• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 14
  • 1
  • Tagged with
  • 53
  • 34
  • 31
  • 25
  • 25
  • 18
  • 18
  • 14
  • 14
  • 14
  • 11
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Utvärdering av höjdosäkerhet i digital terrängmodell framtagen med fotografier infångade med DJI Phantom 4 RTK

Bååth, Maya, Jonsson, Frida January 2020 (has links)
Att använda obemannade flygfarkoster, även kallat UAS (unmanned aerial systems), i karterings- och modelleringssyften har blivit en välanvänd metod de senaste åren. Mycket på grund av den tekniska utvecklingen som till stor del automatiserat processen med att framställa höjdmodeller och ortofoton. Inom ramen för denna studie kommer vi att titta närmare på hur olika faktorer påverkar höjdosäkerheten hos en höjdmodell framställd med data insamlat med en Real-Time Kinetic-UAS (RTK-UAS). Studien kommer dels att undersöka hur stor osäkerheten blir om endast den integrerade nätverks-RTK:n (NRTK) används vid georeferering av flygbilderna, dels att se hur stor påverkan adderade markstödpunkter har på osäkerheten. Studien kommer även undersöka hur stor påverkan flyghöjden har på osäkerheten genom att jämföra data från två flyghöjder: 100 m och 50 m. Det sista studien som undersöks är vilken inverkan snedbilder har på osäkerheten. Detta genom att jämföra en flygning där lodbilder tagits med en flygning där kameran har haft en vinkling på 60° från lod. Studien genomfördes med hjälp av Falun kommuns mättekniker som manövrerade UAS:en. För att kunna testa markstödpunkternas inverkan på osäkerheten mättes nio punkter in. Även kontrollprofiler mättes för att kunna kontrollera höjdmodellerna som producerades. Totalt genomfördes 3 olika flygningar: 100 m med lodbilder, 50 m med lodbilder samt 50 m med snedbilder. De insamlade fotografierna importerades till programvaran Agisoft Metashape där de georefererades med olika metoder. För att undersöka hur markstödpunkter påverkar osäkerheten genomfördes fem olika georefereringsmetoder av fotografierna tagna på 100 m flyghöjd med olika antal markstödpunkter i varje. RMS-värdet varierade från 0,060 m för NRTK + 1 GCP till 0,068 m för NRTK+2 GCP som fick den högsta osäkerheten.Undersökningen av flyghöjder visade att en lägre flyghöjd har en tydlig effekt på mätosäkerheten. En minskning av RMS-värdet sågs när 50 m flyghöjd användes jämfört med när 100 m flyghöjd användes. Användningen av snedbilder gav ingen tydlig effekt på mätosäkerheten. RMS-värdet blev 0,014 m då lodbilder användes och 0,017 m då snedbilder användes. Snedbildernas resultat försämrades något på grund av den adderade höjden från gräset, så på endast hårdgjorda ytor blir RMS-värdet från snedbildsflygningen noterbart lägre än RMS-värdet från lodbildsflygningen. / The technology of Unmanned Aerial Systems (UAS) has gained popularity as atool for mapping and modeling applications in recent years. This is mainly dueto the technological developments that have largely automated the process ofproducing digital elevation models (DEMs) and orthophotos. This study investigates the factors that effect the height uncertainty in anelevation model that is produced with data collected with a NRTK-UAS(Network Real-Time Kinematic UAS). We also evaluate two differentscenarios i.e. how the uncertainty is affected by using only NRTK-UAS andthe effect of adding ground control points (GCPs) to NRTK-UAS. It is alsoinvestigated how the flying height and using oblique images affect the DEMuncertainty. This will be assessed by comparing two flights i.e. by capturingnadiral and oblique images. The oblique images were captured at a 60° angle. The study was realised with help from the surveying engineer of Falunmunicipality, who maneuvered the UAS. The study area was around three anda half ha and consisted mainly of park. To be able to test differentgeoreferencing methods GCP:s were surveyed, as well as control profiles thatserved as a reference for investigating the uncertainty of the elevation model.There were totally 3 different flying methods tested: 100 m with nadiralorientation, 50 m with nadiral orientation and 50 m with oblige orientation. The acquired data was processed in the software Agisoft Metashape, where itwas georeferenced with different above-mentioned methods. To be able toexamine which impact GCP has on the uncertainty, five different sets withdifferent number of GCP were made with the photos captured from 100 mflying height. The RMS value varied from 0,060 m for NRTK+1 GCP whichhad the lowest RMS value to 0,068 m for NRTK+2 GCP which had the highest RMS value. We used the combination of NRTK-UAS and GCPs for testing the impact offlying height on the uncertainty. The flying heights 100 m and 50 m wascompared. A decrease of the uncertainty was observed when the flying heightwas 50 m instead of 100 m. Our results show that the RMS-value increased from 0,014 m to 0,017 musing nadiral and oblique images, respectively. The difference is too small tobe able to draw a conclusion. The results for the oblique images improvedwhen only hard surfaces such as asphalt, concrete etc. were observed.
22

