• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 59
  • 59
  • 27
  • 22
  • 19
  • 18
  • 16
  • 14
  • 14
  • 14
  • 13
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Numerical modelling of multiple borehole heat exchanger array for sustainable utilisation of shallow geothermal energy

Chen, Shuang 24 August 2022 (has links)
A PhD dissertation which presented a numerical modelling study on the long-term behavior in the multiple borehole heat exchanger array system for sustainable utilisation of shallow geothermal energy.
52

Research about Refrigerant Charge in Domestic Heat Pumps

Sánchez-Moreno Giner, Luis 06 September 2023 (has links)
[ES] Debido a la crisis climática, es necesario encontrar fuentes alternativas para la climatización de locales y la producción de agua caliente sanitaria (ACS). Las bombas de calor se presentan como una alternativa excelente para sustituir a las calderas y así poder reducir las emisiones de gases contaminantes. En obra nueva, si se dispone de acceso al terreno o a una masa de agua, las bombas de calor agua-agua o salmuera-agua son altamente recomendadas debido a sus numerosas ventajas. El principal problema que presentan las bombas de calor es el refrigerante que contienen, ya que en la actualidad no existe refrigerante que sea a la vez barato, seguro y con propiedades termodinámicas óptimas. La tendencia en el futuro cercano en bombas de calor utilizadas para la calefacción de locales es volver al uso de refrigerantes naturales como los hidrocarburos y las hidrofluorolefinas. Estos refrigerantes presentan problemas de seguridad debido a su inflamabilidad o toxicidad y es por eso que, en caso de carecer de medidas de seguridad adicionales, la cantidad de refrigerante está limitada. En esta tesis se presenta un trabajo experimental sobre una bomba de calor salmuera-agua trabajando con poca cantidad de R290. La campaña experimental fue pensada para obtener resultados beneficiosos sobre cuál es el actual potencial de este tipo de tecnología tras la limitación de la carga de refrigerante, para desarrollar formas de reducción de carga de refrigerante en los sistemas y para mejorar las simulaciones de predicción de la cantidad necesaria de refrigerante. La campaña experimental está dividida en dos partes, cada una enfocada en uno de los siguientes objetivos: la primera en conocer el actual comportamiento anual de esa bomba de calor y la segunda para desarrollar estrategias de reducción de carga de refrigerante. En cada campaña experimental se almaceno tanto los datos de funcionamiento como la cantidad de refrigerante que había en cada uno de los componentes. La instalación estaba equipada con las herramientas necesarias para la toma de datos durante el funcionamiento de la bomba de calor y también era capaz de sectorizarla asilando cada uno de los componentes para poder extraer y pesar el refrigerante y así conocer que cantidad había en cada zona. Con los datos recogidos, se ha podido observar diferencias entre la predicción de carga de refrigerante en los diferentes componentes y la medida experimentalmente, y también se ha encontrado alguna de las causas de esa discrepancia, pudiendo así corregir el modelo. Para ello, se ha desarrollado un modelo de compresor y al modelo existente de intercambiadores de calor se le ha añadido un volumen muerto de refrigerante. Con estos cambios la predicción ha mejorado notablemente en el modelo utilizado y en la actualidad se puede utilizar para conocer una aproximación del refrigerante necesario. / [CA] A causa de la crisi climàtica, és necessari enden fonts alternatives per a la climatització dels locals i la endencia d'aigua calenta sanitaria (ACS). Les bombes de calor es presenten com una alternativa excel·lent per a substituir a les calderes i així poder reduir les emissions de gasos contaminants. En obra nova, si es disposa d'accés al terreny o a una massa d'aigua, les bombes de calor aigua-aigua o salmorra-aigua són endencia recomanades a causa dels seus nombrosos avantatges. El principal problema que presenten les bombes de calor és el refrigerant que contenen, ja que en l'actualitat no existeix refrigerant que siga alhora barat, segur i amb propietats termodinàmiques òptimes. La tendencia actual en bombes de calor utilitzades per a la calefacció d'espais, és tornar a l'ús de refrigerants naturals com els hidrocarburs i les hidrofluorolefines. Aquests refrigerants presenten problemes de seguretat a causa de la seua inflamabilitat o toxicitat i és per això que, en cas de mancar de mesures de seguretat addicionals, la quantitat de refrigerant està limitada. En aquesta tesi es presenta un treball experimental sobre una bomba de calor salmorra-aigua treballant amb poca quantitat de R290. La campanya experimental va ser pensada per a obtindre resultats beneficiosos sobre quin és l'actual potencial d'aquesta mena de tecnologia després de la limitació de la càrrega de refrigerant, per a desenvolupar formes de reducció de càrrega de refrigerant en els sistemes i per a millorar les simulacions de predicció de la quantitat necessària de refrigerant. La campanya experimental està dividida en dues parts, cadascuna enfocada en un dels següents objectius: la primera a conéixer l'actual comportament anual d'aqueixa bomba de calor i la segona per a desenvolupar estratègies de reducció de càrrega de refrigerant. En cada campanya experimental s'emmagatzeme tant les dades de funcionament com la quantitat de refrigerant que hi havia en cadascun dels components. La instal·lació estava equipada amb les eines necessàries per a la presa de dades durant el funcionament de la bomba de calor i també era capaç de sectoritzar-la asilant cadascun dels components per a poder extraure i pesar el refrigerant i així conéixer que quantitat hi havia en cada zona. Amb les dades recollides, s'ha pogut observar diferències entre la predicció de càrrega de refrigerant i la mesura experimentalment, i també s'ha trobat alguna de les causes d'aqueixa discrepància, podent així corregir el model. Per a això, s'ha desenvolupat un model de compressor i al model existent de bescanviadors de calor se li ha afegit un volum mort de refrigerant. Amb aquests canvis la predicció ha millorat notablement i en l'actualitat es pot utilitzar per a conéixer una aproximació del refrigerant necessari. / [EN] Due to the climate crisis, there is a need to find alternative energy sources for space heating, cooling, and domestic hot water (DHW) production. Heat pumps are an excellent alternative to substitute current boilers to reduce gas emissions. A liquid source heat pump is highly recommended in new buildings with access to land or water due to its significant advantages. The main problem with this technology is that it uses a refrigerant inside, and there is no refrigerant with good performance, cheap and safe to handle. The near future trend in heat pumps used for space heating is to use pure refrigerants such as natural refrigerants and HFOs. These refrigerants (except CO2) have safety issues (flammability or toxicity); consequently, a maximum amount of refrigerant is allowed without considering extra safety measures. This PhD presents an experimental work with a ground source heat pump (GSHP) with a low R290 refrigerant amount. This experimental campaign is helpful to know the current achievable performance derived from the limitation of refrigerant amount, to develop refrigerant charge reduction strategies and to improve existing simulation software based on refrigerant charge prediction. The experimental campaign was divided into two parts to focus separately on normal annual behaviour and refrigerant charge reduction strategies. In each test campaign, performance data was recorded during the test, and the refrigerant charge amount in each component was extracted and weighed after the end of each test. The installation had the tools to acquire data from the vapour compression circuit, isolate the components, and extract and weigh the refrigerant to know how much refrigerant was inside each section. With the data collected, it was observed that the differences in refrigerant charge prediction in the components with the software used were significant, and some causes of these differences have been identified, correcting the prediction model. So, a compressor model has been developed, and a dead volume has been added to the refrigerant charge calculation in heat exchangers. With these changes, the refrigerant prediction has greatly improved in the model used and could be a reliable approximation. / Gracias a la Universitat Politècnica de València por brindarme la financiación y los medios a través del programas “Ayudas para movilidad de estudiantes de Doctorado de la Universitat Politècnica de València” y “Programa de Ayudas de investigación y Desarrollo” (PAID-01-17) / Sánchez-Moreno Giner, L. (2023). Research about Refrigerant Charge in Domestic Heat Pumps [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196786
53

Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling

Ebrahim, Mila January 2021 (has links)
In Photovoltaic/Thermal (PVT) technology, both PV and solar thermal technology are integrated in the same module for simultaneous electricity and heat production. Research has shown that there are multiple benefits from integrating PVT collectors with a ground source heat pump (GSHP) system, since it allows for seasonal storage of thermal energy over the year. Furthermore, it leads to reduced operating temperatures for the PVT collectors which can increase efficiency and lifetime. The aim of this study is to present the electric and thermal performance of a PVT collector developed by Solhybrid i Småland AB, for different environmental and fluid inlet conditions that can occur when PVT collectors are connected to a GSHP system. Furthermore, the performance of this PVT design is evaluated with ASHRAE (Standard 93-2003), to allow for comparison with other PVT collector designs, with values on the overall heat loss coefficient (UL) and heat removal factor (FR). The modelling tool used for the study is the software COMSOL Multiphysics, which uses the finite element method to solve the partial differential equations in heat transfer and fluid flow problems. Based on the performance curves, the thermal and electrical efficiency of the collector is approximately 48.0-53.4% and 19.0-19.2% respectively at a reduced temperature of zero and irradiance levels of 800-1000 W/m2 for the mass flow rate of 0.026 kg/sm2 which was determined as most suitable to increase thermal performance. Furthermore, these results resulted in a heat removal factor (FR) and overall heat loss coefficient (UL) of 0.56-0.62 and 53.4-53.5 W/m2 K respectively. The results on the performance of the PVT collector in different weather conditions shows that the inlet water temperature can significantly affect operating time and the amount of thermal energy that can be extracted during the year, especially if the collector operates in a colder climate like Sweden. To assess the accuracy of the created model, future work includes experimental testing of the studied PVT collector. / En panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.
54

Numerical Modelling of Multiple Inclined Borehole Heat Exchangers / Numerical Modelling of Multiple Angled Borehole Heat Exchangers

