• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 14
  • 4
  • 2
  • Tagged with
  • 94
  • 73
  • 57
  • 56
  • 55
  • 38
  • 29
  • 27
  • 21
  • 21
  • 21
  • 19
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Probability and Heat Kernel Estimates for Lévy(-Type) Processes

Kühn, Franziska 05 December 2016 (has links) (PDF)
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations. Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
82

A Hybrid Method for Inverse Obstacle Scattering Problems / Ein hybride Verfahren für inverse Streuprobleme

Picado de Carvalho Serranho, Pedro Miguel 02 March 2007 (has links)
No description available.
83

Eine Finite-Elemente-Methode für nicht-isotherme inkompressible Strömungsprobleme / A finite element method for non-isothermal incompressible fluid flow problems

Löwe, Johannes 14 July 2011 (has links)
No description available.
84

Numerical Methods for Bayesian Inference in Hilbert Spaces / Numerische Methoden für Bayessche Inferenz in Hilberträumen

Sprungk, Björn 15 February 2018 (has links) (PDF)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
85

Probability and Heat Kernel Estimates for Lévy(-Type) Processes

Kühn, Franziska 25 November 2016 (has links)
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations. Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
86

Numerical Methods for Bayesian Inference in Hilbert Spaces

Sprungk, Björn 15 February 2018 (has links)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
87

Networks of delay-coupled delay oscillators

Höfener, Johannes Michael 06 July 2012 (has links)
The analysis of time-delayed dynamics on networks may help to understand many systems from physics, biology, and engineering, such as coupled laser arrays, gene-regulatory networks and complex ecosystems. Beside the complexity due to the network structure, the analysis is further complicated by the presence of the delays. Delay systems are in general infinite dimensional and thus can display complex dynamics as oscillations and chaos. The mathematical difficulties related to the delays hinders the analysis of delay networks. Thus, little is known yet about basic relations between network structure and delay dynamics. It has been shown that networks without delays can be studied efficiently with the generalized modeling approach, which analyzes the stability of an assumed steady state by a direct parametrization of the Jacobian matrix. In this thesis, I demonstrate the extension of the generalized modeling approach to delay networks and analyze networks of delay-coupled delay oscillators, with delayed auto-catalytic growth on the nodes and delayed transport between nodes. For degree-homogeneous networks (DHONs), in which each node has the same number of links, the bifurcation lines that border the stable areas can be calculated analytically, where the topology of the network is described only by the eigenvalues of the adjacency matrix. For undirected networks, the stability pattern in the parameter space of growth and transport delay is governed by two periodic sets of tongues of instability, which depend on the largest positive and the smallest negative eigenvalue. The direct relation between the eigenvalue and the bifurcation lines allows us to predict stability patterns for networks with certain topological properties. Thus, bipartite networks display a characteristic periodicity of tongues. In order to analyze the stability of degree-heterogeneous networks (DHENs), I apply a numerical sampling method based on Cauchy\'s Argument Principle. The stability patterns of these networks resembles the pattern of DHONs, which is governed by the two periodic sets. For networks with sufficiently many links, one set disappears, and the stability of DHENs can be approximates by the stability of a fully-connected network with the same average degree. However, random DHENs tend to be more stable than DHONs, and DHENs with a broad degree-distribution tend to be more stable than DHENs with a narrow distribution. Thus, such networks are more likely to give rise to amplitude death, i.e. the stabilization of an unstable steady state through diffusive coupling. The stability pattern of DHENs can be qualitatively different than the pattern in DHONs. However, for small growth delays, close to the critical delay of the single node system, the bifurcation lines of all DHENs with the same average degree coincide. This, is particularly interesting, because there the stability depends on a global property of the network, which suggests a diverging interaction length. In summary, the extension of generalized modeling to time-delay networks reveals basic relations between the delay dynamics and the topology. The generality of our model should allow to apply these results to a large class of real-world systems.
88