Semantik-basierte Gebäudeerfassung mit verkoppelten Markoff-Zufallsfeldern /

Brunn, Ansgar. January 2000 (has links) (PDF)
Disputats. Rheinische Friedrick-Wilhelms-Universität, 2000. / Haves kun i elektronisk udg.
23

Evaluation of digital terrain models created in post processing software for UAS-data : Focused on point clouds created through block adjustment and dense image matching

Assefha, Sabina, Sandell, Matilda January 2018 (has links)
Lately Unmanned Aerial Systems (UAS) are used more frequently in surveying. With broader use comes higher demands on the uncertainty in such measurements. The post processing software is an important factor that affects the uncertainty in the finished product. Therefore it is vital to evaluate how results differentiate in different software and how parameters contribute. In UAS-photogrammetry images are acquired with an overlap which makes it possible to generate point clouds in photogrammetric software. These point clouds are often used to create Digital Terrain Models (DTM).  The purpose of this study is to evaluate how the level of uncertainty differentiates when processing the same UAS-data through block adjustment and dense image matching in two different photogrammetric post processing software. The software used are UAS Master and Pix4D. The objective is also to investigate how the level of extraction in UAS Master and the setting for image scale in Pix4D affects the results when generating point clouds. Three terrain models were created in both software using the same set of data, changing only extraction level and image scale in UAS Master and Pix4D respectively.  26 control profiles were measured with network-RTK in the area of interest to calculate the root mean square (RMS) and mean deviation in order to verify and compare the uncertainty of the terrain models. The study shows that results vary when processing the same UAS-data in different software.  The study also shows that the extraction level in UAS Master and the image scale in Pix4D impacts the results differently. In UAS Master the uncertainty decreases with higher extraction level when generating terrain models. A clear pattern regarding the image scale setting in Pix4D cannot be determined. Both software were able to produce elevation models with a RMS-value of around 0,03 m. The mean deviation in all models created in this study were below 0,02 m, which is the requirement for class 1 in the technical specification SIS-TS 21144:2016. However the mean deviation for the ground type gravel in the terrain model created in UAS Master at a low extraction level exceeds the demands for class 1. This indicates all but one of the created models fulfil the requirements for class 1, which is the class containing the highest requirements. / Obemannade flygfarkostsystem (eng. Unmanned Aerial Systems, UAS) används allt mer frekvent för datainsamling inom geodetisk mätning. I takt med att användningsområdena ökar ställs också högre krav på mätosäkerheten i dessa mätningar. De efterbearbetningsprogram som används är en faktor som påverkar mätosäkerheten i den slutgiltiga produkten. Det är därför viktigt att utvärdera hur olika programvaror påverkar slutresultatet och hur valda parametrar spelar in. I UAS-fotogrammetri tas bilder med övertäckning för att kunna generera punktmoln som i sin tur kan bearbetas till digitala terrängmodeller (DTM).  Syftet med studien är att utvärdera hur mätosäkerheten skiljer sig när samma data bearbetas genom blockutjämning och tät bildmatchning i två olika programvaror. Programvarorna som används i studien är UAS Master och Pix4D. Målet är också att utreda hur vald extraktions nivå i UAS Master och vald bildskala i Pix4D påverkar resultatet vid generering av terrängmodeller. Tre terrängmodeller skapades i UAS Master med olika extraktionsnivåer och ytterligare tre skapades i Pix4D med olika bildskalor. 26 kontrollprofiler mättes in med nätverks-RTK i aktuellt område för beräkning av medelavvikelse och kvadratiskt medelvärde (RMS). Detta för att kunna verifiera och jämföra mätosäkerheten i modellerna. Studien visar att slutresultatet varierar när samma data bearbetas i olika programvaror.  Studien visar också att vald extraktionsnivå i UAS Master och vald bildskala i Pix4D påverkar resultatet olika. I UAS Master minskar mätosäkerheten med ökad extraktionsnivå, i Pix4D är det svårare att se ett tydligt mönster. Båda programvaror kunde producera terrängmodeller med ett RMS-värde kring 0,03 m. Medelavvikelsen i samtliga modeller understiger 0,02 m, vilket är kravet för klass 1 från den tekniska specifikationen SIS-TS 21144:2016. Medelavvikelsen för marktypen grus i UAS Master i modellen med låg extraktionsnivå överskrider dock kraven för klass 1. Därmed uppnår alla förutom en av terrängmodellerna kraven för klass 1, vilket är den klass med högst ställda krav.
24

Terrester fotogrammetri med Trimble V10 Imaging Rover - Mätosäkerhet och leveransformat : Test av Trimble V10 Imaging Rover och Trimble Business Center / Terrestrial photogrammetry with Trimble V10 Imaging Rover - measurement uncertainty and file formats : Test of Trimble V10 Imaging Rover and Trimble Business Center