Deacon, Daniel January 2023 (has links)
This research describes the development and application of a numerical modelling method for angled borehole heat exchangers in ground-source heat pump systems. Inclining the boreholes relative to the vertical axis presents an opportunity to reduce the ground level footprint of the borehole field thus allowing for the installation of geothermal systems in retrofit applications or under buildings with small footprints. The commercial code COMSOL was used to develop the computational model. A series of validation and verification studies were performed to ensure the accuracy of the modelling approach. Simulations were conducted under constant and transient heat injection, where the effect of energy load imbalance is analyzed. Additionally, the effect of discontinuous loading with natural and forced recovery cycles is investigated. When exposed to a constant heat injection rate, configurations of angled borehole heat exchangers initially perform the same as vertical borehole heat exchangers. Then, there is a relatively short period where the angled configurations have slightly decreased performance due to increased thermal interaction in the near surface. At longer times, however, there is a significant benefit in using angled borehole heat exchangers as a result of the increased ground volume in the lower portion of the field. Under transient loading conditions, the conclusions were the same as constant heat injection, although the differences were smaller when the energy loading was balanced. However, when the loading was cooling dominated, by year 10 there was a significantly better performance observed for the angled boreholes. This indicates that the configurations of angled borehole heat exchangers can withstand a higher intensity of imbalanced energy loads compared to vertical configurations. Discontinuous loading was investigated by varying the length of time heat injection would occur on a daily basis. These daily perturbations led to small performance losses in the angled boreholes due to the increased thermal interaction in the near surface. Furthermore, imposing a forced recovery on the system by circulating fluid while heat injection was off did not significantly affect the fluid temperature or ground temperature. / Thesis / Master of Applied Science (MASc)
55

Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv

Goblirsch, Amanda, Izat, Banaz, Österblad Rintanen, Melinda January 2021 (has links)
Purpose: The aim of this study is to present the economic, environmental impact, and energy saving benefits of replacing an electric boiler to a bedrock heat pump or district heating. Furthermore, the impact of additional insulation will also be presented. Method: The technical, environmental, and economical aspects of the various heat sources in this study are gathered through websites and reports from agencies, industry organisations and corporations. A case study on a family house built in 1971, heated with a combination of electric boiler and air-to-air heat pump has been made. The study investigates the impact of replacing the existing heat sources with newer and better alternatives along with additional insulation. Results: The results present the energy demand for active heating, economic analysis, environmental impact, and the impact of additional insulation. Moreover, a comparison between the heat sources and the additional insulation is presented to show the difference between them. The case study objects demand for active heating includes passive heating, heat losses through the building envelope, heat losses due to ventilation. With all these factors combined, the family house has an annual active heating demand of 11 700 kWh. The energy consumption of the electric boiler combined with air-to-air heat pump (COP 4) have an annual consumption of 7 500 kWh. The required energy from the district heating goes up to 11 700 kWh and the bedrock heat pump (COP 3) have the lowest energy consumption of 3 900 kWh. However, the amount of electricity needed is 400 kWh for district heating compared to the other alternatives that require 7 500 kWh and 3 900 kWh. For the economic aspects, the installation and operating costs for the electric boiler combined with the air-to-air heat pump, district heating and the bedrock heat pump are concluded. This shows that, on one hand the bedrock heat pump is the most expensive heat source to install but on the other hand, the cheapest to operate. Furthermore, this study compares the emissions of carbon dioxide equivalents from the production of district heating and electric energy. Due to the clean electric energy in Sweden, district heating has the highest negative impact on the greenhouse effect as it uses energy resources that have high emission of carbon dioxide equivalents. The environmental impact of the electric boiler, air-to-air heat pump and the bedrock heat pump vary depending on the energy source used to generate electricity and can in the worst case be higher than for district heating. New values with the additional insulation suggest that the improved building envelope will have a positive impact on the operation costs, energy saving and emissions. As an example, the demand for active heating can be reduced with up to 30%. Conclusions: The conclusion is that the comparison of heat sources contains many uncertain variables. Consequently, the result of this study does most likely not apply directly to other study objects. The results may vary if, for example, the geographical location or electricity agreement is changed.
56

