Spelling suggestions: "subject:"cynamic erogramming"" "subject:"cynamic cprogramming""
691 |
Pathways, Networks and Therapy: A Boolean Approach to Systems BiologyLayek, Ritwik 2012 May 1900 (has links)
The area of systems biology evolved in an attempt to introduce mathematical systems theory principles in biology. Although we believe that all biological processes are essentially chemical reactions, describing those using precise mathematical rules is not easy, primarily due to the complexity and enormity of biological systems. Here we introduce a formal approach for modeling biological dynamical relationships and diseases such as cancer. The immediate motivation behind this research is the urgency to find a practicable cure of cancer, the emperor of all maladies. Unlike other deadly endemic diseases such as plague, dengue and AIDS, cancer is characteristically heterogenic and hence requires a closer look into the genesis of the disease. The actual cause of cancer lies within our physiology. The process of cell division holds the clue to unravel the mysteries surrounding this disease. In normal scenario, all control mechanisms work in tandem and cell divides only when the division is required, for instance, to heal a wound platelet derived growth factor triggers cell division. The control mechanism is tightly regulated by several biochemical interactions commonly known as signal transduction pathways. However, from mathematical point of view, these pathways are marginal in nature and unable to cope with the multi-variability of a heterogenic disease like cancer.
The present research is possibly one first attempt towards unraveling the mysteries surrounding the dynamics of a proliferating cell. A novel yet simple methodology is developed to bring all the marginal knowledge of the signaling pathways together to form the simplest mathematical abstract known as the Boolean Network. The malfunctioning in the cell by genetic mutations is formally modeled as stuck-at faults in the underlying Network. Finally a mathematical methodology is discovered to optimally find out the possible best combination drug therapy which can drive the cell from an undesirable condition of proliferation to a desirable condition of quiescence or apoptosis. Although, the complete biological validation was beyond the scope of the current research, the process of in-vitro validation has been already initiated by our collaborators. Once validated, this research will lead to a bright future in the field on personalized cancer therapy.
|
692 |
Input Specifications to a Stochastic Decision ModelClainos, D. M., Duckstein, L., Roefs, T. G. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The use of discrete conditional dependency matrices as input to stochastic decision models is examined. Some of the problems and initial assumptions involved with the construction of the above mentioned matrices are discussed. Covered in considerable detail is the transform used to relate the gamma space with the normal space. A new transform is introduced that should produce reasonable results when the record of streamflow (data) has a highly skewed distribution. Finally, the possibility of using the matrices to provide realistic inputs to a stochastic dynamic program is discussed.
|
693 |
Energy-aware scheduling : complexity and algorithmsRenaud-Goud, Paul 05 July 2012 (has links) (PDF)
In this thesis we have tackled a few scheduling problems under energy constraint, since the energy issue is becoming crucial, for both economical and environmental reasons. In the first chapter, we exhibit tight bounds on the energy metric of a classical algorithm that minimizes the makespan of independent tasks. In the second chapter, we schedule several independent but concurrent pipelined applications and address problems combining multiple criteria, which are period, latency and energy. We perform an exhaustive complexity study and describe the performance of new heuristics. In the third chapter, we study the replica placement problem in a tree network. We try to minimize the energy consumption in a dynamic frame. After a complexity study, we confirm the quality of our heuristics through a complete set of simulations. In the fourth chapter, we come back to streaming applications, but in the form of series-parallel graphs, and try to map them onto a chip multiprocessor. The design of a polynomial algorithm on a simple problem allows us to derive heuristics on the most general problem, whose NP-completeness has been proven. In the fifth chapter, we study energy bounds of different routing policies in chip multiprocessors, compared to the classical XY routing, and develop new routing heuristics. In the last chapter, we compare the performance of different algorithms of the literature that tackle the problem of mapping DAG applications to minimize the energy consumption.
|
694 |
Sequential Machine learning Approaches for Portfolio ManagementChapados, Nicolas 11 1900 (has links)
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers.
Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques.
Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives.
Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs. / This thesis considers a number of approaches to make machine learning algorithms better suited to the sequential nature of financial portfolio management tasks.
We start by considering the problem of the general composition of learning algorithms that must handle temporal learning tasks, in particular that of creating and efficiently updating the training sets in a sequential simulation framework. We enumerate the desiderata that composition primitives should satisfy, and underscore the difficulty of rigorously and efficiently reaching them. We follow by introducing a set of algorithms that accomplish the desired objectives, presenting a case-study of a real-world complex learning system for financial decision-making that uses those techniques.
We then describe a general method to transform a non-Markovian sequential decision problem into a supervised learning problem using a K-best paths search algorithm. We consider an application in financial portfolio management where we train a learning algorithm to directly optimize a Sharpe Ratio (or other risk-averse non-additive) utility function. We illustrate the approach by demonstrating extensive experimental results using a neural network architecture specialized for portfolio management and compare against well-known alternatives.
Finally, we introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.
|
695 |
Optimal investment in friction markets and equilibrium theory with unbounded attainable sets / Investissement optimal dans les marchés à friction et théorie d'équilibre avec des ensembles atteignables non bornésOunaies, Senda 19 January 2018 (has links)
Cette thèse traite des phénomènes liés aux mathématiques financières et économiques. Elle est composée de deux sujets de recherche indépendants. La première partie est consacrée à deux contributions au problème de Merton. Pour commencer, nous étudions le problème de l’investissement optimal et de la consommation de Merton dans le cas de marchés discrets dans un horizon infini. Nous supposons qu’il y a des frictions sur les marchés en raison de la perte due aux échanges financières. Ces frictions sont modélisées par des fonctions de pénalités non linéaires où les modèles classiques de coût de transactions étudiés par Magill et Constantinides [31] et les marchés illiquides étudiés par Cetin, Jarrow et Protter dans [6] sont inclus dans cette formulation. Dans ce contexte, la région de solvabilité est définie en tenant compte de cette fonction de pénalité et chaque investisseur doit maximiser son utilité, dérivée de la consommation. Nous donnons la programmation dynamique du modèle et nous prouvons l’existence et l’unicité de la fonction valeur. Des stratégies optimales d’investissement et de consommation sont également construites. Ensuite, nous étendons le modèle de Merton à un problème à plusieurs investisseurs. Notre approche consiste à construire un modèle d’équilibre général déterministe dynamique. Nous prouvons ensuite l’existence d’un équilibre du problème qui est un ensemble de contrôles composés de processus de consommation et de portefeuille, ainsi que les processus de prix qui en découlent afin que la politique de consommation de chaque investisseur maximise son profil. Les résultats obtenus dans cette partie étendent principalement les résultats récemment obtenus par Chebbi et Soner [10] ainsi qu’aux d’autres résultats obtenus dans ce cadre dans la littérature. Dans la deuxième partie, nous traitons le problème de l’existence d’un équilibre d’une économie de production avec des ensembles d’allocations réalisables non-bornés où les consommateurs peuvent avoir des préférences non-transitives non-complètes. Nous introduisons une propriété asymptotique sur les préférences pour les consommations réalisables afin de prouver l’existence d’un équilibre. Nous montrons que cette condition est vraie lorsque l’ensemble des allocations réalisables est compact ou aussi lorsque les préférences sont représentées par des fonctions d’utilité dans le cas où l’ensemble des niveaux d’utilité rationnels individuels réalisables est compact. Cette hypothèse généralise la condition de CPP de Allouch [1] et couvre l’exemple de Page et al. [40] lorsque les niveaux d’utilité disponibles définis ne sont pas compacts. Nous étendons donc les résultats existants dans la littérature avec des ensembles réalisables non bornés de deux façons en ajoutant la production et en prenant en compte des préférences générales. / This PhD dissertation studies two independent research topics dealing with phenomena issues from financial and economic mathematics.This thesis is organized in two parts. The first