Spelling suggestions: "subject:"alectron affinity"" "subject:"dlectron affinity""
11 |
Application of Quantum Mechanics to Fundamental Interactions in Chemical Physics: Studies of Atom-Molecule and Ion-Molecule Interactions Under Single-Collision Conditions: Crossed Molecular Beams; Single-Crystal Mössbauer Spectroscopy: Microscopic Tensor Properties of ⁵⁷Fe Sites in Inorganic Ferrous High-Spin CompoundsBull, James January 2010 (has links)
As part of this project and in preparation for future experimental studies of gas-phase ion-molecule reactions, extensive modification and characterization of the crossed molecular beam machine in the Department of Chemistry, University of Canterbury has been carried out. This instrument has been configured and some
preliminary testing completed to enable the future study of gas-phase ion-molecule collisions of H⁺₃ and Y⁻ (Y
= F, Cl, Br) with dipole-oriented CZ₃X (Z = H, F and X = F, Cl, Br). Theoretical calculations (ab initio
and density functional theory) are reported on previously experimentally characterized Na + CH₃NO₂, Na + CH₃NC, and K + CH₃NC systems, and several other systems of relevance. All gas-phase experimental and theoretical studies have the common theme of studying collision orientation dependence of reaction under singlecollision
conditions. Experimental measurements, theoretical simulations and calculations are also reported on some selected ferrous (Fe²⁺) high-spin (S=2) crystals, in an attempt to resolve microscopic contributions of two fundamental macroscopic tensor properties: the electric-field gradient (efg); and the mean square displacement (msd) in the case when more than one symmetry related site of low local point-group symmetry contributes to the same quadrupole doublet. These determinations have been made using the nuclear spectroscopic technique of Mössbauer spectroscopy, and complemented with X-ray crystallographic measurements.
|
12 |
Uma nova estratégia para o cálculo de afinidades eletrônicas / A new approach for electron affinity calculationAmaral, Rafael Costa 25 February 2015 (has links)
A afinidade eletrônica (AE) é uma importante propriedade de átomos e moléculas, sendo definida como a diferença de energia entre a espécie neutra e seu respectivo íon negativo. Uma vez que a AE é uma fração muito pequena da energia eletrônica total das espécies neutra e aniônica, é necessário que tais energias sejam determinadas com elevado grau de precisão. A receita utilizada para o cálculo teórico acurado da AE atômica e molecular baseia-se na escolha de um conjunto adequado de funções de base juntamente com o emprego de teorias com altos níveis de correlação eletrônica. Durante o cálculo, o mesmo conjunto de base é utilizado para descrever o elemento neutro e seu respectivo ânion. Geralmente, os conjuntos de base para descrever propriedades de ânions possuem seus expoentes otimizados em ambiente neutro, e sua difusibilidade é conferida pela adição de funções difusas para cada valor de momento angular, l. A ideia deste trabalho está no desenvolvimento de conjuntos de base otimizados exclusivamente em ambiente aniônico para cálculos precisos de afinidade eletrônica. Deste modo, foram escolhidos os átomos para serem estudados: B, C, O e F. Os conjuntos de base foram gerados pelo Método da Coordenada Geradora Hartree-Fock, empregando a técnica da Discretização Integral Polinomial para a solução das integrais do problema. Os conjuntos de base obtidos são compostos por (18s13p) primitivas que foram contraídos para [7s6p] via esquema de contração geral proposto por Raffenetti. Os conjuntos contraídos foram polarizados para 4d3f2g e 4d3f2g1h, sendo os expoentes otimizados em ambiente CISD através do método SIMPLEX. Avaliaram-se as funções de base no cálculo de afinidades eletrônicas, tendo seus resultados comparados aos obtidos utilizando as bases aug-cc-pVQZ e aug-cc-pV5Z. A análise dos resultados demonstrou que os conjuntos de base difusos, gerados neste trabalho, reproduzem de maneira satisfatória as afinidades eletrônicas em relação ao valor experimental. Os conjuntos difusos polarizados para 4d3f2g1h apresentaram eficiência superior aos conjuntos aug-cc-pVQZ e, em alguns casos, aos conjuntos aug-cc-pV5Z que são consideravelmente maiores. / The electron affinity (EA) is an important property of atoms