodelage. D’un point de vue méthodologique, notre technique de construction de répétitions in vivo permet d’envisager des approches simplifiées de biologie synthétique pour la construction de librairies de répétitions dans le génome de S. cerevisiae. / Nucleosome positioning along eukaryotic genomes is crucial as it influences DNA accessibility for DNA binding proteins involved in DNA replication, transcription and repair. It is now accepted that both nucleosome preferences for some DNA sequences and remodeling factors play an important role in nucleosome positioning in vivo. However their relative importance remains a matter of debate. To investigate the role played by DNA sequence in nucleosome positioning in a cellular context we developped a strategy to assemble tandem DNA repeats of a nucleosome positioning sequence directly into Saccharomyces cerevisiae’s genome. This method is assisted by CRISPR/Cas9 and overlapping oligonucleotides and it turned out to be very efficient as it allowed to synthetize about 15 kilobases of tandem DNA repeats inside a yeast chromosome. Using this apporoach we obtained three yeast strains differing by the DNA linker length separating two consecutive monomeres of the 601 nucleosome positioning sequence. We chose three lengths of linker (20, 50 and 90 pb) for two reasons. First, they are compatible with the formation of a 30 nm chromatin fiber in vitro, and second, nucleosome repeat length of 167, 197 and 237 pb are found in eukaryotic genomes. We then verified if nucleosomes are effectively positioned according to the theoretic DNA linker lengths we designed in the “601” repeated region. To that goal we performed MNase-seq analysis to deduce nucleosomes dyads positions in the repeats. Interestingly our results show that the 601 sequence is not able to dictate strong nucleosomes positioning differing from the natural nucleosome repeat length of about 165 pb along the repeats in an in vivo context. We further investigated positions of dyads in the same three strains after inactivating the gene coding for the chromatin remodeler Chd1, which could potentially be responsible of the nucleosomes organization in the repeated area. Our results show no effect of Chd1, indicating that the “601” sequence has no positionning effect in vivo or that other trans-acting factors are implicated in nucleosome positioning in the engineered repeats. Finally, this work provides a new fast and simple approach for synthetic DNA repeats construction inside the yeast genome and could easily be applied for other synthetic chromatin engineering approaches.
80

Exploration génétique et moléculaire de défauts post-méiotiques sévères de la spermatogenèse entrainant une infertilité masculine / Genetic and molecular exploration of severe post-meiotic defects of spermatogenesis leading to male infertility

