• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 2
  • Tagged with
  • 19
  • 19
  • 19
  • 13
  • 11
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Réparation des cassures double brin de l'adn chez les mammifères : rôle des protéines MRE11 et BLM dans l’initiation de la ligature d’extrémités non homologues (NHEJ ) / « DNA double strand break repair in mammalian cells : role of MRE11 and BLM proteins at the initiation of Non Homologous End Joining (NHEJ)

Grabarz, Anastazja 23 September 2011 (has links)
Les cassures double brin de l’ADN (CDB) sont des lésions qui peuvent conduire à des réarrangements génétiques. Deux voies sont impliquées dans la réparation de ces dommages: la recombinaison homologue (HR) et la ligature d’extrémités nonhomologues (NHEJ).Au laboratoire un substrat intrachromosomique permettant de mesurer l’efficacité et la fidélité du NHEJ à été mis en place (Guirouilh-Barbat 2004). Cette approche a permis de démontrer l’existence d’une voie alternative à KU qui utilise des microhomologies présentes de part et d’autre de la cassure - le NHEJ alternatif (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). Les travaux de ma thèse consistent à caractériser les principaux acteurs de cette voie. En absence de KU, cette voie alternative du NHEJ, s'initierait tout d’abord parla résection d'extrémités d’ADN non protégées. Nous avons montré que l’activité nucléasique de MRE11 est nécessaire à ce mécanisme. La surexpression de MRE11 conduit à une stimulation du NHEJ, contrairement à l’extinction de la protéine par siRNA, résultant en une baisse de son efficacité de deux fois. Nos résultats montrent également que les protéines RAD50 et CtIP agissent dans la même voie que MRE11. De plus, dans les cellules déficientes pour XRCC4, la MIRIN – un inhibiteur du complexe MRN - conduit à une chute de l'efficacité de la réparation, démontrant le rôle de MRE11 dans la voie alternative du NHEJ. Nous avons aussi montré que MRE11 peut agir de manière dépendante et indépendante de la kinase ATM (Rass et Grabarz, Nat Struct Mol Biol 2009). L'initiation de la résection de la cassure doit être ensuite poursuivie par une dégradation plus importante de l'ADN qui est assuré par les protéines Exo1 et Sgs1/Dna2 chez la levure. Chez les mammifères, des études in vitro suggèrent un modèle similaire à deux étapes. Nous avons choisi de nous intéresser au rôle de la protéine BLM, qui est l’un des homologues humains de la RecQ hélicase Sgs1, dans la résection. Nos expériences montrent que l’absence de BLM diminue l’efficacité du NHEJ. De plus, l’extinction de BLM conduit à une augmentation d’évènements infidèles lors de la réparation par NHEJ et l’apparition d’évènements de résection de grande taille (>200nt). Ceci suggère que BLM protège contre de longues résections lors de la mise en place du NHEJ alternatif. De manière cohérente, BLM est impliquée dans la protection contre la résection dépendante de CtIP lors des étapes précoces de la recombinaison homologue. En conclusion, nos résultats montrent un rôle prédominant de BLM dans la protection contre un excès de résection médiée par CtIP. BLM interagit avec 53BP1 aux sites de dommages de manière dépendante d’ATM afin de réguler le processus de résection, en contrecarrant l’action de BRCA1. Ceci souligne à nouveau le rôle essentiel de BLM dans la protection contre la résection et la favorisation de la conversion génique sans crossing-over, ce qui est primordial pour le maintien de la stabilité du génome. / DNA double strand breaks (DSBs) are highly cytotoxic lesions, which can lead to genetic rearrangements. Two pathways are responsible for repairing these lesions : homologous recombination (HR) and non homologous end joining (NHEJ). In our laboratory, an intrachromosomal substrate has been established in order to measure the efficiency and the fidelity of NHEJ in living cells (Guirouilh-Barbat 2004). This approach led us to identify a KU-independent alternative pathway, which uses microhomologies in the proximity of the junction to accomplish repair – the alternative NHEJ (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). The goal of my thesis consisted in identifying and characterising major actors of this pathway. In the absence of KU, alternative NHEJ would be initiated by ssDNA resection of damaged ends. We showed that the nuclease activity of MRE11 is necessary for this mechanism. MRE11 overexpression leads to a two fold stimulation of NHEJ efficiency, while the extinction of MRE11 by siRNA results in a two fold decrease. Our results demonstrate that the proteins RAD50 and CtIP act in the same pathway as MRE11. Moreover, in cells deficient for XRCC4, MIRIN – an inhibitor of the MRN complex – leads to a decrease in repair efficiency, implicating MRE11 in alternative NHEJ. We also showed that MRE11 can act in an ATM-dependent and independent manner (Rass et Grabarz Nat Struct Mol Biol 2009). The initiation of break resection needs to be pursued by a more extensive degradation of DNA, which is accomplished in yeast by the proteins Exo1 and Sgs1/Dna2. In human cells, in vitro studies have recently proposed a similar model of a two-step break resection. We chose to elucidate the role of one of the human homologs of Sgs1 – the RecQ helicase BLM – in the resection process. Our experiments show, that he absence of BLM decreases the efficiency of end joining by NHEJ, accompanied by an increase in error-prone events, especially long-range deletions (>200nt). This suggests that BLM protects against extensive resection during alternative NHEJ. Furthermore, BLM is implicated in the protection against CtIP-dependent resection at the initiation of HR. In conclusion, our results show a major role of BLM in protecting against an excess of resection, mediated by the MRN cofactor – CtIP. BLM interacts with 53BP1 at sites of damage, in an ATM-dependent manner, in order to regulate the resection process and counteract BRCA1 activity. This underlines the novel role of BLM in the protection against resection and favouring gene conversion events without crossing-over, which is substantial for maintaining genomic integrity.
12