Laurell, Samuel January 2017 (has links)
De vanligaste metoderna för insamling av geografisk information är idag genom GNSS och totalstation eller via traditionell fotogrammetri och laserskaning. Trimble V10 Imaging Rover är ett instrument som består av 12 kalibrerade kameror med skanningsfunktion. Detta instrument fungerar som ett komplement till de traditionella mätmetoderna GNSS och totalstation. Resultatet från insamling med Trimble V10 är mätbara panoramabilder i 360-grader. Utifrån dessa panoramabilder kan mätningar utföras fotogrammetriskt i programvaran Trimble Business Center (TBC). Även punktmoln kan genereras i TBC utifrån dessa panoramabilder. Studien består av två delar. I den första delen testas mätosäkerheter och begränsningar för inmätning med Trimble V10. Detta utfördes under ett insamlingstillfälle vid Mariebergsskogens parkering i Karlstad. Den andra delen består av undersökningar kring leveransformat och filformat I TBC, för data insamlat med Trimble V10. I denna studie testas hur mätosäkerheten för Trimbe V10 påverkas vid olika avstånd från mätpunkt. Detta för att se vilka begränsningar instrumentet har och vilken mätosäkerhet som kan uppnås vid olika mätavstånd. Resultatet visar att avstånd inom 25 m ger ett medelfel under 2 cm i plan. Medelfelet ökar därefter med cirka 2 cm per 25 m. Avstånd över 100 m ger medelfel på decimeternivå. I höjd är medelfelet lägre och påverkas mindre av mätavståndet. Medelfelet i höjd är mellan 8 mm för kortaste mätavståndet på 10 m och 2 cm för längsta mätavståndet 120 m. Positionsetablering av Trimble V10 kan göras med GNSS eller med totalstation. I denna studien utförs test för vilken av etableringsmetoderna som ger lägst mätosäkerhet. Resultatet visade att skillanden mellan etableringsmetoderna var jämbördiga i plan, i höjd gav totalstation en lägre mätosäkerhet än GNSS. För att kunna utföra beräkningar fotogrammetriskt så behövs bilder tagna från minst två positioner. Ett mindre test utförs i denna studie för att bedöma om antalet bilder som används för fotogrammetrisk beräkning påverkar resultatet. Det vill säga om fler använda fotostationer ger en lägre mätosäkerhet. Enligt denna studie är så inte fallet då fler felkällor uppstår. Eftersom TBC används för att bearbeta och beräkna data inmätt från Trimble V10 så undersöks leveransvägar av 3D- och 2D-modeller, punktmoln och panoramabilder. Detta görs för att se vilka filformat som lämpar sig bäst för leverering av data till kunder som inte har tillgång till TBC. De filformat som testas i denna studie är CAD formaten DWG och DXF samt XML formatet LandXML. För punktmoln testas filformaten LAS och XYZ. Panoramabilder testas genom export till formaten JPEG, HTML och KMZ. Resultaten visar på att DWG och DXF klarar hantera 3D-modeller exporterade från TBC med viss brist. LandXML klarar endast av att hantera punkter i 2D. Punktmolnsfilerna LAS och XYZ klarar lagra samma data men LAS kan läsas av fler programvaror och är ett smidigare format för att generera punktmoln i TBC med. Någon jämförelse mellan leveransvägar av panoramabilder kunde inte utföras då HTML och KMZ exporteringen misslyckades. / The most common methods for collecting geographical information are currently through GNSS and total station or via traditional photogrammetry and laser scanning. The Trimble V10 Imaging Rover is an instrument that consists of 12 calibrated cameras with scanning function. This instrument serves as a compliment to traditional measurement methods such as GNSS and total station. The result of data collection with the Trimble V10 are measurable 360 ​​degree panoramas. Based on these panoramic images, measurements can be performed photogrammetically in the Trimble Business Center (TBC) software. Point clouds can also be generated in TBC based on these panoramic images. In this study, measurement uncertainty for the Trimbe V10 is tested at different distances from the measurement point. This to show what constraints the instrument has and which measurement uncertainty can be achieved at different measuring distances. The result shows that distances within 25 m provide a mean error in plane of less than 2 cm. The average error then increases by about 2 cm per 25 m. A distance of more than 100 m gives an average error above 1 dm. In height measurement, the average error is lower and is less affected by the measurement distance. The average error in height is between 8 mm for the shortest measurement distance of 10 m and 2 cm for the longest measurement distance of 120 m. The positioning of the Trimble V10 can be done with GNSS or with total station. In this study, tests are performed for which method of positioning establishment that provide the lowest measurement uncertainty. The results show that the differences between the establishment methods are equal in plane measurement. In height the total station etablishment has a lower measurement uncertainty than GNSS. In order to be able to perform photogrammetically calculations, images taken from at least two positions are required. A smaller test was performed in this study to assess whether the number of images used for photogrammetric calculation affects the result. That is, if a higher number of photo stations used results in lower measurement uncertainty. According to the result in this study, this is not the case. Because TBC was used to calculate data received from the Trimble V10, deliverables were investigated for 3D and 2D models, point clouds and panoramas. This was done to see which fileformat is best suited for data delivery to customers who do not have access to TBC. The fileformats tested in this study were the CAD formats DWG and DXF as well as the XML-format LandXML. For point clouds, the fileformats LAS and XYZ were tested. Panoramic images are tested by export to JPEG, HTML, and KMZ formats. The results show that DWG and DXF manage to handle 3D models exported from TBC with some shortage. LandXML only succeeds in managing points in 2D. The LAS and XYZ point cloud-files manage to store the same data, but LAS can be read by more software and is a smoother format for generating point clouds in TBC with. No comparison of panorama delivery routes could be performed when HTML and KMZ export failed.
25