and molecules defined as the energy difference between the neutral species and its negative ion. Since the EA is a very small fraction of the total electronic energy of anionic and neutral species, one must determine these energies with high accuracy. The recipe used to calculate accurate atomic and molecular EAs is based on the choice of an adequate basis set and the use of high level of electron correlation calculations. In the computation of EAs, the same basis set is used to describe both neutral and negatively charged species. In general, the basis sets designed to describe anionic properties have their exponents optimized in neutral environment, and its diffuseness is acquired through the addition of diffuse functions for each angular momentum. The main idea of this work is to develop basis sets optimized exclusively in anionic environment that would be applied in accurate calculations of electron affinity. Thus, here follows the chosen atoms to be studied: B, C, O and F. The basis sets were generated by the Generator Coordinate Hartree-Fock Method through the Polynomial Integral Discretization Method. Basis sets were obtained containing (18s13p) primitives that were contracted to [7s6p] via Raffenetti\'s general contraction scheme. The contracted basis sets were polarized to 4d3f2g and 4d3f2g1h, and the exponents of polarization were optimized in a CISD environment through the Simplex algorithm. The basis sets quality was evaluated through the calculation of the electron affinities. The results were compared to those obtained by using the aug-cc-pVQZ and aug-cc-pV5Z basis-sets. The calculation showed that our diffuse basis sets reproduce satisfactorily the electron affinities when compared to the experimental data. The diffuse basis sets polarized to 4d3f2g1h showed to be more efficient than the aug-cc-pVQZ basis sets and in some cases also better than the aug-cc-pV5Z basis sets that are considerably larger.
|
13 |
Uma nova estratégia para o cálculo de afinidades eletrônicas / A new approach for electron affinity calculationRafael Costa Amaral 25 February 2015 (has links)
A afinidade eletrônica (AE) é uma importante propriedade de átomos e moléculas, sendo definida como a diferença de energia entre a espécie neutra e seu respectivo íon negativo. Uma vez que a AE é uma fração muito pequena da energia eletrônica total das espécies neutra e aniônica, é necessário que tais energias sejam determinadas com elevado grau de precisão. A receita utilizada para o cálculo teórico acurado da AE atômica e molecular baseia-se na escolha de um conjunto adequado de funções de base juntamente com o emprego de teorias com altos níveis de correlação eletrônica. Durante o cálculo, o mesmo conjunto de base é utilizado para descrever o elemento neutro e seu respectivo ânion. Geralmente, os conjuntos de base para descrever propriedades de ânions possuem seus expoentes otimizados em ambiente neutro, e sua difusibilidade é conferida pela adição de funções difusas para cada valor de momento angular, l. A ideia deste trabalho está no desenvolvimento de conjuntos de base otimizados exclusivamente em ambiente aniônico para cálculos precisos de afinidade eletrônica. Deste modo, foram escolhidos os átomos para serem estudados: B, C, O e F. Os conjuntos de base foram gerados pelo Método da Coordenada Geradora Hartree-Fock, empregando a técnica da Discretização Integral Polinomial para a solução das integrais do problema. Os conjuntos de base obtidos são compostos por (18s13p) primitivas que foram contraídos para [7s6p] via esquema de contração geral proposto por Raffenetti. Os conjuntos contraídos foram polarizados para 4d3f2g e 4d3f2g1h, sendo os expoentes otimizados em ambiente CISD através do método SIMPLEX. Avaliaram-se as funções de base no cálculo de afinidades eletrônicas, tendo seus resultados comparados aos obtidos utilizando as bases aug-cc-pVQZ e aug-cc-pV5Z. A análise dos resultados demonstrou que os conjuntos de base difusos, gerados neste trabalho, reproduzem de maneira satisfatória as afinidades eletrônicas em relação ao valor experimental. Os conjuntos difusos polarizados para 4d3f2g1h apresentaram eficiência superior aos conjuntos aug-cc-pVQZ e, em alguns casos, aos conjuntos aug-cc-pV5Z que são consideravelmente maiores. / The electron affinity (EA) is an important