Stimulation et contrôle de la recombinaison homologue chez le maïs pour augmenter l'efficacité du ciblage de gène et le brassage génétique

Ayar, Ayhan 19 March 2013 (has links)
La recombinaison homologue est un mécanisme de réparation de l’ADN extrêmement contrôlé et particulièrement chez les eucaryotes supérieurs. Dans les cellules méiotiques de ces derniers, où les cassures doubles brin de l’ADN sont programmées, les voies de crossing-over de la recombinaison homologue, qui génèrent de nouvelles combinaisons de gènes, sont restreintes. Dans les cellules somatiques, la recombinaison illégitime, qui assure majoritairement la réparation des cassures double brin de l’ADN, limite l’intégration ciblée du transgène par recombinaison homologue. Les entreprises de biotechnologie convoitent de maitriser la recombinaison homologue afin de contrôler d’une part le brassage génomique qui a lieu pendant la méiose, et d’autre part l’intégration du transgène dans le génome. Cette étude a porté sur le développement d’outils afin d’atteindre ces deux objectifs. Afin d’augmenter le brassage du génome, ayant lieu pendant la méiose, une version du promoteur OsDmc1b, active dans les cellules méiotiques, a été caractérisée chez le maïs. Des plantes sur-exprimant le gène ZmSpo11.1, sous contrôle de ce promoteur, ont ainsi été développées afin d’obtenir des lignées potentiellement hyper-recombinantes. Si la surexpression de ZmSpo11.1 permet effectivement d’augmenter le taux de crossing-over, il pourra être utilisé par les sélectionneurs afin d’accélérer l’introgression d’allèles d’intérêt dans des variétés élites. Concernant la mise en place d’une technique de ciblage de gène, deux stratégies, reposant sur l’utilisation de la méganucléase I-SceI, ont été testées. La démarche a nécessité trois éléments : un locus cible contenant le site de coupure I-SceI, une matrice de réparation et la séquence codant I-SceI (ou I-SceI::GR). La première stratégie, consistant à retransformer les lignées présentant le locus cible avec la matrice de réparation et I-SceI, ne semble pas exploitable car aucun évènement de ciblage de gène n’a été mis en évidence. La seconde stratégie, reposant sur l’assemblage des trois éléments par croisement, est beaucoup plus prometteuse. Malgré la faible activité d’I-SceI::GR, des évènements de recombinaison homologue ont été observés dans les tissus foliaires de certaines plantes. Du cal embryogène, développé à partir de ces dernières, a permis de régénérer des plantes présentant des évènements de ciblage de gène. Ces travaux ouvrent de nouvelles perspectives dans l’élaboration contrôlée d’OGM. / Homologous recombination is a DNA repair mechanism highly regulated in higher eukaryotes. In their meiotic cells, where DNA double-stranded breaks are programmed, the crossing-over pathway of homologous recombination, which generates new gene combinations, is limited in activity and genomic distribution. In somatic cells, illegitimate recombination, which mainly ensures DNA double-strand repair, limits the targeted integration of transgenes by homologous recombination. Biotechnology companies aim to master homologous recombination to control on the one hand the genomic mixing that occurs during meiosis, and on other hand, the integration of transgenes into the genome. This study focuses on the development of tools to achieve these two objectives.To increase genome mixing occurring during meiosis, a version of the OsDmc1b promoter active in maize meiotic cells was isolated. Then, plants over-expressing the ZmSpo11.1 gene under control of this promoter have been developed to obtain potentially hyper-recombinant lines. If ZmSPO11.1 overexpression increases the crossing over rate, it can be used by breeders to accelerate the introgression of alleles of interest into elite varieties. For the establishment of a gene targeting technique, two strategies based on the use of the I-SceI meganuclease were tested. These approaches involved the use of three elements which are: a target locus containing the cleavage site of I-SceI, a repair template and the sequence encoding I-SceI (or ISceI::GR). The first strategy, consisting of the retransformation of target locus lines with the repair template and I-SceI, does not seem workable because no gene targeting events were isolated. The second strategy, based on the assembly of the three components by crossing, is more promising. Despite the low activity of I-SceI::GR, homologous recombination events were observed in leaf tissues of certain plants. Embryogenic callus, developed from these plants, permitted the regeneration of plants with gene targeting events. This work opens new perspectives in the development of controlled GMO production.
13