Comparison of Photogrammetry Interpretation with Physical Structural Field Measurements / Jämförelse av fotogrammetrisk tolkning med manuella fältmätningar

Osterman, Fredrik January 2017 (has links)
Fracture mapping of bedrock and knowledge about how fractures influence rock strength and stability is of great importance in a constructional context. These factors largely dictate where one can build and not build in rock, and to what extent reinforcements and safety measurements are needed. In a city like Stockholm where infrastructure has been forced to expand due to a rapidly growing population, this type of knowledge plays a central role to ensure continued development. Fracture mapping is traditionally executed by a geologist who manually measures fracture orientations with a compass. However, this method bears obvious risks as the geologist must physically approach a possibly unstable rock face to carry out manual measurements of fractures and structures. In some cases, the geologist is not even allowed to approach the rock face for safety reasons. The aspect of time should not be neglected either since the process of manual measurements is often time consuming. This has resulted in newer and safer technological methods being developed and tested. In 2015, The Geological Survey of Sweden (SGU) acquired photogrammetrical equipment and 3D-modelling software ShapeMetriX to ease the fracture mapping process, obtain data of higher quality and increase personnel safety in the field. In this report, the photogrammetrical system is quality tested by comparing its results with manual field measurements. The control was carried out on three different rock faces in two locations; Torsgatan, a central street in Stockholm, and Kungens kurva, a construction site southwest of central Stockholm. The study shows that the results of ShapeMetriX correspond well to the manual field measurements and that the method has several advantages as well as disadvantages compared to conventional mapping methods. / Sprickkartering av berggrund och kunskap om hur bergets hållfasthet och stabilitet påverkas av sprickor är viktigt i konstruktionssammanhang. Dessa faktorer dikterar till stor del var man kan och inte kan bygga i berg samt till vilken grad förstärkningar och säkerhetsåtgärder behövs. I en stad lik Stockholm vars infrastruktur tvingas anpassa sig efter en kraftigt växande befolkning sätts dessa kunskaper i en ännu mer central roll för att kunna säkerställa stadens fortsatta utveckling. Sprickkartering utförs traditionellt av en geolog som med hjälp av en kompass manuellt mäter sprickors orientering. Detta medför dock uppenbara risker då denna fysiskt måste befinna sig nära bergskärningen för att kunna utföra mätningar av sprickor och strukturer. I vissa fall kan geologen, av säkerhetsskäl, inte alls närma sig den berörda ytan vilket omöjliggör en detaljerad kartering. Tidsaspekten av det hela bör inte heller bortses då manuella fältmätningar ofta är tidskrävande. Detta har resulterat i att nyare och säkrare teknologiska metoder för kartering och klassificering av berg både utvecklas och prövas. Sveriges geologiska undersökning (SGU) förvärvade 2015 fotogrammetrisk karteringsutrustning och 3D-modelleringsprogrammet ShapeMetriX för att effektivisera sprickkarteringsarbetet, erhålla data med högre kvalitét och öka säkerheten för personal I fält. I denna rapport utvärderas nämnda stereofotogrammetriska karteringsmetod med tillhörande analysmjukvara genom en jämförelse av dess resultat med manuella fältmätningar. Kontrollen utfördes på tre berghällar; en belägen på Torsgatan, en central gågata strax nordväst om centrala Stockholm och de andra vid Kungens kurva, en byggarbetsplats i närheten av Skärholmen i södra Stockholm. Resultat av studien visar att ShapeMetriX mätningar väl stämmer överens med manuella fältmätningar och även att metoden har en
26

Utvärdering av programvara/molntjänst för framställning av ortofoton med UAS-data