Performance evaluation of ground source heat pump heating systems in Stockholm

BÖRJESSON, MARCUS January 2020 (has links)
GSHP systems are common in Sweden but there are few evaluations quantifying the performance of the systems and highlighting problem that occurs during operations. The research project Annex 52 Long-term performance measurement of GSHP systems serving commercial, institutional and multifamily building part of IEA HPT TCP proves the need to systematically be able to evaluate GSHP systems. This thesis aims to expand the knowledge of how to evaluate GSHP systems and provide case studies for Annex 52. Three residential ground source heating systems used for heating has been evaluated and analyzed in this study. The evaluation has consisted of three parts. The first part analyzes the operation and stability of the GSHP systems. The second part consist of a detailed study of the performance of the GSHP systems. The seasonal performance factor has been calculated for different system boundaries based on the work done by SEPEMO. In addition, a method on how to evaluate the efficiency of the heat pumps based on the two temperature levels, source side temperature and the heat sink temperature, that the heat pump is operating at throughout a year has been developed within this thesis. This has included a method on how to normalize the temperatures based on the operation of the heat pump in order to quantify one temperature for each the two temperature levels. The third part consist of a comparison of the mean secondary fluid temperature between the calculated temperature using the software EED and the measured temperatures. This includes a comparison evaluation and sensitivity analysis on input parameters during the design of the borehole heat exchanger fields. This study has expanded the available reference cases of GSHP systems in Sweden. It also can be used as a guideline for those who will evaluate future GSHP systems. Designers of GSHP system will also benefit from the recommendations listed in this thesis regarding instrumentation and possible problems that may occur. The results show that the evaluation successfully managed to quantify the performance and operational issues that have occurred for each system. The method developed in this study was able to quantify the operation of the different systems based on the temperature levels and can be used for future GSHP evaluations of similar system type. / Bergvärmesystem är vanligt förekommande i Sverige men trots detta finns det få studier där prestandan har utvärderats och de vanligt förekommande problemen under drift har belysts. Forskningsprojektet Annex 52 Annex 52 Long-term performance measurement of GSHP systems serving commercial, institutional and multi-family building som är en del av IEA HPT TCP visar på behovet av att systematisk utvärdera bergvärmesystem. Detta examensarbete syftar till att utveckla och bidra till kunskap om hur bergvärmesystem kan utvärderas och att bidra med exempelstudier till Annex 52. Inom detta examensarbete har tre bergvärmesystem som betjänar flerbostadshus utvärderats och analyserats. Utvärderingen bestod av tre analyser. I den första analyserades driften av bergvärmesystemen och hur stabilt systemet har varit historiskt. Detta följdes av en detaljerad analys av olika nyckeltal för bergvärmesystemen. Årsverkningsgraden har beräknats för olika gränsdragningar vilka baseras på det tidigare arbetet utfört av SEPEMO. Inom detta examensarbete har även en metod tagits fram för att utvärdera verkningsgraderna för en värmepump baserat på de två temperaturnivåerna, köldbärarsidan och värmebärarsidan, som värmepumpen arbetar med under ett år. Till detta har en metod tagits fram om hur temperaturen kan normaliserats baserat på driften av värmepumparna för att kvantifiera en temperatur vardera för de två temperaturnivåerna. I den tredje utvärderingen jämfördes den beräknade medelfluidtemperaturen av köldbäraren i borrhålen med den uppmätta temperaturen. Till detta utfördes en känslighetsanalys av hur indata av dessa beräkningar påverkar resultaten.
57

Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES)