part is devoted to two contributions tothe Merton problem. First, we investigate the problem of optimal investment and consumption of Merton in the case of discrete markets in an infinite horizon. We suppose that there is frictions in the markets due to loss in trading. These frictions are modeled through nonlinear penalty functions and the classical transaction cost studied by Magill and Constantinides in [31] and illiquidity models studied by Cetin, Jarrow and Protter in [6] are included in this formulation. In this context, the solvency region is defined taking into account this penalty function and every investigator have to maximize his utility, that is derived from consumption, in this region. We give the dynamic programming ofthe model and we prove the existence and uniqueness of the value function. Optimalinvestment and consumption strategies are constructed as well. We second extend the Merton model to a multi-investors problem. Our approach is to construct a dynamic deterministic general equilibrium model. We then provide the existence of equilibrium of the problem which is a set of controls that is composed of consumption and portfolio processes, as well as the resulting price processes so that each investor’s consumption policy maximizes his lifetime expected. The results obtained in this part extends mainly the results recently obtained by Chebbi and Soner [10] and other corresponding results in the litterature.The second part of this thesis deals with the problem of the existence of an equilibrium of a production economy with unbounded attainable allocations sets where the consumers may have non-complete non-transitive preferences. We introduce an asymptotic property on preferences for the attainable consumptions in order to prove the existence of an equilibrium. We show that this condition holds true if the set of attainable allocations is compact or, when preferences are representable by utility functions, if the set of attainable individually rational utility levels is compact. This assumption generalizes the CPP condition of Allouch [1] and covers the example of Page et al. [40] when the attainable utility levels set is not compact. So we extend the previous existence results with unbounded attainable sets in two ways by adding a production sector and considering general preferences.
|
696 |
Détection des événements rares dans des vidéos / Detecting rare events in video sequencesPop, Ionel 23 September 2010 (has links)
Le travail présenté dans cette étude se place dans le contexte de l’analyse automatique des vidéos. A cause du nombre croissant des données vidéo, il est souvent difficile, voire impossible qu’un ou plusieurs opérateurs puissent les regarder toutes. Une demande récurrente est d’identifier les moments dans la vidéo quand il y a quelque chose d’inhabituel qui se passe, c’est-à-dire la détection des événements anormaux.Nous proposons donc plusieurs algorithmes permettant d’identifier des événements inhabituels, en faisant l’hypothèse que ces événements ont une faible probabilité. Nous abordons plusieurs types d’événements, de l’analyse des zones en mouvement à l’analyse des trajectoires des objets suivis.Après avoir dédié une partie de la thèse à la construction d’un système de suivi,nous proposons plusieurs mesures de similarité entre des trajectoires. Ces mesures, basées sur DTW (Dynamic Time Warping), estiment la similarité des trajectoires prenant en compte différents aspects : spatial, mais aussi temporel, pour pouvoir - par exemple - faire la différence entre des trajectoires qui ne sont pas parcourues de la même façon (en termes de vitesse de déplacement). Ensuite, nous construisons des modèles de trajectoires, permettant de représenter les comportements habituels des objets pour pouvoir ensuite détecter ceux qui s’éloignent de la normale.Pour pallier les défauts de suivi qui apparaissent dans la pratique, nous analysons les vecteurs de flot optique et nous construisons une carte de mouvement. Cette carte modélise sous la forme d’un codebook les directions privilégiées qui apparaissent pour chaque pixel, permettant ainsi d’identifier tout déplacement anormal, sans avoir pour autant la notion d’objet suivi. En utilisant la cohérence temporelle, nous pouvons améliorer encore plus le taux de détection, affecté par les erreurs d’estimation de flot optique. Dans un deuxième temps, nous changeons la méthode de constructions de cette carte de mouvements, pour pouvoir extraire des caractéristiques de plus haut niveau — l’équivalent des trajectoires, mais toujours sans nécessiter le suivi des objets. Nous pouvons ainsi réutiliser partiellement l’analyse des trajectoires pour détecter des événements rares.Tous les aspects présentés dans cette thèse ont été implémentés et nous avons construit certaines applications, comme