Kherraf, Zine-Eddine 12 July 2018 (has links)
L’infertilité est considérée actuellement par l’organisation mondiale de la santé (OMS) comme une préoccupation majeure de santé affectant plus de 50 millions de couples dans le monde. Dans les pays occidentaux, la majorité des couples infertiles ont recours aux techniques d’assistance médicale à la procréation (AMP) pour obtenir une grossesse. Malgré le succès de ces techniques, près de la moitié des couples qui ont recours à l’AMP sortent du parcours de soin sans enfant. Une partie de ces échecs est expliquée par l’altération de la gamétogenèse. Chez l’homme, la spermatogenèse fait interagir des centaines de gènes spécifiquement exprimés dans le testicule. L’abondance de ces gènes suggère que les troubles de la spermatogenèse présentent une forte composante génétique. Récemment, les avancées techniques ont favorisé l’identification de gènes responsables de ces anomalies mais la grande majorité des cas d’infertilité masculine reste classée comme idiopathique. L’objectif de la thèse est d’identifier de nouvelles causes génétiques responsables d’infertilité masculine et d’élucider les mécanismes physiopathologiques associés à ces anomalies.Au cours de ma thèse j’ai participé avec l’équipe GETI (génétique, épigénétique et thérapies de l’infertilité) à l’exploration génétique et moléculaire de deux phénotypes distincts d’anomalies spermatiques liés à des défauts post-méiotiques de la spermatogenèse : une forme rare d’azoospermie non obstructive (ANO) et le phénotype d’anomalies morphologiques multiples du flagelle spermatique (AMMF). Enfin j’ai joué un rôle important dans la création et l’analyse de modèles murins pour caractériser la pathogénie de ces anomalies.L’analyse génétique de deux frères infertiles nés de parents consanguins et présentant une ANO idiopathique associée à un arrêt post-méiotique de la spermatogenèse nous a permis d’identifier un variant homozygote délétère dans le gène SPINK2 qui code pour un inhibiteur de sérine-protéases. L’étude des souris KO pour ce gène nous a permis d’observer que les souris mâles adultes sont infertiles et miment parfaitement les phénotypes spermatique et testiculaire observés chez nos patients. Nous avons montré que la protéine codée par ce gène est exprimée dans l’acrosome à partir du stade de spermatide ronde. En l’absence de Spink2, l’activité protéolytique non-neutralisée des protéases cibles qui transitent par le Golgi cause sa fragmentation et bloque la spermiogénèse au stade de spermatide ronde. Nous avons également pu observer que les spermatozoïdes provenant de patients et de souris hétérozygotes présentent un taux élevé d’anomalies morphologiques et une baisse de la mobilité progressive conduisant à une hypofertilité à expressivité variable. Ces résultats montrent pour la première fois que l’oligo-tératozoospermie et l’azoospermie peuvent constituer un continuum pathologique dû à une même pathogénie.Nous avons également réalisé le séquençage exomique complet d’une cohorte de 78 individus AMMF non apparentés et avons identifié chez 49 sujets des mutations bi-alléliques délétères dans 11 gènes candidats dont DNAH1, CFAP43, CFAP44, WDR66 et FSIP2, soit un rendement diagnostique de 63%. Ces résultats confirment l’hétérogénéité génétique du phénotype MMAF et l’efficacité diagnostique du séquençage haut débit dans son exploration. Nous avons également validé l’implication de certains gènes candidats (n=4) dans ce phénotype chez le modèle murin knock-out créé par la nouvelle technologie d’édition du génome, CRISPR/Cas9.Dans son ensemble, ce travail montre l’intérêt et l’efficacité de la combinaison du séquençage exomique et de la technique de CRISPR/Cas9 pour étudier les troubles de la spermatogenèse et l’infertilité masculine. / Infertility is currently considered by the World Health Organization (WHO) as a major health concern affecting more than 50 million couples worldwide. In western countries, the majority of infertile couples seek assisted reproductive technologies (ART) to achieve a pregnancy. Despite the success of these techniques, almost half of these couples fail to obtain a child. Part of these failures are explained by the alteration of gametogenesis. In humans, spermatogenesis involves hundreds of genes specifically expressed in the testis. The abundance of these genes suggests that spermatogenic defects are associated with a strong genetic component. Recently, technical advances have led to the identification of numerous causative genes, but the vast majority of male infertility cases remain idiopathic. The aim of the present thesis is to identify new genetic causes responsible for male infertility and to elucidate the physiopathological mechanisms associated with these anomalies.During my thesis, I participated with the team GETI (genetics, epigenetics and therapies of infertility) in the genetic exploration of two phenotypes of male infertility related to post-meiotic defects of spermatogenesis: a rare form of non-obstructive azoospermia and the phenotype of multiple morphological abnormalities of the sperm flagella (MMAF). I have also played a key role in creation and analysis of transgenic mice to better characterize the pathogeny of the identified genetic causes in Human.Genetic analyses performed on two infertile brothers born form consanguineous parents and presenting an-idiopathic non-obstructive azoospermia associated with a post-meiotic arrest of spermatogenesis allowed us to identify a homozygous variant in the SPINK2 gene that encodes a serine-protease inhibitor. Phenotypic analysis of Spink2-/- adult male mice showed that they are infertile and perfectly mimic the sperm and testicular phenotypes observed in our patients. We showed that Spink2 protein is expressed from the round spermatid stage and localized in the acrosome, a lysosomal-like vesicle rich in proteases that play a key role during fertilization. When Spink2 is absent, the deregulated proteolytic activity of the targeted proteases such as acrosin leads to the fragmentation of the Golgi apparatus and arrest of spermiogenesis at the round spermatid stage. We also showed that sperm from heterozygous human and mice present a high level of morphological abnormalities and a decrease of progressive motility leading to a variable subfertility. These results showed for the first time that oligo-teratozoospermia and azoospermia could present a pathological continuum due to the same pathogeny.We also performed exome sequencing in a cohort of 78 non related MMAF subjects and identified in 49 cases deleterious bi-allelic mutations in a total of 11 candidate genes including DNAH1, CFAP43, CFAP44, WDR66 and FSIP2 giving a genetic diagnosis yield of 63%. These results confirm the genetic heterogeneity of MMAF and the efficiency of high throughput sequencing in genetic exploration of this phenotype. We also demonstrated the pathogenic implication of certain candidate genes (n=4) using knock-out mice created by the new technology of genome editing, CRISPR/Cas9.Overall, this work demonstrates the interest and effectiveness of combining exome sequencing and CRISPR/Cas9 system to study spermatogenesis disorders and male infertility.

Page generated in 0.0753 seconds