property of atoms and molecules defined as the energy difference between the neutral species and its negative ion. Since the EA is a very small fraction of the total electronic energy of anionic and neutral species, one must determine these energies with high accuracy. The recipe used to calculate accurate atomic and molecular EAs is based on the choice of an adequate basis set and the use of high level of electron correlation calculations. In the computation of EAs, the same basis set is used to describe both neutral and negatively charged species. In general, the basis sets designed to describe anionic properties have their exponents optimized in neutral environment, and its diffuseness is acquired through the addition of diffuse functions for each angular momentum. The main idea of this work is to develop basis sets optimized exclusively in anionic environment that would be applied in accurate calculations of electron affinity. Thus, here follows the chosen atoms to be studied: B, C, O and F. The basis sets were generated by the Generator Coordinate Hartree-Fock Method through the Polynomial Integral Discretization Method. Basis sets were obtained containing (18s13p) primitives that were contracted to [7s6p] via Raffenetti\'s general contraction scheme. The contracted basis sets were polarized to 4d3f2g and 4d3f2g1h, and the exponents of polarization were optimized in a CISD environment through the Simplex algorithm. The basis sets quality was evaluated through the calculation of the electron affinities. The results were compared to those obtained by using the aug-cc-pVQZ and aug-cc-pV5Z basis-sets. The calculation showed that our diffuse basis sets reproduce satisfactorily the electron affinities when compared to the experimental data. The diffuse basis sets polarized to 4d3f2g1h showed to be more efficient than the aug-cc-pVQZ basis sets and in some cases also better than the aug-cc-pV5Z basis sets that are considerably larger.
|
14 |
In-depth Surface Studies of p-GaN:Cs Photocathodes by Combining Ex-Situ Analytical Methods with In-Situ X-Ray Photoelectron SpectroscopySchaber, Jana 21 June 2023 (has links)
The photocathode is one of the key components of particle accelerator facilities that provides electrons for experiments in many disciplines such as biomedicine, security imaging, and condensed matter physics. The requirements for the electron emitting material, the so-called photocathode, are rather high because these materials should provide a high quantum efficiency, a low thermal emittance, a fast response, and a long operational lifetime. At present, none of the state-of-the-art photocathodes can fully meet all the desired requirements. Therefore, new materials that can be used as potential photocathodes are urgently needed for future developments in accelerator research.
Semiconductor photocathodes such as cesium telluride are the preferred materials in particle accelerators. These photocathodes provide high quantum efficiencies of above 10 %, making them highly attractive. The crystal growth of cesium telluride, as a compound semiconductor photocathode, requires the deposition of cesium and tellurium on a suitable substrate with an ideal chemical ratio, which seems elaborate and difficult to handle.
In contrast, III-V semiconductors, such as gallium arsenide and gallium nitride (GaN), represent another type of semiconductor photocathode. These commercially available semiconductors are already grown on a substrate and only require a thin film of cesium and optional oxygen to obtain a photocathode. An atomically clean surface is necessary to achieve a negative electron affinity surface, which is the main prerequisite for high quantum efficiency.
In this work, p-GaN grown on sapphire by metal-organic chemical vapor deposition, was wet chemically cleaned, and transferred into an ultra-high vacuum chamber, where it underwent a subsequent thermal cleaning. The cleaned p-GaN samples were activated with Cs to obtain p-GaN:Cs photocathodes and their performance was monitored with respect to their quality, especially concerning their quantum efficiency and storage lifetime. The surface topography and morphology were examined ex-situ by atomic force microscopy and scanning electron microscopy in combination with energy dispersive X-ray spectroscopy.