Contraction de répétitions de trinucléotides par induction ciblée d'une cassure double brin / Trinucleotide repeats contraction by double-strand break induction

Mosbach, Valentine 18 April 2017 (has links)
Les répétitions de trinucléotides sont des séquences répétées en tandem pouvant subir, chez l'homme, de larges expansions à l'origine de nombreuses maladies génétiques. La dystrophie myotonique de type 1 (DM1) est due à l'expansion d'une répétition CTG en 3'UTR du gène DMPK. Les mécanismes d'instabilités des répétitions, peu connus, reposeraient sur leur capacité à former des structures secondaires constituant un obstacle aux mécanismes impliquant une synthèse d'ADN. Nous avons montré qu'une TALEN induisant une cassure double brin dans les répétitions CTG à l'origine de la DM1 insérées chez la levure Saccharomyces cerevisiae permettait de manière efficace et spécifique d'aboutir après réparation à leur contraction. Le mécanisme de réparation est dépendant uniquement de deux gènes, RAD50 et RAD52, suggérant la formation de structures aux extrémités de la DSB devant être retirées pour initier la réparation, suivis d'une réaction de SSA entre les répétitions aboutissant à leur contraction. L'efficacité et spécificité d'un système CRISPR-Cas9 à contracter ces répétitions chez la levure ont été comparées à la TALEN. L'induction de CRISPR-Cas9 n'aboutit pas à la contraction des répétitions mais à des réarrangements chromosomiques suggérant un manque de spécificité et un mécanisme de réparation différent de celui de la TALEN. Enfin, nous avons étudié si ces nucléases peuvent contracter ces répétitions CTG à des tailles non pathologiques dans des cellules de mammifères. L'induction de la TALEN dans des cellules de souris transgéniques DM1, puis dans des fibroblastes humains de patients DM1 montre des résultats préliminaires encourageant de contraction des répétitions. / Trinucleotides repeats are a specific class of microsatellites whose large expansions are responsible for many human neurological disorders. Myotonic dystrophy type 1 (DM1) is due to an expansion of CTG repeats in the 3’UTR of DMPK gene, which can reach thousands of repeats. Molecular mechanisms leading to these large expansions are poorly understood but in vitro studies have shown the capacity of these repeats to form secondary structures, which probably interfere with mechanisms involving DNA synthesis. We shown that a TALEN used to induce double-strand break (DSB) in DM1 CTG repeats integrated in the yeast Saccharomyces cerevisiae is specific and leads to highly efficient repeat contractions after repair. Mechanism involved in TALEN-induced DSB only depends of RAD50 and RAD52 genes, suggesting the formation of secondary structures at DSB ends that need to be removed for repair initiation, followed by an intramolecular recombinaison repair such as SSA between repeats leading to their contraction. We compared the efficiency and specificity of a CRISPR-Cas9 and the TALEN to contract CTG repeats in yeast. Surprisingly, CRISPR-Cas9 induction do not lead to repeat contraction but to chromosomal rearrangement, suggesting a lack of specificity and a different repair mechanism than with the TALEN. At last, we studied whether these nucleases could contract CTG repeats to a non-pathological length in mammalian cells. Finally, TALEN induction in DM1 transgenic mice cells, and in DM1 human fibroblasts show promising repeat contractions.
14

