• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • 2
  • Tagged with
  • 27
  • 26
  • 19
  • 18
  • 13
  • 12
  • 12
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Connection Between Clone Theory and FCA Provided by Duality Theory

Kerkhoff, Sebastian 02 August 2012 (has links) (PDF)
The aim of this paper is to show how Formal Concept Analysis can be used for the bene t of clone theory. More precisely, we show how a recently developed duality theory for clones can be used to dualize clones over bounded lattices into the framework of Formal Concept Analysis, where they can be investigated with techniques very di erent from those that universal algebraists are usually armed with. We also illustrate this approach with some small examples.
12

Privacy-Preserving Ontology Publishing for EL Instance Stores

Baader, Franz, Kriegel, Francesco, Nuradiansya, Adrian 26 June 2020 (has links)
We make a first step towards adapting an existing approach for privacy-preserving publishing of linked data to Description Logic (DL) ontologies. We consider the case where both the knowledge about individuals and the privacy policies are expressed using concepts of the DL EL , which corresponds to the setting where the ontology is an EL instance store. We introduce the notions of compliance of a concept with a policy and of safety of a concept for a policy, and show how optimal compliant (safe) generalizations of a given EL concept can be computed. In addition, we investigate the complexity of the optimality problem.
13

Application of the Duality Theory: New Possibilities within the Theory of Risk Measures, Portfolio Optimization and Machine Learning

Lorenz, Nicole 28 June 2012 (has links)
The aim of this thesis is to present new results concerning duality in scalar optimization. We show how the theory can be applied to optimization problems arising in the theory of risk measures, portfolio optimization and machine learning. First we give some notations and preliminaries we need within the thesis. After that we recall how the well-known Lagrange dual problem can be derived by using the general perturbation theory and give some generalized interior point regularity conditions used in the literature. Using these facts we consider some special scalar optimization problems having a composed objective function and geometric (and cone) constraints. We derive their duals, give strong duality results and optimality condition using some regularity conditions. Thus we complete and/or extend some results in the literature especially by using the mentioned regularity conditions, which are weaker than the classical ones. We further consider a scalar optimization problem having single chance constraints and a convex objective function. We also derive its dual, give a strong duality result and further consider a special case of this problem. Thus we show how the conjugate duality theory can be used for stochastic programming problems and extend some results given in the literature. In the third chapter of this thesis we consider convex risk and deviation measures. We present some more general measures than the ones given in the literature and derive formulas for their conjugate functions. Using these we calculate some dual representation formulas for the risk and deviation measures and correct some formulas in the literature. Finally we proof some subdifferential formulas for measures and risk functions by using the facts above. The generalized deviation measures we introduced in the previous chapter can be used to formulate some portfolio optimization problems we consider in the fourth chapter. Their duals, strong duality results and optimality conditions are derived by using the general theory and the conjugate functions, respectively, given in the second and third chapter. Analogous calculations are done for a portfolio optimization problem having single chance constraints using the general theory given in the second chapter. Thus we give an application of the duality theory in the well-developed field of portfolio optimization. We close this thesis by considering a general Support Vector Machines problem and derive its dual using the conjugate duality theory. We give a strong duality result and necessary as well as sufficient optimality conditions. By considering different cost functions we get problems for Support Vector Regression and Support Vector Classification. We extend the results given in the literature by dropping the assumption of invertibility of the kernel matrix. We use a cost function that generalizes the well-known Vapnik's ε-insensitive loss and consider the optimization problems that arise by using this. We show how the general theory can be applied for a real data set, especially we predict the concrete compressive strength by using a special Support Vector Regression problem.
14

Constructive Exceptionality: The Interplay of Agency and Structure in Constituting Zaatari's Market Street, Al-Souq