la prédiction des déplacements des objets ou la mémorisation et la recherche des objets suivis. / The growing number of video data makes often difficult, even impossible, any attemptof watching them entirely. In the context of automatic analysis of videos, a recurring request is to identify moments in the video when something unusual happens.We propose several algorithms to identify unusual events, making the hypothesis that these events have a low probability. We address several types of events, from those generates by moving areas to the trajectories of objects tracked. In the first part of the study, we build a simple tracking system. We propose several measures of similarity between trajectories. These measures give an estimate of the similarity of trajectories by taking into account both spatial and/or temporal aspects. It is possible to differentiate between objects moving on the same path, but with different speeds. Based on these measures, we build models of trajectories representing the common behavior of objects, so that we can identify those that are abnormal.We noticed that the tracking yields bad results, especially in crowd situations. Therefore, we use the optical flow vectors to build a movement model based on a codebook. This model stores the preferred movement directions for each pixel. It is possible to identify abnormal movement at pixel-level, without having to use a tracker. By using temporal coherence, we can further improve the detection rate, affected by errors of estimation of optic flow. In a second step, we change the method of construction of this model. With the new approach, we can extract higher-level features — the equivalent trajectories, but still without the notion of object tracking. In this situation, we can reuse partial trajectory analysis to detect rare events.All aspects presented in this study have been implemented. In addition, we have design some applications, like predicting the trajectories of visible objects or storing and retrieving tracked objects in a database.
|
697 |
Hedge de opção utilizando estratégias dinâmicas multiperiódicas autofinanciáveis em tempo discreto em mercado incompleto / Option hedging with dynamic multi-period self-financing strategies in discrete time in incomplete marketsIuri Lazier 04 August 2009 (has links)
Este trabalho analisa três estratégias de hedge de opção, buscando identificar a importância da escolha da estratégia para a obtenção de um bom desempenho do hedge. O conceito de hedge é analisado de forma retrospectiva e uma teoria geral de hedge é apresentada. Em seguida são descritos alguns estudos comparativos de desempenho de estratégias de hedge de opção e suas metodologias de implementação. Para esta análise comparativa são selecionadas três estratégias de hedge de opção de compra do tipo européia: a primeira utiliza o modelo Black-Scholes-Merton de precificação de opções, a segunda utiliza uma solução de programação dinâmica para hedge dinâmico multiperiódico e a terceira utiliza um modelo GARCH para precificação de opções. As estratégias são comentadas e comparadas do ponto de vista de suas premissas teóricas e por meio de testes comparativos de desempenho. O desempenho das estratégias é comparado sob uma perspectiva dinâmicamente ajustada, multiperiódica e autofinanciável. Os dados para comparação de desempenho são gerados por simulação e o desempenho é avaliado pelos erros absolutos médios e erros quadráticos médios, resultantes na carteira de hedge. São feitas ainda considerações a respeito de alternativas de estimação e suas implicações no desempenho das estratégias. / This work analyzes three option hedging strategies, to identify the importance of choosing a strategy in order to achieve a good hedging performance. A retrospective analysis of the concept of hedging is conducted and a general hedging theory is presented. Following, some comparative papers of hedging performance and their implementation methodologies are described. For the present comparative analysis, three hedging strategies for European options have been selected: the first one based on the Black-Scholes-Merton model for option pricing, the second one based on a dynamic programming solution for dynamic multiperiod hedging and the third one based on a GARCH model for option pricing. The strategies are compared under their theoric premisses and through comparative performance testes. The performances of the strategies are compared under a dynamically adjusted multiperiodic and self-financing perspective. Data for performance comparison are generated by simulation and performance is evaluated by mean absolute errors and mean squared errors resulting on the hedging portfolio. An analysis is also done regarding estimation approaches and their implications over the performance of the strategies.