Kinesin-13, tubulins and their new roles in DNA damage repair

Paydar, Mohammadjavad 12 1900 (has links)
Les microtubules sont de longs polymères cylindriques de la protéine α, β tubuline, utilisés dans les cellules pour construire le cytosquelette, le fuseau mitotique et les axonèmes. Ces polymères creux sont cruciaux pour de nombreuses fonctions cellulaires, y compris le transport intracellulaire et la ségrégation chromosomique pendant la division cellulaire. Au fur et à mesure que les cellules se développent, se divisent et se différencient, les microtubules passent par un processus, appelé instabilité dynamique, ce qui signifie qu’ils basculent constamment entre les états de croissance et de rétrécissement. Cette caractéristique conservée et fondamentale des microtubules est étroitement régulée par des familles de protéines associées aux microtubules. Les protéines de kinésine-13 sont une famille de facteurs régulateurs de microtubules qui dépolymérisent catalytiquement les extrémités des microtubules. Cette thèse traite d’abord des concepts mécanistiques sur le cycle catalytique de la kinésine-13. Afin de mieux comprendre le mécanisme moléculaire par lequel les protéines de kinésine-13 induisent la dépolymérisation des microtubules, nous rapportons la structure cristalline d’un monomère de kinésine-13 catalytiquement actif (Kif2A) en complexe avec deux hétérodimères αβ-tubuline courbés dans un réseau tête-à-queue. Nous démontrons également l’importance du « cou » spécifique à la classe de kinésine-13 dans la dépolymérisation catalytique des microtubules. Ensuite, nous avons cherché à fournir la base moléculaire de l’hydrolyse tubuline-guanosine triphosphate (GTP) et son rôle dans la dynamique des microtubules. Dans le modèle que nous présentons ici, l’hydrolyse tubuline-GTP pourrait être déclenchée par les changements conformationnels induits par les protéines kinésine-13 ou par l’agent chimique stabilisant paclitaxel. Nous fournissons également des preuves biochimiques montrant que les changements conformationnels des dimères de tubuline précèdent le renouvellement de la tubuline-GTP, ce qui indique que ce processus est déclenché mécaniquement. Ensuite, nous avons identifié la kinésine de microtubule Kif2C comme une protéine associée à des modèles d’ADN imitant la rupture double brin (DSB) et à d’autres protéines de réparation DSB connues dans les extraits d’œufs de Xenope et les cellules de mammifères. Les cassures double brin d’ADN (DSB) sont un type majeur de lésions d’ADN ayant les effets les plus cytotoxiques. En raison de leurs graves impacts sur la survie cellulaire et la stabilité génomique, les DSB d’ADN sont liés à de nombreuses maladies humaines, y compris le cancer. Nous avons constaté que les activités PARP et ATM étaient toutes deux nécessaires pour le recrutement de Kif2C sur les sites de réparation de l’ADN. Kif2C knockout ou inhibition de son activité de dépolymérisation des microtubules a conduit à l’hypersensibilité des dommages à l’ADN et à une réduction de la réparation du DSB via la jonction terminale non homologue et la recombinaison homologue. Dans l’ensemble, notre modèle suggère que les protéines de kinésine-13 peuvent interagir avec les dimères de tubuline aux extrémités microtubules et modifier leurs conformations, moduler l’étendue des extrêmités tubuline-GTP dans les cellules et déclencher le désassemblage des microtubules. Ces deux modèles pourraient être des clés pour démêler les mécanismes impliqués dans le nouveau rôle de Kif2C dans la réparation de l’ADN DSB sans s’associer à des polymères de microtubules. / Microtubules are long, cylindrical polymers of the proteins α, β tubulin, used in cells to construct the cytoskeleton, the mitotic spindle and axonemes. These hollow polymers are crucial for many cellular functions including intracellular transport and chromosome segregation during cell division. As cells grow, divide, and differentiate, microtubules go through a process, called dynamic instability, which means they constantly switch between growth and shrinkage states. This conserved and fundamental feature of microtubules is tightly regulated by families of microtubule-associated proteins (MAPs). Kinesin-13 proteins are a family of microtubule regulatory factors that catalytically depolymerize microtubule ends. This thesis first discusses mechanistic insights into the catalytic cycle of kinesin-13. In order to better understand the molecular mechanism by which kinesin-13 proteins induce microtubule depolymerization, we report the crystal structure of a catalytically active kinesin-13 monomer (Kif2A) in complex with two bent αβ-tubulin heterodimers in a head-to-tail array. We also demonstrate the importance of the kinesin-13 class-specific “neck” in modulating Adenosine triphosphate (ATP) turnover and catalytic depolymerization of microtubules. Then, we aimed to provide the molecular basis for tubulin-Guanosine triphosphate (GTP) hydrolysis and its role in microtubule dynamics. Although it has been known for decades that tubulin-GTP turnover is linked to microtubule dynamics, its precise role in the process and how it is driven are now well understood. In the model we are presenting here, tubulin-GTP hydrolysis could be triggered via the conformational changes induced by kinesin-13 proteins or by the stabilizing chemical agent paclitaxel. We also provide biochemical evidence showing that conformational changes of tubulin dimers precedes the tubulin-GTP turnover, which indicates that this process is triggered mechanically. Next, we identified microtubule kinesin Kif2C as a protein associated with double strand break (DSB)-mimicking DNA templates and other known DSB repair proteins in Xenopus egg extracts and mammalian cells. DNA double strand breaks (DSBs) are a major type of DNA lesions with the most cytotoxic effects. Due to their sever impacts on cell survival and genomic stability, DNA DSBs are related to many human diseases including cancer. Here we found that PARP and ATM activities were both required for the recruitment of Kif2C to DNA repair sites. Kif2C knockdown/knockout or inhibition of its microtubule depolymerizing activity led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both non-homologous end-joining (NHEJ) and homologous recombination (HR). Interestingly, genetic depletion of KIF2C, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Altogether, our findings shed light on the mechanisms involved in kinesin-13 catalyzed microtubule depolymerization. Our tubulin-GTP hydrolysis model suggests that kinesin-13 proteins may interact with tubulin dimers at microtubules ends and alter their conformations, modulate the extent of the GTP caps in cells and trigger microtubule disassembly. These two models could be keys to unravel the mechanisms involved in the novel role of Kif2C in DNA DSB repair without associating with microtubule polymers.
15