Javadi, Hossein 23 March 2024 (has links)
Tesis por compendio / [ES] El sistema de bomba de calor geotérmica (GSHP) es una tecnología prometedora para utilizar la energía geotérmica somera (EGS). En este sistema, un intercambiador enterrado de calor de perforación (BHE) desempeña un papel principal e influye directamente en el coeficiente de rendimiento estacional (SCOP) de este sistema geotérmico poco profundo. Se han llevado a cabo diferentes estudios para mejorar el rendimiento del BHE, incluyendo el uso de materiales avanzados para el plástico de las tuberías, uso de fluido caloportador (o de transferencia de calor) y de relleno/grouting, de mayor transferencia de calor, diseño de nuevas geometrías, y la optimización del BHE para ser utilizado como sistemas de almacenamiento de energía térmica (BTES). Los costes de perforación, el consumo eléctrico de las bombas de calor y la resistencia térmica de las perforaciones pueden reducirse utilizando materiales con propiedades termofísicas adecuadas, como los nanofluidos y los materiales de almacenamiento térmico. De este modo, no sólo se produce una transferencia de calor más significativa entre el fluido caloportador, el relleno y el terreno, sino que también se reduce el efecto térmico sobre el entorno. El fluido de transferencia de calor es uno de los factores de optimización de la BHE que se utilizará para el almacenamiento de energía térmica (TES). Una mayor conductividad térmica en el fluido de transferencia de calor mejora la eficacia de la transferencia de calor entre el fluido y los materiales alrededor, lo que lleva a alcanzar con mayor rapidez la temperatura de cambio de fase en los materiales de almacenamiento. Cuando se usa un fluido de transferencia de calor con una conductividad térmica superior, la temperatura del material de almacenamiento de calor experimenta fluctuaciones más rápidas, lo que reduce significativamente la duración necesaria para un cambio de fase completo. Además, usar materiales de cambio de fase (PCM) para almacenar calor en lugar del relleno convencional permite aprovechar el BHE como sistema BTES. Además de disminuir considerablemente la profundidad de perforación necesaria, el sistema BTES puede almacenar y liberar energía diaria y estacionalmente para reducir la carga durante las horas punta. Sin embargo, hay un vacío notable en la bibliografía sobre la exploración y aplicación de nuevos materiales de almacenamiento de calor y fluidos de transferencia de calor en las BHE para hacerlas aptas para fines de BTES. Aunque se han aplicado diversas innovaciones para mejorar el rendimiento de los BHE, como el uso de materiales plásticos avanzados y la optimización del diseño, la mayor parte de la investigación se ha centrado en el uso convencional de los BHE. Debería prestarse más atención a las ventajas potenciales del aprovechamiento de los intercambiadores de calor mediante la aplicación de nanofluidos y PCM como fluidos de transferencia de calor y medios de almacenamiento de calor, respectivamente. Como ya se ha mencionado, estos materiales poseen propiedades termofísicas superiores que pueden dar lugar a una transferencia de calor más eficiente, una reducción de los costes de perforación, un menor consumo de electricidad en las bombas de calor y una disminución de la resistencia térmica de la perforación. Esta laguna en la investigación hace necesaria una investigación en profundidad para determinar la viabilidad y factibilidad de la aplicación de estos materiales avanzados en las BHE, facilitando en última instancia su transformación en sistemas BTES fiables. Por lo tanto, los principales objetivos de esta tesis doctoral son estudiar experimental y numéricamente los impactos del uso de materiales avanzados para el fluido caloportador y el relleno/grouting tales como nanofluidos y PCMs, en el rendimiento del BHE como sistemas BTES. El estudio pretende seleccionar los materiales más favorables, convirtiéndose en una referencia práctica y fiable para futuros proyectos y sectores industriales. / [CA] El sistema de bomba de calor geotèrmica (GSHP, en anglès) és una tecnologia prometedora per a utilitzar l'energia geotèrmica succinta (EGS). En este sistema, un bescanviador enterrat de calor de perforació (BHE, en anglès) exercix un paper principal i influïx directament en el coeficient de rendiment estacional (SCOP) d'este sistema geotèrmic poc profund. S'han dut a terme diferents estudis per a millorar el rendiment del *BHE, incloent-hi l'ús de materials avançats per al plàstic de les canonades, ús de fluid termòfor (o de transferència de calor) i de grouting, de major transferència de calor, disseny de noves geometries, i l'optimització del BHE per a ser utilitzat com a sistemes d'emmagatzematge d'energia tèrmica (BTES, en anglès). Els costos de perforació, el consum elèctric de les bombes de calor i la resistència tèrmica de les perforacions poden reduir-se utilitzant materials amb propietats termo-físiques adequades, com els nanofluids i els materials d'emmagatzematge tèrmic. D'esta manera, no sols es produïx una transferència de calor més significativa entre el fluid termòfor, el farciment i el terreny, sinó que també es reduïx l'efecte tèrmic sobre l'entorn. El fluid de transferència de calor és un dels factors d'optimització de la *BHE que s'utilitzarà per a l'emmagatzematge d'energia tèrmica (*TES). Una major conductivitat tèrmica en el fluid de transferència de calor millora l'eficàcia de la transferència de calor entre el fluid i els materials al voltant, la qual cosa porta a aconseguir amb major rapidesa la temperatura de canvi de fase en els materials d'emmagatzematge. Quan s'usa un fluid de transferència de calor amb una conductivitat tèrmica superior, la temperatura del material d'emmagatzematge de calor experimenta fluctuacions més ràpides, la qual cosa reduïx significativament la duració necessària per a un canvi de fase complet. A més, usar materials de canvi de fase (PCM, en anglès) per a emmagatzemar calor en lloc del farciment convencional permet aprofitar el BHE