Treatments at different temperatures resulted in various quantum efficiency values and storage lifetimes. Moderate temperatures of 400–500 °C were found to be more beneficial for the p-GaN surface quality, which was reflected by achieving higher quantum efficiency values. After the thermal cleaning, the samples were activated with a thin layer of cesium at an average pressure of 1 x E-9 mbar. The surface morphology was studied with scanning electron microscopy and energy dispersive X-ray spectroscopy after the samples were thermally cleaned and activated with cesium. The results showed that the surface appeared inhomogeneous when the samples were cleaned at a high temperature above 600 °C. A thermal cleaning from the back side through the substrate represented another possibility but did not yield higher quantum efficiency values.
An in-situ analysis method facilitates following and understanding the changes in the surface electronic states before, during, and after any treatment of p-GaN:Cs photocathodes. For this purpose, an X-ray photoelectron spectrometer was applied that was built into an ultra-high vacuum system to prepare and characterize photocathodes. It allowed the in-situ monitoring of the photocathode surfaces beginning immediately after their cleaning and throughout the activation and degradation processes.
The realization of the adaption of an X-ray photoelectron spectroscopy chamber to the preparation chamber presented a significant constructional challenge. Thus, this work paid special attention to the technical aspects of in-situ sample transportation between these chambers without leaving the ultra-high vacuum environment.
The p-GaN surface was cleaned with different solutions and studied by X-ray photoelectron spectroscopy and atomic force microscopy, revealing that cleaning with a so-called 'piranha' solution in combination with rinsing in ethanol works best for the p-GaN surface. A cleaning step that solely uses ethanol is also possible and represents a simple cleaning procedure that is manageable in all laboratories. Afterward, the cleaned p-GaN samples underwent a subsequential thermal vacuum cleaning at various temperatures to achieve an atomically clean surface. Each treatment step was followed by X-ray photoelectron spectroscopy analysis without leaving the ultra-high vacuum environment, revealing residual oxygen and carbon on the p- GaN surface. A thermal treatment under vacuum did not entirely remove these organic contaminations, although the thermal cleaning reduced their peak intensities. The remaining oxygen and carbon contaminants were assumed to be residuals derived from the metal-organic chemical vapor deposition process.
After the cesium activation, a shift toward a higher binding energy was observed in the X-ray photoelectron spectroscopy spectra of the related photoemission peaks. This shift indicated that the cesium was successfully adsorbed to the p-GaN surface. Before the cesium activation, adventitious carbon at a binding energy of approximately 284 eV was found, which was also present after the cesium activation but did not shift in its binding energy. It was also shown that the presence of remaining carbon significantly influenced the photocathode’s quality. After the cesium deposition, a new carbon species at a higher binding energy (approximately 286 eV) appeared in the carbon 1s spectrum. This new species showed a higher binding energy than adventitious carbon and was identified as a cesium carbide species. This cesium carbide species grew over time, resulting in islands on the surface. The X-ray photoelectron spectroscopy data facilitated the elucidation of the critical role of thiscesium carbide species in photocathode degradation.
Typically, the quantum efficiency of photocathodes decays exponentially. Conversely, an immense quantum efficiency loss was observed after the p-GaN:Cs photocathodes were studied by X-ray photoelectron spectroscopy. The origin of the quantum efficiency loss derived from X-rays as an external influence and was not caused by the sample’s transportation. Therefore, potential X-ray damages to the p-GaN:Cs photocathodes were investigated. These experiments showed that the adsorbed cesium and its adhesion to the p-GaN surface were strongly influenced by X-ray irradiation. The cesium photoemission peaks shifted toward a lower binding energy, while the relative cesium concentration did not. This shift indicated that X-ray irradiation accelerated the external aging of the p-GaN photocathodes and thus it was proposed to use lower X-ray beam power or cool the samples to prevent X-ray damage to cesiated photocathodes.