Thorell, Fredrik, Nilsson, William January 2013 (has links)
Unmanned Aerial Vehicle (UAV) är en benämning på en obemannad flygande farkost. UAV är en benämning för själva farkosten och därför har Unmanned Aircraft System (UAS) tagit över eftersom det är ett begrepp som rör hela systemet som förutom flygfarkost innefattar start, landning, markstation och kommunikationslänk. Inom mätningsteknik är UAS ett relativt nytt begrepp och tekniken har sin historia mestadels inom det militära området. Syftet med denna studie är att analysera samt utvärdera två programvaror och en molntjänst för bearbetning och framtagning av ortofoto från UAS-data. De frågor som ställts inför arbetet är: kan en molntjänst ersätta ett avancerat datorprogram vid generering av ortofoton? Kan dessa datorprogram ge ett bra resultat utan hjälp av andra GIS-program? Vilket program är enklast att förstå och använda samt vilka är skillnaderna mellan programmen? Dessa frågor har besvarats genom användning av insamlat data och för att få utvärderingen rättvis har därför tre olika dataset skapats. Programtjänsterna som har utvärderats är Agisoft PhotoScan 0.9.0 och Pix4UAV Desktop/Cloud 2.1.2. Insamling av data har skett genom en flygning med en oktokopter över Fågelmyratippen i Dalarna. Resultaten visar att priset snabbt blir högt om endast Pix4UAV Cloud används och att överlag är PhotoScan billigare än Pix4UAV Desktop. Kvalitetsrapporten som följer med varje projekt är överskådlig i PhotoScan och mer ingående i Pix4UAV Desktop/Cloud. Trots samma indata blir utdatat olika vid bearbetning av de olika programmen, till exempel skiljer sig markupplösningen åt mellan programmen. Generellt är PhotoScan tydligare på att visa hur arbetsprocessen går till. Supporten hos båda företagen är bra, tips och tricks finns på respektive hemsida. Till PhotoScan finns även en manual för nedladdning samt en YouTube-kanal med instruktionsvideor. De enda slutsatserna vi drar är att Pix4UAV Cloud inte klarar av att ersätta ett avancerat bildbehandlingsprogram och att för tillfället bör ytterligare ett GIS-program användas som komplement för att få bästa resultat. I övrigt har vi endast skrapat på ytan av programmen och rekommenderar att läsaren tar till sig det vi skrivit under resultat och diskussion för att sedan bilda sig en egen uppfattning med hjälp av respektive programs prövotid. Till sist presenteras förslag på vidare studier inom ämnet. / Unmanned Aerial Vehicle (UAV) is a term for a remote controlled airbornevehicle. Since UAV is an acronym for the vehicle itself, Unmanned Aircraft Systems(UAS) has therefore replaced UAV, as it is a concept related to the wholesystem, beside the vehicle it also includes landing, ground station andcommunications link. Within land surveying UAS is a relatively new concept asthe technology has its history mainly associated to the military. The purposeof this study is to analyze and evaluate two software and a cloud service for processingand preparation of orthophotos from data collected with a UAS. The questions tobe answered in this thesis are: Can a cloud service replace an advancedcomputer software for generating orthophotos? Can these produce good resultswithout the help of other GIS software? Which software is the easiest tounderstand and to use and what are the main differences. These questions wereanswered by using collected data, and to get the evaluation fair three datasetshave been created. The software being evaluated are Agisoft PhotoScan andPix4UAV desktop/cloud. The data collection was done by a flight with an octokopterover Fågelmyratippen in Dalarna. The results show that the price quicklybecomes high if only Pix4UAV Cloud is used and that generally PhotoScan ischeaper than Pix4UAV Desktop. The quality report that comes with each projectis easy to understand in PhotoScan but more detailed in Pix4UAV Desktop/Cloud. Despitethe use of same data the results vary when processed, for example the groundresolution. Generally PhotoScan is better at showing the work process. Eachcompany’s support is good and they both have tips and tricks at their websites.On the Agisoft webpage there is a manual available for download and they alsohave a YouTube-channel with instruction videos. The conclusion is that thecloud service is not capable of replacing an advance image processing software.Another conclusion is that for the moment another GIS-program should be used toget the best results. We like to point out that we only scratched the surfaceof the software and we recommend that the reader embrace what we write inresults and discussion to then form their own opinion by using the softwareevaluation period. I the last part we present subjects of further study.
27

Olika metoder för positionering och inventering av träd i stadsmiljö

Persson, Erik January 2011 (has links)
Det finns flera fördelar med att upprätta en databas över en stads träd. Träden tillför många värden till stadsmiljön och är därför viktiga att sköta om, särskilt eftersom stadsträd ofta lever i en utsatt miljö. För att upprätta en träddatabas för en stad finns det olika metoder för att genomföra inventeringen. De två huvudområdena är dels fältmetoder och dels metoder som bygger på fjärranalys. Fältmetoderna kan delas in i terrester inmätning med totalstation och i mätning med någon typ av handhållen GNSS-utrustning. Fjärrmetoderna som är intressanta i trädanalysavseende kan delas in i laserskanning och flyg- eller satellitbildmetoder. De olika tillvägagångssätten beskrivs i arbetet och deras respektive möjligheter, för- och nackdelar utreds. Det tillvägagångssätt som över ett större område får anses vara effektivast börjar med att en laserskanning utförs. På så sätt kan varje enskilt träd detekteras och information om trädens höjd och till viss del även träslagstillhörigheten kan tas fram. Om mer information om respektive träd önskas kan ett nära-infrarött ortofoto användas. Med viss manuell bearbetning kan då träslagstillhörighet extraheras med större säkerhet. För att förbättra möjligheterna och noggrannheten till träslagsbestämning skulle så kallade hyperspektrala bilder kunna användas. Dessa är dock ännu ej implementerade i kommersiella metoder och mer forskning behövs. Den databasen som fås från ovan nämnda procedur får efter behov och möjlighet kompletteras med fältinventeringar för att inhämta önskade attributdata. / There are several advantages with establishing a database of the trees of a city. The trees contribute great value ​​to the urban environment and are therefore important to take care of, especially because urban trees often live in a stressed habitat. In order to establish a database of the trees of a city, there are various methods to perform an inventory. The two main areas are field methods and techniques based on remote sensing. The field methods can be divided into terrestrial surveying with a total station and measurement with some kind of hand-held GNSS receiver. The remote methods that are of interest when analyzing trees can be divided into laser scanning and aerial photographic methods. The different methods are described in the report and their possibilities, advantages and disadvantages are investigated. The method that over a larger area may be considered to be most effective begins with a laser scanning. From the laser data each tree can be detected and information about tree height and also some information about tree species can be extracted. If more information about the trees is needed, a near-infrared orthophoto can be used. With some manual processing tree species can then be extracted with greater certainty. To improve possibilities and accuracy for determining wood affiliation hyper spectral images could be used. These are however not yet implemented in commercial procedures and more research is needed. The database obtained from the procedure described above may, decided by demand and budget, be supplemented with field surveys to obtain the desired attributes.
28