com a sistema BTES. A més de disminuir considerablement la profunditat de perforació necessària, el sistema BTES pot emmagatzemar i alliberar energia diària i estacionalment per a reduir la càrrega durant les hores punta. No obstant això, hi ha un buit notable en la bibliografia sobre l'exploració i aplicació de nous materials d'emmagatzematge de calor i fluids de transferència de calor en les BHE per a fer-les aptes per a fins de BTES. Encara que s'han aplicat diverses innovacions per a millorar el rendiment dels BHE, com l'ús de materials plàstics avançats i l'optimització del disseny, la major part de la investigació s'ha centrat en l'ús convencional dels BHE. Hauria de prestar-se més atenció als avantatges potencials de l'aprofitament dels bescanviadors de calor mitjançant l'aplicació de nanofluids i PCM com a fluids de transferència de calor i mitjans d'emmagatzematge de calor, respectivament. Com ja s'ha esmentat, estos materials posseïxen propietats termo-físiques superiors que poden donar lloc a una transferència de calor més eficient, una reducció dels costos de perforació, un menor consum d'electricitat en les bombes de calor i una disminució de la resistència tèrmica de la perforació. Esta llacuna en la investigació fa necessària una investigació en profunditat per a determinar la viabilitat i factibilitat de l'aplicació d'estos materials avançats en les BHE, facilitant en última instància la seua transformació en sistemes BTES fiables. Per tant, els principals objectius d'esta tesi doctoral són estudiar experimental i numèricament els impactes de l'ús de materials avançats per al fluid termòfor i el grouting com ara nanofluids i PCMs, en el rendiment del BHE com a sistemes BTES. L'estudi pretén seleccionar els materials més favorables, convertint-se en una referència pràctica i fiable per a futurs projectes i sectors industrials. / [EN] Due to severe environmental pollution and worldwide energy deficiency, exploiting renewable energies has become more critical than ever. Shallow geothermal energy (SGE) is considered a sustainable and renewable energy source with significant advantages in space heating and cooling, industrial applications, greenhouses, electricity production, agriculture industry devices, and hot water production, among others. The ground source heat pump (GSHP) system is a promising technology for utilizing SGE. In this system, a borehole heat exchanger (BHE) plays an important role and directly influences the coefficient of performance (COP) of this shallow geothermal system. Different approaches have been carried out to enhance the performance of the BHE, including using advanced materials for pipes, heat transfer fluids, and backfill/grout, designing new geometries, and optimizing the BHE to be used as borehole thermal energy storage (BTES) systems. Drilling costs, heat pump electricity consumption, and borehole thermal resistance can be reduced using materials with appropriate thermo-physical properties like nanofluids and heat storage materials. This results in not only a more significant heat transfer between the heat transfer fluid, the backfill/grout, and the soil but also lessens the thermal effect on the surroundings. Heat transfer fluid is one of the factors in optimizing the BHE to be used for thermal energy storage (TES). Increased thermal conductivity in the heat transfer fluid enhances heat transfer efficiency between the fluid and the heat storage materials, leading to a more rapid attainment of the phase change temperature in the storage materials. In essence, when employing a heat transfer fluid with superior thermal conductivity, the temperature of the heat storage material experiences quicker fluctuations, resulting in a significant reduction in the duration required for a complete phase change. Moreover, the use of phase change material (PCM) as a heat storage medium instead of conventional backfill/grout enables the BHE to be beneficial and applicable as a BTES system. In addition to decreasing the required borehole depth considerably, the BTES system can store and release energy daily and seasonally to reduce the load during peak hours. However, there is a notable gap in the literature concerning exploring and applying new heat storage and heat transfer fluid materials in BHEs to render them suitable for TES purposes. While various approaches have been undertaken to enhance BHE performance, including using advanced materials and design optimizations, most research has concentrated on the conventional goal of BHEs. More attention should be given to the potential advantages of these heat exchangers by applying nanofluids and PCMs as heat transfer fluids and heat storage media, respectively. As mentioned above, these materials possess superior thermo-physical properties that can lead to more efficient heat transfer, reduced drilling costs, lower electricity consumption in heat pumps, and diminished borehole thermal resistance. This research gap necessitates an in-depth investigation to determine the feasibility and practicality of implementing these advanced materials in BHEs, ultimately facilitating their transformation into reliable BTES systems. The outcomes of such research endeavors hold the promise of addressing environmental concerns and global energy deficiencies by advancing the utilization of renewable energy sources like SGE sustainably and effectively. Therefore, the main objectives of this doctoral dissertation are to study experimentally and numerically the impacts of using advanced materials for heat transfer fluid and backfill/grout, such as nanofluids and PCMs, on the performance of the BHE as BTES systems. The study aims to select the most favorable materials, making it a practical and reliable reference for future projects and industry sectors. / This research has received funding from the European Union’s Horizon 2020 Research and Innovation program named GEOCOND under grant agreement No [727583]. / Javadi, H. (2024). Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203144 / Compendio
58