This work shows that an exclusive activation with cesium is feasible and that a re-activation of the same sample is possible. Quantum efficiency values of 1–12% were achieved when the p-GaN, grown on sapphire, was activated. The capability of an X-ray photoelectron spectroscopy analysis allowed the in-situ monitoring of the photocathode surface and shed light on the surface compositions that changed during the photocathodes’ degradation process.
|
15 |
Microscopie et spectroscopie de photodétachement; mesure de la section efficace de photodétachement de H- à 1064 nm par observation du comportement asymptotique du régime saturé / Photodetachment spectroscopy and microscopy; measurement of the photodetachment cross section of H- at 1064 nm by the observation of the asymptotic behaviour in the saturated regimeVandevraye, Mickael 13 December 2013 (has links)
Dans cette thèse, nous initions la démonstration, à échelle réduite, de la faisabilité du photodétachement presque total, par laser, d’un jet d'ions négatifs d'hydrogène en cavité optique Fabry-Perot pour les futurs injecteurs de neutres destinés au chauffage des plasmas des réacteurs de fusion nucléaire.Nous élaborons une nouvelle méthode de mesure d’une section efficace de photodétachement, dont la connaissance à la longueur d’onde d’excitation est requise pour le dimensionnement de la cavité Fabry-Perot, basée sur l’observation de la saturation en régime d’éclairement impulsionnel. Le calcul analytique de l’accroissement du signal de détachement produit lors de l’éclairement d’un jet d’ions par une impulsion laser supposée gaussienne, fait apparaître une contrainte mathématique sur le flux requis pour transiter vers le régime saturé. Cette contrainte est une caractéristique de la transition vers la saturation pour toutes les expériences réalisées en faisceau gaussien et pour tous les processus d’interaction lumière-matière linéaires. Avec cette méthode, nous déduisons une section efficace de photodétachement de H- à 1064 nm – longueur d’onde sélectionnée pour les futurs injecteurs de neutres – en léger désaccord avec les prédictions théoriques.Pour réduire les exigences technologiques sur la cavité et le laser, nous étudions les résonances de Landau qui apparaissent dans le spectre de photodétachement en champ magnétique. S’asservir sur l’une de ces résonances permettrait d’augmenter la probabilité de photodétachement à un flux donné.Par ailleurs, nous présentons nos mesures des affinités électroniques du phosphore, du sélénium et de l’étain, réalisées avec le microscope de photodétachement. L'expérience de microscopie de photodétachement du phosphore est la première où l’atome neutre est laissé dans un terme excité. / In this thesis, we initiate the demonstration, at a reduced scale, of the feasibility of the almost-complete laser photodetachment of negative hydrogen ion beams in a Fabry-Perot optical cavity for future neutral beam injectors for the heating of fusion power plants plasmas.We develop a new method to measure a photodetachement cross section, the knowledge of which at the exciting wavelength is needed to scale the Fabry-Perot cavity, based on the observation of the saturation in a pulsed lighting regime. The analytical calculus of the detachment signal growth produced while illuminating a negative ion beam with a Gaussian laser pulse bring out a mathematical constraint on the required flux to pass through the saturated regime. This constraint is the signature of the transition toward the saturation for all experiment carried out in Gaussian beam and for all linear light-matter interaction processes. With this method, we measure the photodetachement cross section of H- at 1064 nm – selected wavelength for future neutral beam injectors – in slight disagreement with theoretical predictions.To reduce the technological requirement on the Fabry-Perot cavity and the laser, we study Landau resonances which appear in the photodetachement spectrum. Locking the laser on one of these resonances would allow increasing the photodetachment probability at a given flux.We also present our phosphorus, selenium and tin electron affinity measurements carried out with the photodetachment microscope. The photodetachment microscopy experiment of phosphorus is the first one where the neutral atom is left in an excited term.