|
698 |
Estimation du mouvement bi-dimensionnel de la paroi artérielle en imagerie ultrasonore par une approche conjointe de segmentation et de speckle tracking / Estimation of the bi-dimensional motion of the arterial wall in ultrasound imaging with a combined approach of segmentation and speckle trackingZahnd, Guillaume 10 December 2012 (has links)
Ce travail de thèse est axé sur le domaine du traitement d'images biomédicales. L'objectif de notre étude est l'estimation des paramètres traduisant les propriétés mécaniques de l'artère carotide in vivo en imagerie échographique, dans une optique de détection précoce de la pathologie cardiovasculaire. L'analyse du mouvement longitudinal des tissus de la paroi artérielle, i.e. dans la même direction que le flux sanguin, représente la motivation majeure de ce travail. Les trois contributions principales proposées dans ce travail sont i) le développement d'un cadre méthodologique original et semi-automatique, dédié à la segmentation et à l'estimation du mouvement de la paroi artérielle dans des séquences in vivo d'images ultrasonores mode-B, ii) la description d'un protocole de génération d'une référence, faisant intervenir les opérations manuelles de plusieurs experts, dans le but de quantifier la précision des résultats de notre méthode malgré l'absence de vérité terrain inhérente à la modalité échographique, et iii) l'évaluation clinique de l'association entre les paramètres mécaniques et dynamiques de la paroi carotidienne et les facteurs de risque cardiovasculaire dans le cadre de la détection précoce de l'athérosclérose. Nous proposons une méthode semi-automatique, basée sur une approche conjointe de segmentation des contours de la paroi et d'estimation du mouvement des tissus. L'extraction de la position des interfaces est réalisée via une approche spécifique à la structure morphologique de la carotide, basée sur une stratégie de programmation dynamique exploitant un filtrage adapté. L'estimation du mouvement est réalisée via une méthode robuste de mise en correspondance de blocs (block matching), basée sur la connaissance du déplacement a priori ainsi que sur la mise à jour temporelle du bloc de référence par un filtre de Kalman spécifique. La précision de notre méthode, évaluée in vivo, correspond au même ordre de grandeur que celle résultant des opérations manuelles réalisées par des experts, et reste sensiblement meilleure que celle obtenue avec deux autres méthodes traditionnelles (i.e. une implémentation classique de la technique de block matching et le logiciel commercial Velocity Vector Imaging). Nous présentons également quatre études cliniques réalisées en milieu hospitalier, où nous évaluons l'association entre le mouvement longitudinal et les facteurs de risque cardiovasculaire. Nous suggérons que le mouvement longitudinal, qui représente un marqueur de risque émergent et encore peu étudié, constitue un indice pertinent et complémentaire aux marqueurs traditionnels dans la caractérisation de la physiopathologie artérielle, reflète le niveau de risque cardiovasculaire global, et pourrait être bien adapté à la détection précoce de l'athérosclérose. / This thesis is focused on the domain of bio-medical image processing. The aim of our study is to assess in vivo the parameters traducing the mechanical properties of the carotid artery in ultrasound imaging, for early detection of cardiovascular diseases. The analysis of the longitudinal motion of the arterial wall tissues, i.e. in the same direction as the blood flow, represents the principal motivation of this work. The three main contributions proposed in this work are i) the development of an original and semi-automatic methodological framework, dedicated to the segmentation and motion estimation of the arterial wall in in vivo ultrasound B-mode image sequences, ii) the description of a protocol aiming to generate a reference, involving the manual tracings of several experts, in the objective to quantify the accuracy of the results of our method despite the absence of ground truth inherent to ultrasound imaging, and iii) the clinical evaluation of the association between the mechanical and dynamical parameters of the arterial wall and the cardiovascular risk factors, for early detection of atherosclerosis. We propose a semi-automatic method, based on a combined approach of wall segmentation and tissues motion estimation. The extraction on the interfaces position is realized via an approach specific to the morphological structure of the carotid artery, based on a strategy of dynamic programming using a matched filter. The motion estimation is performed via a robust block matching method, based on the a priori knowledge of the displacement as well as the temporal update of the reference block with a specific Kalman filter. The accuracy of our method, evaluated in vivo, corresponds to the same order of magnitude as the one resulting from the manual operations performed by experts, and is significantly higher than the one obtained from two other classical methods (i.e. a classical implementation of the block matching technique, and the VVI commercial software). We also present four clinical studies, and we evaluate the association between longitudinal motion and cardiovascular risk factors. We suggest that the longitudinal motion, which represents an emerging cardiovascular risk marker that has been only few studied yet, constitutes a pertinent and complementary marker aiming at the characterization of arterial physio-pathology, traduces the overall cardiovascular risk level, and could be well suited to the early detection of the atherosclerosis.