Utveckling av metoder för att säkerställa kvaliteten på höjddata insamlad med UAV : Fastställande av tillvägagångssätt vid luftburen datainsamling / Development of methods to ensure the quality elevation data collected with UAV : Establishment of procedures for airborne data collection

Lindström, Simon January 2021 (has links)
Företaget Team Exact levererar mätningstekniska tjänster, där den främsta verksamheten är riktad mot byggnads- och markindustrin. Företaget använder UAS och levererar tjänster till kunder med ortofoto och DEM som kan användas till kartläggning, volymberäkningar och planering. Team Exact använder konsultföretagets SkyMap’s webbaserade plattform i fotogrammetrisk bearbetning av UAV genererade flygbilder. DEM behöver uppnå HMK-standardnivå 3 för att användas som underlag till bygghandlingar. För att uppnå HMK-standardnivå 3 så krävs det en lägesosäkerhet på 0,02–0,05 m/ 0,03–0,07 m (plan/höjd). Team Exact uppnår god lägesosäkerhet i plan men har varierande resultat i höjdåtergivningen. Studien har således en målsättning att hitta metoder för att säkerställa höjden inom ett studieområde med varierande topografi, terräng och markytor. Faktorer som ska undersökas är markstödspunkter, RTK-data, flygstråk, kamerainställningar och tänkvärda åtgärder i skiftande topografi samt att se tendenser hur höjdåtergivningen varierar på olika markytor.  Ett stomnät etablerades över studieområdet med tre fastställda koordinatsatta stompunkter, punkterna var inmätta med statisk NRTK mätning under 1 minut. Nätet jämnades ut med totalstation och därefter blev kontrollpunkter, profiler, ytor och markstödspunkter inmätta. Studien utredde lägesosäkerheten med 0, 5, 9 och 12 markstödspunkter. Den UAV som användes i studien är försedd med en RTK-modul och förväntades därav tillhandahålla positioneringsdata som var av värde att utreda. Markstödspunkternas utplacering planerades med fyra konstanta i studieområdets yttrehörn och en femte konstant på studieområdets högsta höjd. Resterande punkter placerades ut i en jämnfördelning över områdets toppar och dalar.  Flygmetoderna som utvärderades var förankrade i tidigare studier. Gemensamma inställningar över samtliga metoder var studieområdets avgränsning, en flyghöjd på 40 m samt flyghastigheten på 3 m/s. Resterande var flytande parametrar som var av värde att utreda. Studien justerade parametrarna gällande flygstråk, övertäckning, kameravinkel och kamerainställningar. Totalt blev det tre flygmetoder där de fyra olika markstödskombinationerna undersöktes vilket gav 12 processer att utvärdera. Utvärderingen utfördes mot 77 kontrollpunkter där RMSE-värde för höjd och plan undersöktes. Kontrollpunkterna var jämnt fördelade över ytan och marktyperna. En ytterligare analys utfördes med volymberäkningar mellan referens terrängmodeller och de genererade terrängmodellerna.  Flygmetod 3 gav bästa resultat där fotogrammetriinställningen Double Grid användes och överlappningen var 80/60 % samt att kameran tiltades till -70°. Sensorkänsligheten var inställd på ISO100, bländaren ett öppningsvärde f/5 och slutartiden var inställd på 1/500s. Studiens resultat visar att flygmetod 3 som blockutjämnats med 12 markstödspunkter genererade bästa resultat på en lägesosäkerhet i plan på 0,015 m samt 0,035 m i höjd. / The company Team Exact delivers measurement technical services, and the main business is aimed at the construction and land industry. The company uses UAS and offers services to customers and delivers products such as orthophotos and DEMs that can be used for mapping, volume calculations and planning. Team Exact uses the consulting company SkyMap’s web-based platform for photogrammetric processing of UAV-generated aerial images. DEM needs to achieve good positional uncertainty, to achieve HMK standard level 3, it is required that the basis for construction documents has a positional uncertainty of 0.02–0.05 m / 0.03–0.07 m (level / height). Team Exact achieves good positional uncertainty in horizontal coordinates but has varying results in height reproduction. The study thus aims to find methods to ensure the height within a study area with varying topography, terrain and ground surfaces. Factors to be investigated are ground control points, RTK data, flight paths, camera settings and conceivable measures in varying topography, as well as seeing trends in how the height representation differs on different ground surfaces. A coordinate network was established over the study area with three established coordinate reference points, the points were measured with static NRTK measurement 1 minute. The network was levelled with the total station and then control points, profiles, surfaces, and ground control points were measured. The study investigated the location uncertainty with 0, 5, 9 and 12 ground control points. The UAV used in the study is equipped with an RTK module and was therefore expected to provide positioning data that was worth investigating. The placement of the ground support points was planned with four constants in the outer corner of the study area and a fifth constant at the highest level of the study area. The remaining points were placed in an even distribution over the area’s peaks and valleys. The evaluated flight methods were rooted in previous studies. Common settings across all methods were the study area delimitation, 40 m flight altitude and the flight speed of 3 m/s. Remaining were floating parameters that were of value to investigate. The study adjusted the parameters regarding flight path, coverage, camera angle and camera settings. In total, there were three flight methods where the four different ground support combinations were examined, which gave 12 processes to evaluate. The evaluation was performed against 77 control points where the RMSE value for height and plane was examined. The control points were evenly distributed over the surface and soil types. A further analysis was performed with volume calculations between the reference terrain models and the generated terrain models. Flight method 3 gave the best results where the photogrammetry setting Double Grid was used and the overlap was 80/60 % and the camera was tilted to -70 °. The sensor sensitivity was set to ISO100, the shutter had an aperture value of f/5 and the shutter speed was set to 1/500s. The results of the study indicate that flight method 3, which was levelled with 12 ground support points, generated the best results on a positional uncertainty in horizontal coordinates of 0,015 m and 0,035 m in height.
29

