Spelling suggestions: "subject:"integrable"" "subject:"integrables""
101 |
Um invariante para sistemas com integral primeira Morse-Bott / A invariant for systems with a Morse-Bott first integralIngrid Sofia Meza Sarmiento 16 August 2011 (has links)
Nesta dissertação são investigados os sistemas diferenciais com integral primeira do tipo Morse-Bott definidos em superfícies compactas e orientáveis. A cada sistema, nas condições acima descritas, associa-se um grafo de modo que a correspondência entre os grafos e as classes de equivalência topologica orbital dos campos investigados seja bijetiva. Portanto, apresenta-se um invariante completo, chamado aqui de grafo de Bott, para essa classe de sistemas. Essa abordagem surgiu como uma iniciativa de generalizar o estudo realizado para sistemas Hamiltonianos com um grau de liberdade com integral primeira do tipo Morse definidos em superfícies 2-dimensionais compactas, onde os conceitos de átomos e fluxos gradiente foram aplicados por A.V. Bolsinov em [4] / In this dissertation are studied differential systems with a Morse-Bott first integral defined on compact orientable surfaces. For each system, under the conditions described above, is associated a graph so that the correspondence between graphs and the orbital topological equivalence classes of the systems are bijective. Therefore, we present a complete invariant, called here Bott graph for this class of systems. This approach has emerged as an initiative to generalize the study to systems Hamiltonian with one degree of freedom having a Morse first integral in 2-dimensional compact surfaces, where the concepts of atoms and gradient flows were applied by A.V. Bolsinov in [4]
|
102 |
Campos Ressonantes Helicoidais em Tokamaks / Resonant Helical fields in tokamaksValdir Okano 22 October 1990 (has links)
Obtivemos mapas de Poincaré das linhas de força do campo magnético resultante da superposição linear do campo magnético de um plasma toroidal em equilíbrio com o campo magnético de correntes helicoidais externas. Devido a falta de simetria do campo magnético não podemos definir uma expressão analítica que descreva os mapas; estes foram, então, obtidos pela integração numérica da equação das linhas de força dVET.lxVET.B = 0. Nos mapas de Poincaré aparecem as ilhas magnéticas principais e as ilhas magnéticas secundárias. As ilhas magnéticas secundárias surgem devido a geometria toroidal. Sobre uma mesma superfície ressonante, as ilhas não tem tamanhos iguais. / Poincaré maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. We do not have an analytical expression for the Poincaré maps since the magnetic field do not have symmetry. In order to obtain the maps, the equation dl x B = O is numerically integrated. In the Poincaré maps, the principal and the secondary magnetic islands were observed. The islands do not have equal widths in the same resonant surface.
|
103 |
Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur / Somes Poisson structures and Lax equations associated with the Toeplitz lattice and the Schur latticeLemarié, Caroline 06 November 2012 (has links)
Le réseau de Toeplitz est un système hamiltonien dont la structure de Poisson est connue. Dans cette thèse, nous donnons l'origine de cette structure de Poisson et nous en déduisons des équations de Lax associées au réseau de Toeplitz. Nous construisons tout d'abord une sous-variété de Poisson Hn de GLn(C), ce dernier étant vu comme un groupe de Lie-Poisson réel ou complexe dont la structure de Poisson provient d'un R-crochet quadratique sur gln(C) pour une R-matrice fixée. L'existence d'hamiltoniens associés au réseau de Toeplitz pour la structure de Poisson sur Hn ainsi que les propriétés du R-crochet quadratique permettent alors d'expliciter des équations de Lax du système. On en déduit alors l'intégrabilité au sens de Liouville du réseau de Toeplitz. Dans le point de vue réel, nous pouvons ensuite construire une sous-variété de Poisson Han du groupe Un qui est lui-même une sous-variété de Poisson-Dirac de GLR n(C). Nous construisons alors un hamiltonien, pour la structure de Poisson induite sur Han, correspondant à un autre système déduit du réseau de Toeplitz : le réseau de Schur modifié. Grâce aux propriétés des sous-variétés