Study of Response Surface Models for the characterization of the performance in Refrigeration Equipments and Heat Pumps

Marchante Avellaneda, Javier 24 February 2024 (has links)
[ES] En un contexto de creciente preocupación por el calentamiento global y de políticas energéticas internacionales, en el cual los sistemas de climatización de los edificios suponen una parte importante del consumo energético global, los sistemas de bombas de calor son considerados como opciones muy interesantes debido a su alta eficiencia y por ser fuentes de energía renovables. En este sentido, una caracterización precisa de estos equipos es de vital importancia con el objetivo de mejorar su diseño y, en aquellos casos dónde este tipo de unidades se integren como parte de sistemas más complejos, implementar estrategias de control eficientes. En este contexto, esta tesis doctoral se centra en el modelado de bombas de calor con el fin de obtener modelos que permitan conocer con precisión el desempeño global de estas unidades en todo el rango de trabajo. En la primera parte del trabajo, se han realizado numerosos ensayos experimentales utilizando un nuevo prototipo de bomba de calor dual, obtenidos dentro del marco de trabajo del proyecto europeo GEOTeCH. Debido a la tipología hibrida de esta unidad, los resultados experimentales obtenidos incluyen datos de desempeño para las principales tecnologías de bombas de calor: las bombas de calor aerotérmicas y geotérmicas. Haciendo uso de toda esta información experimental, esta primera parte del trabajo se centra en obtener modelos polinómicos para la predicción del consumo eléctrico y las capacidades de calefacción y refrigeración en función de las variables externas a la unidad. Dichas variables son fáciles de obtener y suelen medirse en instalaciones reales. Por tanto, estos modelos caracterizan a la bomba de calor como un único componente, simplificando su implementación en modelos globales de sistemas más complejos donde se instalan estas unidades. Además, seleccionado un enfoque empírico para el modelado, en esta parte también se analizan algunos aspectos relevantes, como los términos a incluir en el polinomio, o cómo conformar las matrices experimentales de ensayo necesarias, es decir, cuántos puntos experimentales realizar y dónde situarlos en el rango de operación. Por último, la segunda parte de la tesis doctoral está dedicada a modelar uno de los componentes principales en estas unidades, el compresor. En este caso, el desarrollo de una extensa base de datos que incluye numerosos ensayos calorimétricos de las dos principales tecnologías de compresores, pistón y scroll, ha permitido el análisis detallado de las superficies de respuesta del consumo eléctrico y el caudal másico de refrigerante en función de las temperaturas de evaporación y condensación. A partir de esta información y siguiendo un enfoque similar al utilizado previamente, en esta segunda parte se revisan los modelos incluidos en la norma actual de caracterización de compresores, el estándar AHRI 540 (2020), para comprobar si son adecuados o si, por el contrario, debemos utilizar otro tipo de expresiones polinómicas. También se analizan en profundidad cuestiones críticas como el número de puntos necesarios para caracterizar cada tecnología de compresor, dónde situarlos en el dominio experimental, cómo evitar un posible sobreajuste del modelo minimizando problemas de extrapolación o interpolación, o cómo extrapolar los resultados para predecir con otros refrigerantes u otras condiciones de aspiración. / [CA] En un context de creixent preocupació per l'escalfament global i de polítiques energètiques internacionals, en el qual els sistemes de climatització dels edificis suposen una part important del consum energètic global, els sistemes de bombes de calor són considerats com a opcions molt interessants a causa de la seva alta eficiència i perquè són fonts d'energia renovables. En aquest sentit, una caracterització precisa d'aquests equips és de vital importància amb l'objectiu de millorar el seu disseny i, en aquells casos on aquest tipus d'unitats s'integren com a part de sistemes més complexos, implementar estratègies de control eficients. En aquest context, aquesta tesi doctoral se centra en el modelat de bombes de calor per obtenir models que permitisquen conèixer amb precisió el funcionament d'aquestes unitats a tot el rang de treball. A la primera part del treball, s'han realitzat nombrosos assajos experimentals utilitzant un nou prototip de bomba de calor dual, obtinguts dins del marc de treball del projecte europeu GEOTeCH. A causa de la tipologia hibrida d'aquesta unitat, els resultats experimentals obtinguts inclouen dades de funcionament per a les principals tecnologies de bombes de calor: les bombes de calor aerotèrmiques i geotèrmiques. Fent ús de tota aquesta informació experimental, aquesta primera part del treball se centra a obtenir models polinòmics per a la predicció del consum elèctric i les capacitats de calefacció i refrigeració en funció de les variables externes a la unitat. Aquestes variables són fàcils d'obtenir i se solen mesurar en instal·lacions reals. Per tant, aquests models caracteritzen la bomba de calor com un únic component, simplificant-ne la implementació en models globals de sistemes més complexos on s'instal·len aquestes unitats. A més, seleccionat un enfocament empíric per al modelatge, en aquesta part també s'analitzen alguns aspectes rellevants, com els termes a incloure al polinomi, o cóm conformar les matrius experimentals d'assaig necessàries, és a dir, quants punts experimentals realitzar i on situar-los al rang d'operació. Per acabar, la segona part de la tesi doctoral està dedicada al modelat d'un dels components principals d'aquestes unitats, el compressor. En aquest cas, el desenvolupament d'una extensa base de dades que inclou nombrosos assajos calorimètrics de les dues principals tecnologies de compressors, pistó i scroll, ha permès l'anàlisi detallat de les superfícies de resposta del consum elèctric i el cabal màssic de refrigerant segons les temperatures d'evaporació i de condensació. A partir d'aquesta informació i seguint un enfocament similar a l'utilitzat prèviament, en aquesta segona part es revisen els models inclosos a la norma actual de caracterització de compressors, l'estàndard AHRI 540 (2020), per comprovar si són adequats o si, per contra, cal utilitzar un altre tipus d'expressions polinòmiques. També s'analitzen en profunditat qüestions crítiques com el nombre de punts necessaris per caracteritzar cada tecnologia de compressor, on situar-los al domini experimental, cóm evitar un possible sobreajust del model minimitzant problemes d'extrapolació o interpolació, o cóm extrapolar els resultats per predir amb altres refrigerants o altres condicions d'aspiració. / [EN] In a context of global warming concerns and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, heat pump systems are widely considered as a really interesting option for enabling high efficiency and also for being renewable energy sources. In this sense, an accurate characterization of these units is of vital importance to improve their design and implement efficient control strategies, when the unit is integrated in more complex systems. Against this background, this PhD thesis focuses on heat pump modelling in order to create map-based models able to accurately characterize the global performance of these units for the entire working range. In the first part of this work, many experimental tests have been obtained for a new Dual Source Heat Pump prototype tested in the framework of the European project GEOTeCH. Due to the dual typology, the experimental results include performance data for the two main heat pump technologies: Air Source Heat Pumps and Ground Source Heat Pumps. By using all this experimental information, this first part focuses on obtaining empirical polynomial models capable of accurately predicting energy consumption and heating and cooling capacities as a function of external variables. Such variables are easy to measure and are usually recorded in real installations. Therefore, these models characterize the heat pump as a single component, simplifying its implementation in global models of more complex systems where these units are installed. Furthermore, selecting the empirical model approach, this part also includes some critical aspects, such as how to obtain the best polynomial expression, or how to perform the required experimental test matrices, i.e., how many tests should be conducted and where in the operating range. Finally, the second part of this PhD thesis is dedicated to modelling one of the main components of these units, the compressor. In this case, the development of an extensive database including numerous calorimetric tests on the two main compressor technologies, reciprocating and scroll compressors, has allowed the detailed analysis of the response surfaces of their performance parameters, i.e., the energy consumption and mass flow rate as a function of the evaporation and condensation temperatures. Using this information, and following an approach similar to that used in the first part, this second part reviews the models included in the current compressor characterization standard, the AHRI 540 (2020), in order to check whether they are appropriate or, on the contrary, whether we should use of other types of polynomial expression. Critical issues such as the number of points needed to characterize each compressor technology, where to place them in the experimental domain, how to prevent possible overfitting in the model adjustment to minimize extrapolation or interpolation problems, or how to extrapolate results for predicting other refrigerant or suction conditions, are discussed in depth. / I would like to acknowledge the financial support that has made this PhD thesis possible. The doctoral fellowship FPU15/03476 was founded by “Ministerio de Educación, Cultura y deporte” inside the program “Formación de Profesorado Universitario”, and the GEOTeCH project (No 656889) founded by the European Union under the “Horizon 2020 Framework Programme for European Research and Technological Development” / Marchante Avellaneda, J. (2023). Study of Response Surface Models for the characterization of the performance in Refrigeration Equipments and Heat Pumps [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192653
59