|
699 |
On two sequential problems : the load planning and sequencing problem and the non-normal recurrent neural networkGoyette, Kyle 07 1900 (has links)
The work in this thesis is separated into two parts. The first part deals with the load planning and sequencing problem for double-stack intermodal railcars, an operational problem found at many rail container terminals. In this problem, containers must be assigned to a platform on which the container will be loaded, and the loading order must be determined. These decisions are made with the objective of minimizing the costs associated with handling the containers, as well as minimizing the cost of containers left behind. The deterministic version of the problem can be cast as a shortest path problem on an ordered graph. This problem is challenging to solve because of the large size of the graph. We propose a two-stage heuristic based on the Iterative Deepening A* algorithm to compute solutions to the load planning and sequencing problem within a five-minute time budget. Next, we also illustrate how a Deep Q-learning algorithm can be used to heuristically solve the same problem.The second part of this thesis considers sequential models in deep learning. A recent strategy to circumvent the exploding and vanishing gradient problem in recurrent neural networks (RNNs) is to enforce recurrent weight matrices to be orthogonal or unitary. While this ensures stable dynamics during training, it comes at the cost of reduced expressivity due to the limited variety of orthogonal transformations. We propose a parameterization of RNNs, based on the Schur decomposition, that mitigates the exploding and vanishing gradient problem, while allowing for non-orthogonal recurrent weight matrices in the model. / Le travail de cette thèse est divisé en deux parties. La première partie traite du problème de planification et de séquencement des chargements de conteneurs sur des wagons, un problème opérationnel rencontré dans de nombreux terminaux ferroviaires intermodaux. Dans ce problème, les conteneurs doivent être affectés à une plate-forme sur laquelle un ou deux conteneurs seront chargés et l'ordre de chargement doit être déterminé. Ces décisions sont prises dans le but de minimiser les coûts associés à la manutention des conteneurs, ainsi que de minimiser le coût des conteneurs non chargés. La version déterministe du problème peut être formulé comme un problème de plus court chemin sur un graphe ordonné. Ce problème est difficile à résoudre en raison de la grande taille du graphe. Nous proposons une heuristique en deux étapes basée sur l'algorithme Iterative Deepening A* pour calculer des solutions au problème de planification et de séquencement de la charge dans un budget de cinq minutes. Ensuite, nous illustrons également comment un algorithme d'apprentissage Deep Q peut être utilisé pour résoudre heuristiquement le même problème.