Al-Nassir, Sara 09 July 2019 (has links)
Due to the Syrian crisis, several refugee camps were opened in Jordan in 2012 in order to deal with the increasing number of those feeling the conflict. Refugee Spaces whether camps or other urban informalities face the challenge of being in a status of “permanent temporariness” during which they develop into unexplored urban (city-like) formations through the social production of space. Taking the case of the Zaatari refugee camp, this research explores the process during which refugee camps turn into cities. More specifically, it questions how the interplay between human agency and structure produces space in the camp; eventually the city. Al-Souq, the main market street in Zaatari, is chosen to conduct the study, employing an explorative approach accompanied with narrative elements to understand actors’ own perspective. The collected data is analysed thematically and performatively to investigate the two former categories and the way they are drawn upon in producing space. The main findings denote a constructive exceptionality that facilitates space creation as well as a consequential inclusion of refugees in the camp. Furthermore, the occurring spatial construction of Al-Souq indicates that refugees are in fact active agents. Therefore, as indicated by both results, the research concludes by offering an alternative conceptualisation to camps and refugees as opposed to the traditional humanitarian perception of them being temporary and aid-dependent victims, respectively. / Aufgrund der Syrienkrise wurden in 2012 mehrere Flüchtlingscamps in Jordanien geöffnet, um der steigenden, von dem Konflikt betroffenen, Anzahl an Menschen zu helfen. Die Lebensräume für Flüchtlinge, egal ob Flüchtlingscamps oder andere Marginalsiedlungen (urban informalities), unterliegen der Herausforderung in einem „permanenten Zwischenzustand“ (permanent temporariness) zu verbleiben. Innerhalb dieser Zeit entwickeln sich diese Räume durch soziale Raumproduktion (social production of space) in unerforschte urbane (stadtähnliche) Gebiete. Im Rahmen dieser Forschungsarbeit wird der Prozess, innerhalb dessen sich Flüchtlingscamps zu stadtähnlichen Räumen entwickeln, beispielhaft am Fall des Flüchtlingscamps Zaatari aufgezeigt. Im Konkreten wird hinterfragt wie das Zusammenspiel menschlichen Handelns und Struktur zur Raumproduktion und schließlich zu stadtähnlichen Gebilden führt. Al-Souq, die wichtigste Handelsstraße in Zaatari, wird als Studienobjekt herangezogen, um die Wahrnehmungen der Akteure zu beleuchten. Diese Studie folgt einem explorativen Ansatz mit narrativer Analyse. Die erhobenen Daten werden mittels einer thematischen (thematic analysis) und performativen Analyse (performative analysis) ausgewertet, um das Zusammenspiel der zwei genannten Kategorien im Hinblick auf die Raumproduktion zu untersuchen. Die Haupterkenntnisse der Studie zeigen sowohl eine schöpferische Außergewöhnlichkeit welche die Raumproduktion ermöglicht als auch eine daraus folgende Inklusion der Flüchtlinge im Camp durch ein Gefühl der Zugehörigkeit. Ferner zeigt die Auftretende räumliche Konstruktion von Al-Souq, dass Flüchtlinge Handlungsfähigkeit besitzen und herstellen und somit als „active Agents“ verstanden werden können. Aufbauend auf beiden Ergebnissen kann somit geschlussfolgert werden, dass zu der traditionell existierenden Humanitären Perspektive, in der Camps als temporär und Flüchtlinge als hilfebedürftige Opfer gesehen werden, ein alternatives Verständnis zu präferieren ist.
15

Numerical splitting methods for nonsmooth convex optimization problems

Bitterlich, Sandy 11 December 2023 (has links)
In this thesis, we develop and investigate numerical methods for solving nonsmooth convex optimization problems in real Hilbert spaces. We construct algorithms, such that they handle the terms in the objective function and constraints of the minimization problems separately, which makes these methods simpler to compute. In the first part of the thesis, we extend the well known AMA method from Tseng to the Proximal AMA algorithm by introducing variable metrics in the subproblems of the primal-dual algorithm. For a special choice of metrics, the subproblems become proximal steps. Thus, for objectives in a lot of important applications, such as signal and image processing, machine learning or statistics, the iteration process consists of expressions in closed form that are easy to calculate. In the further course of the thesis, we intensify the investigation on this algorithm by considering and studying a dynamical system. Through explicit time discretization of this system, we obtain Proximal AMA. We show the existence and uniqueness of strong global solutions of the dynamical system and prove that its trajectories converge to the primal-dual solution of the considered optimization problem. In the last part of this thesis, we minimize a sum of finitely many nonsmooth convex functions (each can be composed by a linear operator) over a nonempty, closed and convex set by smoothing these functions. We consider a stochastic algorithm in which we take gradient steps of the smoothed functions (which are proximal steps if we smooth by Moreau envelope), and use a mirror map to 'mirror'' the iterates onto the feasible set. In applications, we compare them to similar methods and discuss the advantages and practical usability of these new algorithms.
16