Intégration de l'inférence abductive et inductive pour la représentation des connaissances dans les réseaux de gènes

Le, Tan 28 April 2014 (has links) (PDF)
Le raisonnement diagnostique (abductif) et le raisonnement de prédiction (inductif) sont deux des méthodes de raisonnement qui permettent la découverte de connaissances nouvelles. Lorsque le raisonnement abductif est le processus permettant de trouver la meilleure explication (hypothèse) pour un ensemble d'observations (Josephson, 1994), le raisonnement de prédiction est le processus, à partir d'un ensemble d'observations, permettant de trouver tous les résultats possibles. Ces observations peuvent être les symptômes d'un patient, des expériences concernant les réseaux métaboliques et génomiques, etc. Dans cette thèse, nous nous sommes intéressés à la représentation, l'analyse et la synthèse des réseaux de signalisation génomique en utilisant la logique des hypothèses. En fait, ce mémoire se focalise sur la modélisation des voies de signalisation en réponse à la cassure double-brin de l'ADN. Pour implémenter l'abduction nous utilisons les algorithmes de production. Ensuite, la logique des défauts permet de construire des modèles de représentation minimale. Ces algorithmes de découvertes de connaissances sont prouvés sur la carte de cassure double brin de l'ADN. Cette carte est minimale en tant que graphe de causalité biologique et elle permet d'intégrer les données biomoléculaires.
16

Effets des radiations gamma et des électrons de basse énergie sur la fonctionnalité de l'ADN / Effect of gamma radiation and low energy electron on the DNA functionality