La deuxième partie de cette thèse examine les modèles séquentiels en apprentissage profond. Une stratégie récente pour contourner le problème de gradient qui explose et disparaît dans les réseaux de neurones récurrents (RNN) consiste à imposer des matrices de poids récurrentes orthogonales ou unitaires. Bien que cela assure une dynamique stable pendant l'entraînement, cela se fait au prix d'une expressivité réduite en raison de la variété limitée des transformations orthogonales. Nous proposons une paramétrisation des RNN, basée sur la décomposition de Schur, qui atténue les problèmes de gradient, tout en permettant des matrices de poids récurrentes non orthogonales dans le modèle.
|
700 |
Modélisation et optimisation de la réponse à des vaccins et à des interventions immunothérapeutiques : application au virus Ebola et au VIH / Modeling and optimizing the response to vaccines and immunotherapeutic interventions : application to Ebola virus and HIVPasin, Chloé 30 October 2018 (has links)
Les vaccins ont été une grande réussite en matière de santé publique au cours des dernières années. Cependant, le développement de vaccins efficaces contre les maladies infectieuses telles que le VIH ou le virus Ebola reste un défi majeur. Cela peut être attribué à notre manque de connaissances approfondies en immunologie et sur le mode d'action de la mémoire immunitaire. Les modèles mathématiques peuvent aider à comprendre les mécanismes de la réponse immunitaire, à quantifier les processus biologiques sous-jacents et à développer des vaccins fondés sur un rationnel scientifique. Nous présentons un modèle mécaniste de la dynamique de la réponse immunitaire humorale après injection d'un vaccin Ebola basé sur des équations différentielles ordinaires. Les paramètres du modèle sont estimés par maximum de vraisemblance dans une approche populationnelle qui permet de quantifier le processus de la réponse immunitaire et ses facteurs de variabilité. En particulier, le schéma vaccinal n'a d'impact que sur la réponse à court terme, alors que des différences significatives entre des sujets de différentes régions géographiques sont observées à plus long terme. Cela pourrait avoir des implications dans la conception des futurs essais cliniques. Ensuite, nous développons un outil numérique basé sur la programmation dynamique pour optimiser des schémas d'injections répétées. En particulier, nous nous intéressons à des patients infectés par le VIH sous traitement mais incapables de reconstruire leur système immunitaire. Des injections répétées d'un produit immunothérapeutique (IL-7) sont envisagées pour améliorer la santé de ces patients. Le processus est modélisé par un modèle de Markov déterministe par morceaux et des résultats récents de la théorie du contrôle impulsionnel permettent de résoudre le problème numériquement à l'aide d'une suite itérative. Nous montrons dans une preuve de concept que cette méthode peut être appliquée à un certain nombre de pseudo-patients. Dans l'ensemble, ces résultats s'intègrent dans un effort de développer des méthodes sophistiquées pour analyser les données d'essais cliniques afin de répondre à des questions cliniques concrètes. / Vaccines have been one of the most successful developments in public health in the last years. However, a major challenge still resides in developing effective vaccines against infectious diseases such as HIV or Ebola virus. This can be attributed to our lack of deep knowledge in immunology and the mode of action of immune memory. Mathematical models can help understanding the mechanisms of the immune response, quantifying the underlying biological processes and eventually developing vaccines based on a solid rationale. First, we present a mechanistic model for the dynamics of the humoral immune response following Ebola vaccine immunizations based on ordinary differential equations. The parameters of the model are estimated by likelihood maximization in a population approach, which allows to quantify the process of the immune response and its factors of variability. In particular, the vaccine regimen is found to impact only the response on a short term, while significant differences between subjects of different geographic locations are found at a longer term. This could have implications in the design of future clinical trials. Then, we develop a numerical tool based on dynamic programming for optimizing schedule of repeated injections. In particular, we focus on HIV-infected patients under treatment but unable to recover their immune system. Repeated injections of an immunotherapeutic product (IL-7) are considered for improving the health of these patients. The process is first by a piecewise deterministic Markov model and recent results of the impulse control theory allow to solve the problem numerically with an iterative sequence. We show in a proof-of-concept that this method can be applied to a number of pseudo-patients. All together, these results are part of an effort to develop sophisticated methods for analyzing data from clinical trials to answer concrete clinical questions.
|
Page generated in 0.0869 seconds