|
16 |
Propriedades eletrônicas e estruturais de clusters metálicos via métodos ab initio / Eletronic and strustural properties of metal clusters by ab initio methodsDamasceno Junior, Jose Higino 25 September 2015 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T18:35:28Z
No. of bitstreams: 2
Tese - Jose Higino Damasceno Junior - 2015.pdf: 2058291 bytes, checksum: ed4c947cd5e0f908dddc93570ac84dbb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:21:33Z (GMT) No. of bitstreams: 2
Tese - Jose Higino Damasceno Junior - 2015.pdf: 2058291 bytes, checksum: ed4c947cd5e0f908dddc93570ac84dbb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-11-03T14:21:33Z (GMT). No. of bitstreams: 2
Tese - Jose Higino Damasceno Junior - 2015.pdf: 2058291 bytes, checksum: ed4c947cd5e0f908dddc93570ac84dbb (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-09-25 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Clusters systems are very different from molecules or their bulk materials, since
they exhibit many specific properties. As example, the bond in metallic clusters of metallic
atoms is intermediate between metallic and covalent bonding. In general, the structural and
electronic properties of these systems are very difficult to measure experimentally, and
therefore theoretical modeling is very important in characterizing them. In this thesis, we
employed ab initio methods to study metallic clusters such as the aluminum hydride
clusters as well as a few aromatic metal clusters. The optimized geometries of the studied
clusters have been determined using DFT. The electronic structures of these systems were
investigated using the QMC methods. The calculations were carried out within the
Variational (VMC) and fixed-node diffusion (DMC) quantum Monte Carlo methods. The
calculations are also performed in the Hartree-Fock (HF) approximation in order to analyze
the impact of electron correlation. With regards the aluminum hydride clusters, the total
atomic binding energy impact varies from ~20% up to about ~50%, whereas for the
electron binding energy it ranges from ~1% up to ~73%. The decomposition of the electron
binding energies clearly shows that both charge redistribution and electron correlation are
important in determining the detachment energies, whereas electrostatic and exchange
interactions are responsible for the ionization potential. For the aromatic metal clusters, the
presence of a dopant plays important role in their electronic properties enhancing their
binding energy, electron affinity, hardness and resonance energy. / Clusters são sistemas bastante diferentes de moléculas e sólidos, pois exibem
propriedades bastante peculiares. Por exemplo, a ligação em um cluster metálico tem
intensidade intermediária entre as ligações covalentes e metálicas. Em geral, as
propriedades eletrônicas e estruturais desses sistemas são bastante difíceis de serem
medidas experimentalmente e, portanto, uma modelagem teórica é muito importante na
caracterização desses. Nesta Tese, utilizamos métodos ab initio para estudar clusters
metálicos, tal como clusters de hidretos de alumínio assim como também alguns clusters
metálicos aromáticos. As estruturas geométricas dos clusters estudados foram otimizadas
via DFT. A estrutura eletrônica desses clusters foi investigada usando o método de Monte
Carlo Quântico Variacional (MCQD) e de difusão (MCQD) com aproximação de nós fixos.
Os cálculos também foram realizados a partir da aproximação de Hartree-Fock, afim de se
analisar o impacto da energia de correlação eletrônica. Para os hidretos de alumínio, a
energia de correlação eletrônica tem impacto na energia total de ligação variando de 20% a
50%. Da mesma maneira, a energia de ligação de um elétron ao cluster tem grande
contribuição da energia de correlação eletrônica, variando de 1% a 73%. A decomposição
da energia de ligação mostra claramente que a relaxação e a correlação eletrônica são
importantes na determinação da afinidade eletrônica, enquanto que a interação de troca
eletrostática é responsável pelo potencial de ionização. Para os clusters aromáticos, a
presença do dopante desempenha um importante papel nas propriedades desses clusters,
uma vez que otimiza a energia de ligação, a afinidade eletrônica, a dureza e a energia de
ressonância.