Inverse Methods In Freeform Optics

Landwehr, Philipp, Cebatarauskas, Paulius, Rosztoczy, Csaba, Röpelinen, Santeri, Zanrosso, Maddalena 13 September 2023 (has links)
Traditional methods in optical design like ray tracing suffer from slow convergence and are not constructive, i.e., each minimal perturbation of input parameters might lead to “chaotic” changes in the output. However, so-called inverse methods can be helpful in designing optical systems of reflectors and lenses. The equations in R2 become ordinary differential equations, while in R3 the equations become partial differential equations. These equations are then used to transform source distributions into target distributions, where the distributions are arbitrary, though assumed to be positive and integrable. In this project, we derive the governing equations and solve them numerically, for the systems presented by our instructor Martijn Anthonissen [Anthonissen et al. 2021]. Additionally, we show how point sources can be derived as a special case of a interval source with di- rected source interval, i.e., with each point in the source interval there is also an associated unit direction vector which could be derived from a system of two interval sources in R2. This way, it is shown that connecting source distributions with target distributions can be classified into two instead of three categories. The resulting description of point sources as a source along an interval with directed rays could potentially be extended to three dimensions, leading to interpretations of point sources as directed sources on convex or star-shaped sets.:1 Abstract 4 2 Notation And Conventions 4 3 Introduction 5 4 ECMI Modeling Week Challenges 5 4.1 Problem 1 - Parallel to Near-Field Target 5 4.1.1 Description 5 4.1.2 Deriving The Equations 5 4.2 Problem 2 - Parallel Source To Two Targets 8 4.3 Problem 3 - Point Source To Near-Field Target 9 4.3.1 Deriving The Equations 9 4.4 Problem 4 - Point Source To Two Targets 11 5 Validation - Ray tracing 13 5.1 Splines 13 5.1.1 Piece-Wise Affine Reflectors 13 5.1.2 Piece-Wise Cubic Reflectors 14 5.2 Error Estimates For Spline Reflectors 14 5.2.1 Lemma: A Priori Feasibility Of Starting Values For Near-Field Problems 15 5.2.2 Estimates for single reflector, near-field targets 16 5.3 Ray Tracing Errors - Illumination Errors 17 5.3.1 Definition: Axioms For Errors 18 5.3.2 Extrapolated Ray Tracing Error (ERTE) 18 5.3.3 Definition: Minimal Distance Ray Tracing Error (MIRTE) 19 5.3.4 Lemma: Continuity Of The Ray Traced Reflection Projection Of Smooth Reflectors 19 5.3.5 Theorem: Convergence Of The MIRTE 20 5.3.6 Convergence Of The ERTE 21 5.3.7 Application 21 6 Numerical Implementation 21 6.1 The DOPTICS Library 21 6.2 Pseudocode Of The Implementation 21 6.2.1 Solutions Of The Problems 22 6.2.2 Ray Tracing And Ray Tracing Error 22 6.3 ERTE Implementation 25 7 Results 26 7.1 Problem 1: Results 26 7.2 Problem 2: Results 26 7.3 Problem 3: Results 27 7.4 Problem 4: Results 27 8 Generalizations In Two Dimensions 29 8.1 Directed Densities 29 8.2 Generalized, Orthogonally Emitting Sources in R2 30 8.2.1 Point Light Sources As Orthogonally Emitting Sources 30 9 Conclusion and Future Research 32 10 Group Dynamic 32 References 32
89

Leading-colour two-loop QCD corrections for top-quark pair production in association with a jet at a lepton collider

Peitzsch, Sascha 03 May 2023 (has links)
In dieser Arbeit wird die Berechnung der farbführenden Zweischleifen-QCD-Korrekturen für die Top-Quark-Paarproduktion mit einem zusätzlichen Jet an einem Lepton-Collider präsentiert. Das Matrixelement wird in Vektor- und Axial-Vektorströme zerlegt und die Ströme werden weiter in Dirac-Spinorstrukturen und Formfaktoren zerlegt. Die Formfaktoren werden mit Projektoren extrahiert. Die auftretenden Feynmanintegrale werden mittels IBP-Identitäten und Dimensionsverschiebungstransformationen durch eine Basis quasi-finiter Masterintegrale in 6−2ϵ Dimensionen ausgedrückt. Die Mehrheit der Feynmanintegrale gehört zu einer Doppelbox-Integralfamilie. Die Berechnung der Masterintegrale erfolgt durch numerisches Lösen von Differentialgleichungen in kinematischen Invarianten. Asymptotische Reihenentwicklungen der Masterintegrale in der Top-Quarkmasse werden verwendet, um die Anfangsbedingungen für die numerischen Lösungen der Differentialgleichungen zu bestimmen. Die führenden Terme dieser Entwicklung werden mit der Expansion-by-Regions-Methode berechnet. Höhere Reihenkoeffizienten werden durch die Anwendung einer Differentialgleichung auf einen Ansatz für die Reihenentwicklung bestimmt. Die renormierten Formfaktoren und die farbführende Zweischleifenamplitude werden an einem Referenzphasenraumpunkt zu hoher Präzision numerisch ausgewertet. Die Resultate werden mit elektroschwachen Ward-Identitäten und durch numerische Vergleiche der IR-Singularitäten mit der erwarteten Singularitätsstruktur überprüft. / In this work, the calculation of the leading-colour two-loop QCD corrections for top-quark pair production with an additional jet at a lepton collider is presented. The matrix element is decomposed into vector and axial-vector currents and the currents are further decomposed into Dirac spinor structures and form factors. The form factors are extracted with projectors. The Feynman integrals are reduced to a quasi-finite basis in 6 − 2ϵ dimensions using IBP identities and dimension-shift transformations. The majority of master integrals belong to a double-box integral family. The master integrals are computed by numerically solving systems of differential equations in the kinematic invariants. Asymptotic expansions of the master integrals in the top-quark mass variable are used to calculate initial conditions for the numerical differential equation solutions. The leading terms of the expansion are obtained with the expansion by regions and the higher orders are calculated by solving a system of equations obtained from applying the differential equation onto an ansatz of the expansion. The renormalized form factors and the leading-colour two-loop amplitude are evaluated numerically to high precision at a benchmark phase space point. The results are cross-checked with electroweak Ward identities and by numerically comparing the IR singularities with the expected singularity structure.
90

Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung / der Fall 1 < p < 2

Wolf, Jörg 31 May 2002 (has links)
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1 / In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1

Page generated in 0.0912 seconds