Analysis of a novel thermoelectric generator in the built environment

Lozano, Adolfo 05 October 2011 (has links)
This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel assembly of thermoelectric modules whose required temperature differential is supplied by hot and cold streams of water flowing through the TEG. Per its recommended operating conditions, the TEG nominally generates 83 Watts of electrical power. In its default configuration in the built environment, solar-thermal energy serves as the TEG’s hot stream source and geothermal energy serves as its cold stream source. Two systems-level, thermodynamic analyses were performed, which were based on the TEG’s upcoming characterization testing, scheduled to occur later in 2011 in Detroit, Michigan. The first analysis considered the TEG coupled with a solar collector system. A numerical model of the coupled system was constructed in order to estimate the system’s annual energetic performance. It was determined numerically that over the course of a sample year, the solar collector system could deliver 39.73 megawatt-hours (MWh) of thermal energy to the TEG. The TEG converted that thermal energy into a net of 266.5 kilowatt-hours of electricity in that year. The second analysis focused on the TEG itself during operation with the purpose of providing a preliminary thermodynamic characterization of the TEG. Using experimental data, this analysis found the TEG’s operating efficiency to be 1.72%. Next, the annual emissions that would be avoided by implementing the zero-emission TEG were considered. The emission factor of Michigan’s electric grid, RFCM, was calculated to be 0.830 tons of carbon dioxide-equivalent (CO2e) per MWh, and with the TEG’s annual energy output, it was concluded that 0.221 tons CO2e would be avoided each year with the TEG. It is important to note that the TEG can be linearly scaled up by including additional modules. Thus, these benefits can be multiplied through the incorporation of more TEG units. Finally, the levelized cost of electricity (LCOE) of the TEG integrated into the built environment with the solar-thermal hot source and passive ground-based cold source was considered. The LCOE of the system was estimated to be approximately $8,404/MWh, which is substantially greater than current generation technologies. Note that this calculation was based on one particular configuration with a particular and narrow set of assumptions, and is not intended to be a general conclusion about TEG systems overall. It was concluded that while solar-thermal energy systems can sustain the TEG, they are capital-intensive and therefore not economically suitable for the TEG given the assumptions of this analysis. In the end, because of the large costs associated with the solar-thermal system, waste heat recovery is proposed as a potentially more cost-effective provider of the TEG’s hot stream source. / text

Page generated in 0.2694 seconds