|
17 |
Исследование электрохимического восстановления 2-замещеных хиноксалинов в апротонной среде. Количественное определение вольтамперометрическим методом : магистерская диссертация / Study of electrochemical reduction of 2-substituted quinoxalines in an aprotic medium. Quantification by voltammetric methodЛыкова, Ю. А., Lykova, Yu. A. January 2020 (has links)
Объектами исследования являются 2-замещеные хиноксалины. Целью данной работы является изучение химических свойств хиноксалина и его производных. В работе рассматривалось восстановление производных хиноксалина (окислительно-восстановительные свойства, потенциал восстановления, ЭПР спектр, квантово-химический расчеты). Сравнение восстановительных свойств синтезированного ряда производных хиноксалина. Определено количество электронов, участвующих в процессе восстановления производных хиноксалина. Смоделирован процесс восстановления. Доказан одноэлектронный переход хиноксалина. Далее приводится количественное определение производных хиноксалина вольтамперометрическим способом. Изучение свойств хиноксалина является важной задачей, так как вновь синтезированные производные хиноксалинов проявляют химическую и биологическую активность. Из-за значительного увеличения вирусов и необходимости поиска новых лекарственных препаратов, исследование производных хиноксалинов и их химической активности, а также количественное определение новых синтезированных хиноксалинов является нужной и важной задачей. В работе доказан одноэлектронный переход хиноксалина экспериментальными и расчетными методами (ЭПР спектр, квантово-химический расчеты, хроноамперометрия). Также был построен ряд восстановительной активности хиноксалина и его производных. После чего были выбраны производные для количественного определения вольтамперометрическим методом. Результаты показали, что одноэлектронный переход хиноксалина свойственен и для его производныхРазработаны методики количественного определения формальдегида в объектах фармации на примере ЛП «Эндофальк» и товарного уротропина от ПАО «Метафракс». Правильность полученных результатов подтверждена сравнением с результатами независимых методов анализа, прописанных в ФС РФ XIV издания на субстанции уротропина и «Макрогола 3350». / The object of research is 2-substituted quinoxalines. The goal of this work is to study the chemical properties of quinoxaline and its derivatives. This goal is divided into the following tasks: 1) Study of literature sources on the use of quinoxaline derivatives, chemical and electrochemical properties of these compounds, possible published methods for quantitative determination of quinoxaline derivatives by voltammetric method. 2) Study of reducing properties of compounds of quinoxalin derivatives (redox properties, reduction potential, EPR spectrum, quantum chemical calculations). Comparison of reducing properties of a synthesized series of quinoxaline derivatives. 3) Determination of the number of electrons involved in the reduction of quinoxaline derivatives. Modeling the reduction process. Proof of a single-electron quinoxalin transition. 4) Quantitative determination of quinoxalin derivatives by voltammetric methods.
|
18 |
Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen HalbleiternWidmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
|
19 |
Charge transport and energy levels in organic semiconductorsWidmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design.
In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor.
For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary.
The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES).
These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung.
Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters.
Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist.
Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt.
Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction
2. Organic semiconductors and devices
2.1. Organic semiconductors
2.1.1. Conjugated π system
2.1.2. Small molecules and polymers
2.1.3. Disorder in amorphous materials
2.1.4. Polarons
2.1.5. Polaron hopping
2.1.6. Fermi-Dirac distribution and Fermi level
2.1.7. Quasi-Fermi levels
2.1.8. Trap states
2.1.9. Doping
2.1.10. Excitons
2.2. Interfaces and blend layers
2.2.1. Interface dipoles
2.2.2. Energy level bending
2.2.3. Injection from metal into semiconductor, and extraction
2.2.4. Excitons at interfaces
2.3. Charge transport and recombination in organic semiconductors
2.3.1. Drift transport
2.3.2. Charge carrier mobility
2.3.3. Thermally activated transport
2.3.4. Diffusion transport
2.3.5. Drift-diffusion transport
2.3.6. Space-charge limited current
2.3.7. Recombination
2.4. Mobility measurement
2.4.1. SCLC and TCLC
2.4.2. Time of flight
2.4.3. Organic field effect transistors
2.4.4. CELIV
2.5. Organic solar cells
2.5.1. Exciton diffusion towards the interface
2.5.2. Dissociation of CT states
2.5.3. CT recombination
2.5.4. Flat and bulk heterojunction
2.5.5. Transport layers
2.5.6. Thin film optics
2.5.7. Current-voltage characteristics and equivalent circuit
2.5.8. Solar cell efficiency
2.5.9. Limits of efficiency
2.5.10. Correct solar cell characterization
2.5.11. The \"O-Factor\"
3. Materials and experimental methods
3.1. Materials
3.2. Device fabrication and layout
3.2.1. Layer deposition
3.2.2. Encapsulation
3.2.3. Homogeneity of layer thickness on a wafer
3.2.4. Device layout
3.3. Characterization
3.3.1. Electrical characterization
3.3.2. Sample illumination
3.3.3. Temperature dependent characterization
3.3.4. UPS
4. Simulations
5.1. Design of single carrier devices
5.1.1. General design requirements
5.1.2. Single carrier devices for space-charge limited current
5.1.3. Ohmic regime
5.1.4. Design of injection and extraction layers
5.2. Advanced evaluation of SCLC – potential mapping
5.2.1. Potential mapping by thickness variation
5.2.2. Further evaluation of the transport profile
5.2.3. Injection into and extraction from single carrier devices
5.2.4. Majority carrier approximation
5.3. Proof of principle: POEM on simulated data
5.3.1. Constant mobility
5.3.2. Field dependent mobility
5.3.3. Field and charge density activated mobility
5.3.4. Conclusion
5.4. Application: Transport characterization in organic semiconductors
5.4.1. Hole transport in ZnPc:C60
5.4.2. Hole transport in ZnPc:C60 – temperature variation
5.4.3. Hole transport in ZnPc:C60 – blend ratio variation
5.4.4. Hole transport in ZnPc:C70
5.4.5. Hole transport in neat ZnPc
5.4.6. Hole transport in F4-ZnPc:C60
5.4.7. Hole transport in DCV-5T-Me33:C60
5.4.8. Electron transport in ZnPc:C60
5.4.9. Electron transport in neat Bis-HFl-NTCDI
5.5. Summary and discussion of the results
5.5.1. Phthalocyanine:C60 blends
5.5.2. DCV-5T-Me33:C60
5.5.3. Conclusion
6. Organic solar cell characteristics: the influence of temperature
6.1. ZnPc:C60 solar cells
6.1.1. Temperature variation
6.1.2. Illumination intensity variation
6.2. Voc in flat and bulk heterojunction organic solar cells
6.2.1. Qualitative difference in Voc(I, T)
6.2.2. Interpretation of Voc(I, T)
6.3. BHJ stoichiometry variation
6.3.1. Voc upon variation of stoichiometry and contact layer
6.3.2. V0 upon stoichiometry variation
6.3.3. Low donor content stoichiometry
6.3.4. Conclusion from stoichiometry variation
6.4. Transport material variation
6.4.1. HTM variation
6.4.2. ETM variation
6.5. Donor:acceptor material variation
6.5.1. Donor variation
6.5.2. Acceptor variation
6.6. Conclusion
7. Summary and outlook
7.1. Summary
7.2. Outlook
A. Appendix
A.1. Energy pay-back of this thesis
A.2. Tables and registers
|
Page generated in 0.0776 seconds