Sahbani, Saloua January 2014 (has links)
Résumé : Il est généralement admis que les cassures double-brin (CDB) de l’ADN sont parmi les lésions les plus toxiques induites par les radiations ionisantes (RI). Les CDBs non ou mal réparées peuvent conduire à une instabilité génomique et à la mort cellulaire. La chimioradiothérapie concomitante est l’une des modalités la plus efficace pour le traitement de certains cancers surtout en stade avancé. Le rendement des CDBs a augmenté quand l’ADN a été irradié en présence de cisplatine avec des électrons de basse énergie (EBEs). Notre étude a pour objectif de réévaluer la contribution des CDBs et d’autres lésions induites par les RI dans la létalité cellulaire. L'effet des RI sur la fonctionnalité de l’ADN plasmidique modifié ou non de façon covalente par le cisplatine a été étudié par mesure de l'efficacité de transformation du plasmide dans E. coli. Les complexes cisplatine-ADN ont été préparés de telle sorte qu’il y avait en moyenne deux adduits de cisplatine par plasmide tel que mesuré par ICP-MS. Nos échantillons ont été irradiés en solution avec des doses croissantes de rayonnements gamma (137Cs). La présence de cisplatine a augmenté la formation des CDBs par un facteur de 2.6 par comparaison avec l'ADN non modifié. Malgré cette augmentation, le rendement des CDBs reste très faible et ne peut pas expliquer la perte de fonctionnalité observée. Alors que, les dommages multiples localisés (LMDS) (non-DSB cluster damage) donnant naissance à des CDBs sous l’action des enzymes de réparation la formamidopyrimidine [fapy]-DNA glycosylase (Fpg) et l’endonuclease III (Nth) où leur rendement a été augmenté d’un facteur de 2.1 lorsque l’ADN a été irradié en présence de cisplatine, ont pu expliquer la perte de fonctionnalité observée. Ces résultats suggèrent que le cisplatine peut agir, non seulement comme un agent chimiothérapeutique, mais aussi comme un radiosensibilisateur efficace par addition d’autres lésions à l’ADN. Aussi, pour la première fois nous avons pu évaluer l’effet des EBEs sur la létalité cellulaire. Des films d'ADN ont été préparés en utilisant la méthode d’adsorption douce sur un substrat de graphite pyrolytique, en présence de 1,3- diaminopropane (Dap[indice supérieur]2+) et ont été irradiées avec des EBEs 10 eV. Nous avons pu conclure, qu’en plus des CSBs, CDBs et des dommages de base, les EBEs sont capables aussi d’induire des LMDS (non-DSB cluster damage) et induire la perte de fonctionnalité de l’ADN. Le rendement des CDBs est très faible d’où ils n’ont pas pu expliquer la perte de fonctionnalité de plasmide observée, après irradiation avec les EBEs. Le rendement très faible des LMDS (non-DSB cluster damage) ne peut pas expliquer la perte de fonctionnalité de l’ADN. Il semble que les EBEs sont capables d’induire des dommages très proches les uns des autres et qui ne peuvent pas être révélés par les enzymes de réparation Fpg et Nth. Plus les dommages sont proches les uns des autres, plus leur réparation est difficile, car une de ces lésions peut inhiber la réparation de l’autre la plus proche. // Abstract : It is generally accepted that DNA double-strand breaks (DSB) are among the most toxic lesions induced by ionizing radiation (IR). Unrepaired or misrepaired DSB can lead to genomic instability and cell death. It is known that concomitant chemoradiation therapy is one of the most preferred methods for the treatment of certain cancers especially in advanced stage. The yield of DSBs was increased when DNA was irradiated with low energy electron (LEEs). The aims of our study was to reassess the contribution of DSBs and other lesions induced by indirect and direct effect of IR in cell lethality. The effect of IR on the DNA functionality of the plasmid modified covalently with cisplatin was studied by measuring the transformation efficiency of the plasmid in E. coli. Cisplatin-DNA complexes were prepared such that there was an average of two cisplatin adducts per plasmid as measured by ICP-MS. Aqueous solutions of the samples were irradiated with 137Cs [gamma]-rays at various doses. Gel electrophoresis analysis shows that cisplatin enhances, by a factor of 2.6, the formation of DSB by [gamma]-rays relative to those in unmodified DNA. Despite this increase, the yield of DSBs is very low and cannot explain the loss of functionality observed after transformation with plasmids modified with cisplatin. While locally multiple damaged sites (LMDS) revealed by repair enzymes Fpg (Formamidopyrimidine [fapy]-DNA glycosylase) and Nth (Endonuclease III) as DSB (nonDSB cluster damage), where their yield was increased by a factor of 2.1 when DNA was irradiated in the presence of cisplatin were able to explain the observed loss of DNA functionality. These results suggest that cisplatin may act not only as a chemotherapeutic agent, but also as an effective radiosensitizer by addition of other DNA lesions. For the first time, we could also evaluate the effect of low energy electrons (LEEs) on DNA functionality. Highly ordered DNA films were prepared on pyrolytic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap[superscript]2+) to bind together the plasmids and irradiated with LEE (10 eV). We concluded that in addition to CSBs, DSBs and base damage, LEEs induced the formation of non-DSB cluster damage and also induced the loss of DNA functionality under LEE irradiation. The yields of DSBs and of non-DSB cluster damage are too low and so one unable to explain the loss of DNA functionality. It seems that LEEs are able to induce a high complex damage that cannot be revealed by repair enzymes Fpg and Nth. The high complex damage is difficult to repair possibly because the repair of one lesion, may inhibit the repair of another.
17

Chromatin structure and DNA repair / Etude de la structure de la chromatine dans la réparation de I'ADN