On Relations between Gluons and Gravitons

Wormsbecher, Wadim 06 November 2019 (has links)
Wir behandeln einige Spezialfälle von Beziehungen zwischen Eich- und Gravitationstheorien. Wir setzen den Schwerpunkt auf Baumlevelstreuamplituden in Einstein-(Skalar-)-Chromo-Dynamik, welche Streuungen zwischen Gluonen, massiven fundamentalen Quarks (Skalaren) und Gravitonen beschreibt. Wir untersuchen den endlichen Anteil von reiner Gluonenstreuung mit zwei kollinearen Gluonen. Basierend auf einem Vorschlag von S. Stieberger und T. Taylor, stehen diese in Beziehung zu Steuamplituden in Einstein-Yang-Mills Theorie, in welchen die kollinearen Gluonen durch ein Graviton ersetzt werden. Wir führen einen Beweis dieser Beziehungen unter der Ausnutzung des Cachazo-He-Yuan Formalismus durch. Parallel dazu werden wir einen Einblick in mysteriöse Wechselwirkunen dieser Beziehungen mit Eichinvarianzverletzungen des kollinearen Gluon Grenzwertes von Yang-Mills Streuampliuden geben. Danach behandeln wir eine andere Art von linearen Beziehungen zwischen Streuamplituden in Yang-Mills Theorie und Einstein-Yang-Mills Theorie, welche ebenfalls von S. Stieberger und T. Taylor vorgeschlagen wurden und direkt einzelne Gluonen mit einzelnen Gravitonen verbinden. Wir beweisen die Universalität dieser Beziehungen, in Anwesenheit von fundamental geladenen und massiven Fermionen und Skalaren. Schliesslich formulieren wir eine neue Zweifachkopiebeziehung zwischen klassisch effektiven Wirkungen. Die effektive Wirkung eines Systems von farblich geladenen, massiven und klassischen Weltlinien, welche über Yang-Mills wechselwirken, wird mit einem System von dilatonisch geladenen, massiven und klassischen Weltlinien, welche über Dilatongravitation wechselwirken, in Verbindung gesetzt. Somit verbessern wir eine, aus dem Kontext von Lösungen zu störungstheoretischen Bewegungsgleichungen, sowohl für das Gluon als auch für das Graviton, derselben Systeme, bekannte Zweifachkopievorschrift, formuliert von W. Goldberger und A. Ridgway. / We analyze several cases of mysterious connections between gauge and gravity theories, known as double copy relations. We focus on tree level scattering amplitudes in Einstein-(scalar-)-chromo-dynamics, i.e. scattering scenarios between gluons, massive fundamental quarks (scalars) and gravitons. In these scenarios we study the sub leading contribution to the adjacent collinear gluon limits in pure Yang-Mills amplitudes. Recently, S. Stieberger and T. Taylor have proposed a linear combination of amplitudes with a pair of collinear gluons to an Einstein-Yang-Mills amplitude. We present a proof of such relations using a novel representation of bosonic tree level amplitudes based on a localized integral on the Riemann sphere, called the Cachazo-He-Yuan formalism. Moreover, we give insight into an intriguing interplay between those relations and surprising gauge invariance violations of the sub-leading collinear gluon limit of Yang-Mills amplitudes. Next, we will focus on yet another set of relations between Yang-Mills amplitudes and Einstein-Yang-Mills amplitudes that were also proposed by S. Stieberger and T. Taylor. They directly relate single gluons to single gravitons. We show universality of such relations, i.e. their validity in the presence of massive fundamental quarks and scalars. For that purpose, we will use a Feynman diagrammatic approach which results in a novel color-to-kinematics rule, mapping gluons to gravitons in these scattering scenarios. Finally, we establish a novel double copy connection between classical effective actions of two massive classical worldlines which are colored and interacting in Yang-Mills theory and dilaton charged and interacting through dilaton-gravity. Doing so, we extend and improve existing work relating the same system of worldlines through a double copy at the level of perturbative solutions to the involved equations of motion for the gluon and graviton fields, as has been proposed by W. Goldberger and A. Ridgway.
17

Superconformal indices, dualities and integrability

Gahramanov, Ilmar 29 July 2016 (has links)
In dieser Arbeit behandeln wir exakte, nicht-perturbative Ergebnisse, die mithilfe der superkonformen Index-Technik, in supersymmetrischen Eichtheorien mit vier Superladungen (d. h. N=1 Supersymmetrie in vier Dimensionen und N=2 in drei Dimensionen) gewonnen wurden. Wir benutzen die superkonforme Index-Technik um mehrere Dualitäts Vermutungen in supersymmetrischen Eichtheorien zu testen. Wir führen Tests der dreidimensionalen Spiegelsymmetrie und Seiberg ähnlicher Dualitäten durch. Das Ziel dieser Promotionsarbeit ist es moderne Fortschritte in nicht-perturbativen supersymmetrischen Eichtheorien und ihre Beziehung zu mathematischer Physik darzustellen. Im Speziellen diskutieren wir einige interessante Identitäten der Integrale, denen einfache und hypergeometrische Funktionen genügen und ihren Bezug zu supersymmetrischen Dualitäten in drei und vier Dimensionen. Methoden der exakten Berechnungen in supersymmertischen Eichtheorien sind auch auf integrierbare statistische Modelle anwendbar. Dies wird im letzten Kapitel der vorliegenden Arbeit behandelt. / In this thesis we discuss exact, non-perturbative results achieved using superconformal index technique in supersymmetric gauge theories with four supercharges (which is N = 1 supersymmetry in four dimensions and N = 2 supersymmetry in three). We use the superconformal index technique to test several duality conjectures for supersymmetric gauge theories. We perform tests of three-dimensional mirror symmetry and Seiberg-like dualities. The purpose of this thesis is to present recent progress in non-perturbative supersymmetric gauge theories in relation to mathematical physics. In particular, we discuss some interesting integral identities satisfied by basic and elliptic hypergeometric functions and their relation to supersymmetric dualities in three and four dimensions. Methods of exact computations in supersymmetric theories are also applicable to integrable statistical models, which we discuss in the last chapter of the thesis.
18