Boundary Representation Modeling from Point Clouds

Aronsson, Oskar, Nyman, Julia January 2020 (has links)
Inspections of bridges are today performed ocularly by an inspector at arm’s lengths distance to evaluate damages and to assess its current condition. Ocular inspections often require specialized equipment to aid the inspector to reach all parts of the bridge. The current state of practice for bridge inspection is therefore considered to be time-consuming, costly, and a safety hazard for the inspector. The purpose of this thesis has been to develop a method for automated modeling of bridges from point cloud data. Point clouds that have been created through photogrammetry from a collection of images acquired with an Unmanned Aerial Vehicle (UAV). This thesis has been an attempt to contribute to the long-term goal of making bridge inspections more efficient by using UAV technology. Several methods for the identification of structural components in point clouds have been evaluated. Based on this, a method has been developed to identify planar surfaces using the model-fitting method Random Sample Consensus (RANSAC). The developed method consists of a set of algorithms written in the programming language Python. The method utilizes intersection points between planes as well as the k-Nearest-Neighbor (k-NN) concept to identify the vertices of the structural elements. The method has been tested both for simulated point cloud data as well as for real bridges, where the images were acquired with a UAV. The results from the simulated point clouds showed that the vertices were modeled with a mean deviation of 0.13− 0.34 mm compared to the true vertex coordinates. For a point cloud of a rectangular column, the algorithms identified all relevant surfaces and were able to reconstruct it with a deviation of less than 2 % for the width and length. The method was also tested on two point clouds of real bridges. The algorithms were able to identify many of the relevant surfaces, but the complexity of the geometries resulted in inadequately reconstructed models. / Besiktning av broar utförs i dagsläget okulärt av en inspektör som på en armlängds avstånd bedömer skadetillståndet. Okulär besiktning kräver därmed ofta speciell utrustning för att inspektören ska kunna nå samtliga delar av bron. Detta resulterar i att det nuvarande tillvägagångssättet för brobesiktning beaktas som tidkrävande, kostsamt samt riskfyllt för inspektören. Syftet med denna uppsats var att utveckla en metod för att modellera broar på ett automatiserat sätt utifrån punktmolnsdata. Punktmolnen skapades genom fotogrammetri, utifrån en samling bilder tagna med en drönare. Uppsatsen har varit en insats för att bidra till det långsiktiga målet att effektivisera brobesiktning genom drönarteknik. Flera metoder för att identifiera konstruktionselement i punktmoln har undersökts. Baserat på detta har en metod utvecklats som identifierar plana ytor med regressionsmetoden Random Sample Consensus (RANSAC). Den utvecklade metoden består av en samling algoritmer skrivna i programmeringsspråket Python. Metoden grundar sig i att beräkna skärningspunkter mellan plan samt använder konceptet k-Nearest-Neighbor (k-NN) för att identifiera konstruktionselementens hörnpunkter. Metoden har testats på både simulerade punktmolnsdata och på punktmoln av fysiska broar, där bildinsamling har skett med hjälp av en drönare. Resultatet från de simulerade punktmolnen visade att hörnpunkterna kunde identifieras med en medelavvikelse på 0,13 − 0,34 mm jämfört med de faktiska hörnpunkterna. För ett punktmoln av en rektangulär pelare lyckades algoritmerna identifiera alla relevanta ytor och skapa en rekonstruerad modell med en avvikelse på mindre än 2 % med avseende på dess bredd och längd. Metoden testades även på två punktmoln av riktiga broar. Algoritmerna lyckades identifiera många av de relevanta ytorna, men geometriernas komplexitet resulterade i bristfälligt rekonstruerade modeller.
30