Hoffbeck, Anne-Sophie 25 October 2013 (has links)
Notre génome est continuellement endommagé par des agents provoquant des lésions de l’ADN. Les cassures doubles brins de l’ADN (CDBs) sont les lésions les plus dangereuses. En effet, une CDB mal réparée peut mener à des aberrations de l’ADN pouvant conduire à l’apparition d’un cancer. Dans le but d’éviter les effets délétères des CDBs, nos cellules ont développé une voie de signalisation, nommée réponse aux dommages de l’ADN (RDA), permettant la détection des cassures et l’activation des points de contrôle du cycle cellulaire afin d’arrêter le cycle pendant la réparation des CDBs. Une des caractéristiques principales de la RDA est l’accumulation d’un grand nombre de facteurs sur l’ADN autour de la cassure, formant un foyer visible en microscopie. Cependant, l’efficacité de réparation de l’ADN est entravée par la structure condensée de la chromatine environnante. Les mécanismes de réparation de l’ADN surmontent ce problème en recrutant de nombreuses protéines permettant le réarrangement de la chromatine afin de faciliter la réparation. Le but de mon travail de thèse est d’identifier de nouvelles protéines impliquées dans le remodelage de la chromatine autour des CDBs. D’une part nous avons pour but d’identifier le protéome complet d’un foyer de réparation de l’ADN grâce à la technique PICh (Proteomics of Isolated Chromatin loci). D’autre part, nous étudions le rôle de l’oncoprotéine SET/TAF-1β, que nous avons identifié lors d’un criblage siRNA réalisé dans le but de découvrir de nouveaux facteurs chromatiniens impliqués dans la réparation des CDBs. / Various DNA damaging agents, that can cause DNA lesions, assault constantly our genome. The most deleterious DNA lesions are the breaks occurring in both strands of DNA (Double stand breaks: DSBs). Inefficient repair of DSBs can lead to aberrations that may induce cancer. To avoid these deleterious effects of DSBs, cells have developed signalling cascades which entail detection of the lesions and spreading of the signal that leads to arrest in cell cycle progression and efficient repair. A major characteristic of DNA damage response (DDR) is the accumulation of a vast amount of proteins around the DSBs that are visible in the cell as DNA damage foci. However, efficient DNA repair is hampered by the fact that genomic DNA is packaged into chromatin. The DNA repair machinery overcomes this condensed structure to access damaged DNA by recruiting many proteins that remodel chromatin to facilitate efficient repair. The aim of my PhD work is to identify novel proteinsinvolved in the DDR and/or the remodelling of chromatin surrounding DSBs. On one hand, we take advantage of the PICh (Proteomics of Isolated Chromatin loci) technique and we aim to identify the entire proteome of DNA repair foci. On the other hand, we study the role of the oncogene SET/TAFIβ, a major hit of a siRNA screen performed to identify novel chromatin related proteins that play role in repair of DSBs.
18

Développement d'un outil de simulation multi-échelle adapté au calcul des dommages radio-induits précoces dans des cellules exposées à des irradiations d'ions légers (proton et alpha) / Development of a multi-scale simulation tool for early radio-induced damage assessment in cells exposed to light ions irradiations (proton and alpha)

Meylan, Sylvain 21 October 2016 (has links)
Ce travail de thèse, réalisé dans le cadre des projets de recherche ROSIRIS (IRSN) et Geant4-DNA, porte sur la construction d’une simulation multi-échelle dédiée au calcul des dommages radio-induits précoces à l’ADN qui peuvent apparaître suite à l’irradiation d’un noyau cellulaire. L’outil développé s’appuie sur une version modifiée du code de Monte Carlo Geant4-DNA et est capable de simuler dans le détail le transport et les interactions physiques entre l’irradiation ionisante et la matière biologique (étape physique), la création d’espèces chimiques (étape physico-chimique) et les réactions et processus de diffusion de ces dernières (étape chimique). Durant la simulation de ces trois étapes, un modèle géométrique de l’ADN, décrivant l’ensemble du génome humain avec une précision moléculaire, est généré avec un nouveau logiciel développé dans le cadre de cette thèse : DnaFabric. Les premiers résultats obtenus pour des irradiations avec des protons et des ions alpha sont détaillés et comparés à des données de la littérature. Un bon accord est observés avec ces dernières illustrant ainsi la cohérence de l’ensemble de la simulation. L’influence très significative du critère de sélection utilisé pour identifier les dommages à l’ADN est également démontrée. / This work was performed in the frame of the ROSIRIS (IRSN) and Geant4-DNA research projects and describes the development of a simulation tool to compute radioinduced early DNA damages in a cell nucleus. The modeling tool is based on a modified version of the Monte Carlo code Geant4-DNA and is able to simulate the physical interactions between ionizing particles and the biological target (physical stage), the creation of chemical species within the cell nucleus (physico-chemical stage) as well as the reactions and diffusion processes of these chemical species (chemical stage). During all the simulation, a geometrical model that describes the DNA content of a human diploid cell nucleus is taken into account. This model was generated with a new software (DnaFabric) developed in the frame of this work and has a molecular level of detail.The first results (in term of DNA strand breaks) obtained with this tool are detailed and compared with experimental data from the literature. The good agreement between the simulation results and those data shows the coherence of our modeling. The significant influence of the selection criteria used to identify the DNA damages is also demonstrated.
19