Classical Gravity from Gluon Interactions

Shi, Canxin 13 December 2022 (has links)
Die Doppelkopie-Relation besagt, dass Observable in einer Gravitationstheorie durch "Quadrieren" entsprechender Größen in einer Eichtheorie abgeleitet werden können. Es ermöglicht die Verwendung moderner Techniken der Eichtheorien, um Probleme wie die Streuung von Schwarzen Löchern in der Gravitation anzugehen. Wir betrachten zunächst die massive skalare Quantenchromodynamik und führen die Doppelkopie für deren Streuamplituden durch. Aus den resultierenden Amplituden rekonstruieren wir die effektive Lagrange-Funktion. Diese besteht aus einer Graviationstheorie gekoppelt an massive Skalare, ein Axion und ein Dilaton. Der entstehende Lagrangian wird explizit bis zur sechsten Ordnung von Skalarfeldern konstruiert, und es wird eine Form aller Ordnungen postuliert. Es folgt die Erforschung der Doppelkopie massiver Punktteilchen. Die Quellen werden durch Weltlinien-Quantenfeldtheorien formuliert, die mit Yang-Mills, biadjungiertem Skalar und Zwei-Form-Dilaton-Gravitation gekoppelt sind. Wir schlagen eine Doppelkopievorschrift für die eikonalen Phase vor, und explizit bis zur nächstführenden Ordnung zu überprüfen. Wir untersuchen ferner die nicht-perturbative Doppelkopie klassischer Lösungen. Insbesondere erweitern wir die Kerr-Schild-Abbildung auf den Fall eines Probeteilchens, das sich im Kerr-Schild-Hintergrund bewegt. Wir finden darüberhinaus eine neue Doppelkopie zwischen den erhaltenen Ladungen auf der Eichtheorie und den Gravitationsseiten. Schließich untersuchen wir die Post-Minkowski'sche (PM) und Post-Newton'sche Entwicklungen des gravitativen effektiven Drei-Körper-Potentials. Wir liefern auf 2PM Ebene ein formelles nicht-lokales Ergebnis und entwickeln es in der Geschwindigkeit. / This thesis focuses on the double copy relation between gauge theories and gravity and its application in the classical scattering of massive compact objects. The double copy relation states that observables in a gravitational theory can be derived from “squaring” corresponding quantities in a gauge theory. It allows using modern techniques of gauge theories to tackle problems such as black hole scattering in gravity. We first consider massive scalar quantum chromodynamics and perform the double copy procedure for the scattering amplitudes. We reconstruct the effective Lagrangian from the resulting amplitudes. It yields a gravitational theory of massive scalars coupled to gravity, axion, and dilaton. The emerging Lagrangian is constructed explicitly up to the sixth order of scalar fields, and an all-order form is conjectured. It is followed by exploring the double copy of classical massive point particles. The source objects are formulated by worldline quantum field theories coupled to Yang-Mills, bi-adjoint scalar, and two-form-dilaton-gravity. We propose a double copy prescription for the eikonal phases, and check it explicitly up to next-to-leading order. We also investigate the non-perturbative double copy of classical solutions. Specifically, we extend the Kerr-Schild mapping, which allows obtaining solutions of the Einstein equation from that of gauge theory, to the case of a probe particle moving in the Kerr-Schild background. We find a new double copy between the conserved charges on the gauge theory and the gravity sides, which works naturally for both bound and unbound states. Additionally, we study the Post-Minkowskian (PM) and Post-Newtonian expansions of the gravitational three-body effective potential. We provide a formal non-local result at 2PM and expand it in the slow-motion limit.
19

Proximal Splitting Methods in Nonsmooth Convex Optimization

Hendrich, Christopher 25 July 2014 (has links) (PDF)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems. After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators. The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
20

Proximal Splitting Methods in Nonsmooth Convex Optimization

Hendrich, Christopher 17 July 2014 (has links)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems. After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators. The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.

Page generated in 0.1996 seconds