3D Geological Modelling of the Subsurface Adjacent to Cementa’s Quarry in Skövde, Sweden / Geologisk 3D modellering av närområdet till Cementas gruva i Skövde

Larsson, Minna January 2022 (has links)
Limestone is one of the main components of cement production. Limestone has been quarried in Skövde, Sweden, since the end of 19th century and Cementa AB has been operating the quarry since 1973. Aside from limestone, there are also Alum shale of Cambrian age, mudstones as well as bentonite layers of Ordovician age present in the quarry.  The production of cement evidently is important for Sweden’s infrastructure, and the quarry in Skövde is one of few known locations in the country with limestone with the right composition. Therefore, it is important to increase the knowledge regarding the character of the limestone to make accurate predictions for the future regarding the cement production. The geological knowledge of the area is already extensive; however, the aim of this thesis is to expand this knowledge further by constructing a 3D geological model. The data which has been used to construct the model are field observations, drill core data, chemical data, high-resolution pictures (photogrammetry) and resistivity measurements (field and samples). The resistivity measurements were done using the multiple gradient array, and apparent resistivity was inverted using Res2Dinv. The geological modelling was done using Leapfrog geo (© Seequent Systems, Incorporated). Two models have been proposed as a result of this project; one where high-grade limestone of lesser quality and whitestone has been regrouped with two other units (A) and one including all units (B). In the most recent drilling campaign, the nomenclature used to distinguish the units has been modified and does not differentiate high-grade limestone of lesser quality and whitestone from the rest. This affects coherence of the model and for this reason two models have been built. Both models show roughly flat lying units in the area of interest. Both low-grade limestone and lower waste stone units have consistent thickness in both models. The major difference between the models is how the high-grade limestone unit is modelled as a consequence of the additional units in model B. The result from the resistivity measurements shows unexpectedly low values, when compared to values from the literature as well as the measurements on hand samples from the quarry. The reason for these low values is still unclear, and therefore resistivity data has been used with caution. Considering this, it appears that resistivity measurements is not a suitable technique to characterize the subsurface in this particular area.  The models produced in this project provides information regarding thickness and extent of the units and overlying soil. As such, the new knowledge can be used to plan future prospecting campaigns, make projections, and estimates within current mining permits and evaluate how future mining can be conducted. / Kalksten är huvudkomponenten när det kommer till cementproduktion, vilken också behöver ha en specifik kemi för att vara lämplig att tillverka cement av. Kalksten av denna specifika kvalité har brutits i Skövde, Sverige, sedan slutet av 1800-talet. Cementproduktionen startade dock 1924 och Cementa köpte upp gruvan och fabriken 1973. I brottet finns förutom kalksten även alunskiffer, slamsten och bentonitlager. Vidare finns det två olika kvalitéer på kalkstenen, en med högt kalciumoxidvärde och en med lägre kalciumoxidvärde. Totalt representerar de formationer som finns i gruvan en 50 miljoner år lång historia av sedimentation. Cement utgör en grundläggande del för Sveriges infrastruktur, och brottet i Skövde är en av få platser i landet med en kalksten som har rätt kemi. Därmed är det viktigt att utöka kunskapen gällande karaktären på kalkstenslagren i och vid brottet för att kunna göra mer korrekta uppskattningar om Sveriges framtida cementproduktion. I dagsläget är kunskapen om geologin i och kring gruvan omfattande tack vare bland annat tidigare prospekteringskampanjer. Syftet med detta arbete är utöka den geologiska kunskapen ytterligare genom att konstruera en geologisk 3D modell. Denna geologiska 3D modell har skapats av data såsom borrhålsdata, resistivitetsmätningar samt drönarbilder för att bättre karakterisera de olika geologiska formationerna. På grund av att indelningen av de geologiska enheterna har varit olika mellan de tidigare prospekteringskampanjerna har två 3D modeller med olika upplösning skapats i stället för en. Modelleringen har fokuserats på ett område nordväst om nuvarande brytområde. Båda modellerna har sub-horisontella geologiska enheter inom intresseområdet. Vidare har modellerna liknande tjocklek och utbredning på enheterna i sin övre del, men skiljer sig åt längre ner. Detta på grund av att den ena modeller har flera enheter, vilket således även påverkar närliggande enheter. Dessa två modeller har utökat den geologiska kunskapen om området, till exempel de geologiska enheternas mäktighet och utbredning, samt hur mäktigt jordtäcket i området är. Denna nya kunskap kan användas för att planera och estimera hur brytning kan ske i framtiden. Det är dock viktigt att poängtera att det är modeller som skapats, vilka är antaganden av verkligheten.

Page generated in 0.0885 seconds