Etude des acteurs et des interactions entre les voies de recombinaison chez Arabidopsis thaliana / Study of the actors and of the interactions between the recombination pathways of Arabidopsis thaliana

Serra, Heïdi 05 September 2014 (has links)
La réparation des cassures double brin (CDB) de l'ADN par recombinaison est essentielle au maintien de l'intégrité du génome de tous les être vivants. Ce processus doit cependant être finement régulé puisque la recombinaison peut générer des mutations ou des réarrangements chromosomiques, parfois extrêmement délétères pour la cellule. Les CDB peuvent être réparées par deux mécanismes : la recombinaison non homologue (ou jonction des extrémités d'ADN) ou la recombinaison homologue (impliquant une homologie de séquence entre les molécules recombinantes). Dans les cellules somatiques, les deux voies principales de recombinaison homologue (RH) sont la voie Synthesis Dependent Strand Annealing (SDSA) dépendante de la recombinase RAD51 et la voie Single Strand Annealing (SSA) indépendante de RAD51. Nos résultats ont d'abord mis en évidence un rôle inattendu de XRCC2, RAD51B et RAD51D - trois paralogues de RAD51 - dans la voie SSA. Nous avons confirmé que la fonction de la protéine XRCC2 dans la voie SSA ne dépend pas de RAD51, ce qui démontre que certains paralogues de RAD51 ont acquis des fonctions indépendantes de la recombinase. La différence de sévérité des phénotypes des mutants individuels ainsi que les analyses d'épistasie menées sur le double et le triple mutant suggèrent des fonctions individuelles de ces protéines au cours du SSA. Nous proposons qu'elles facilitent l'étape d'hybridation des deux séquences complémentaires situées de part et d'autre de la cassure, bien que ceci reste à confirmer par des études in vitro. L'étude des fonctions de l'hétérodimère XPF-ERCC1 - un complexe impliqué dans le clivage des extrémités d'ADN non homologues au cours des voies de RH - a révélé un rôle inhibiteur de ce complexe sur la voie SDSA. Cette action est dépendante de son activité endonucléasique et serait liée au clivage des longues extrémités 3' sortantes réalisant l'invasion d'un duplex d'ADN homologue, l'étape initiale de la voie SDSA. Notre étude a de plus confirmé que le rôle du complexe dépend de la longueur des extrémités non homologues chez Arabidopsis, comme chez les mammifères et la levure. Bien que le complexe XPF-ERCC1 soit essentiel au clivage des longues extrémités d'ADN non homologue, il n'est pas requis à l'élimination des courtes extrémités au cours de la RH. / The repair of DNA double-strand breaks (DSB) by recombination is essential for the maintenance of genome integrity of all living organisms. However, recombination must be finely regulated as it can generate mutations or chromosomal rearrangements, sometimes extremely deleterious to the cell. DSB can be repaired by two classes of recombination mechanism: non-homologous recombination (or DNA End Joining) or homologous recombination (implicating DNA sequence homology between the recombining molecules). In somatic cells, the two main pathways of homologous recombination (HR) are RAD51-dependent Synthesis Dependent Strand Annealing (SDSA) and RAD51-independent Single Strand Annealing (SSA). Our results have demonstrated an unexpected role of XRCC2, RAD51B and RAD51D - three RAD51 paralogues – in the SSA pathway. We confirmed that the function of XRCC2 in SSA does not depend upon RAD51, thus demonstrating that some RAD51 paralogues have acquired RAD51 recombinase-independent functions. The different severities of individual mutant phenotypes and epistasis analyses carried out on the double and triple mutants suggest individual functions of these proteins in SSA recombination. We propose that they facilitate hybridization of the two complementary sequences located on both sides of the break, although this remains to be confirmed by in vitro experiments. Study of the roles of XPF-ERCC1 - a complex involved in the cleavage of non-homologous DNA ends during HR - revealed an inhibitory role of this complex on the SDSA pathway. This is dependent on its endonuclease activity and is probably due to the cleavage of long 3' ends performing the homologous DNA duplex invasion, the initial step of the SDSA pathway. Our analyses also confirmed that the role of the complex depends on the length of the nonhomologous ends, as seen in mammals and yeasts. Although XPF-ERCC1 is essential for the cleavage of long nonhomologous DNA ends, it is not required for the elimination of short ends during HR.

Page generated in 0.0519 seconds