de Poisson-Dirac, nous explicitons une équation de Lax pour ce nouveau système et nous en déduisons une équation de Lax pour le réseau de Schur. On en déduit également l'intégrabilité au sens de Liouville du réseau de Schur modifié. / The Toeplitz lattice is a Hamiltonian system whose Poisson structure is known. In this thesis, we reveil the origins of this Poisson structure and we derive from it the associated Lax equations for this lattice. We first construct a Poisson subvariety Hn of GLn(C), which we view as a real or complex Poisson-Lie group whose Poisson structure comes from a quadratic R-bracket on gln(C) for a fixed R-matrix. The existence of Hamiltonians, associated to the Toeplitz lattice for the Poisson structure on Hn, combined with the properties of the quadratic R-bracket allow us to give explicit formulas for the Lax equation. Then, we derive from it the integrability in the sense of Liouville of the Toeplitz lattice. When we view the lattice as being defined over R, we can construct a Poisson subvariety Han of Un which is itself a Poisson-Dirac subvariety of GLR n(C). We then construct a Hamiltonian for the Poisson structure induced on Han, corresponding to another system which derives from the Toeplitz lattice : the modified Schur lattice. Thanks to the properties of Poisson-Dirac subvarieties, we give an explicit Lax equation for the new system and derive from it a Lax equation for the Schur lattice. We also deduce the integrability in the sense of Liouville of the modified Schur lattice.
|
104 |
Physique statistique des systèmes désordonnés / Stochastic growth models : universality and fragilityGueudré, Thomas 30 September 2014 (has links)
Cette thèse présente plusieurs aspects de la croissance stochastique des interfaces, par lebiais de son modèle le plus étudié, l'équation de Kardar-Parisi-Zhang (KPZ). Bien qued'expression très simple, cette équation recèle une grande richesse phénoménologiqueet est l'objet d'une recherche intensive depuis des dizaines d'années. Cela a conduit àl'émergence d'une nouvelle classe d'universalité, contenant des modèles de croissanceparmi les plus courants, tels que le Eden model ou encore le Polynuclear Growth Model.L'équation KPZ est également reliée à des problèmes d'optimisation en présence dedésordre (le Polymère Dirigé), ou encore à la turbulence des uides (l'équation de Burger), renforçant son intérêt. Cependant, les limites de cette classe d'universalitésont encore mal comprises. L'objet de cette thèse est, après avoir présenté les progrèsles plus récents dans le domaine, de tester les limites de cette classe d'universalité. Lathèse s'articule en quatre parties :i) Dans un premier temps, nous présentons des outils théoriques qui permettent decaractériser finement l'évolution de l'interface. Ces outils montrent une grande flexibilité, que nous illustrons en considérant le cas d'une géométrie confinée (une interfacecroissant le long d'une paroi).ii) Nous nous penchons ensuite sur l'influence du désordre, et plus particulièrementl'importance des évènements extrêmes dans la mécanique de croissance. Les largesfluctuations du désordre déforment l'interface et conduisent à une modification notabledes exposants de scaling. Nous portons une attention particulière aux conséquencesd'un tel désordre sur les stratégies d'optimisation en milieu désordonné.iii) La présence de corrélations dans le désordre est d'un intérêt expérimentalimmédiat. Bien qu'elles ne modifient pas la classe d'universalité, elles influent grandement sur la vitesse de croissance moyenne de l'interface. Cette partie est dédiée àl'étude de cette vitesse moyenne, souvent négligée car délicate à définir, et à l'existenced'un optimum de croissance intimement lié à la compétition entre exploration et exploitation.iv) Enfin, nous considérons un exemple expérimental de croissance stochastique (quin'appartient toutefois pas à la classe KPZ) et développons un formalisme phénoménologiquepour modéliser la propagation d'une interface chimique dans un milieu poreux désordonné.Tout au long du manuscrit, les conséquences des phénomènes observées dans desdomaines variés, tels que les stratégies d'optimisation, la dynamique des populations,la turbulence ou la finance, sont détaillées. / This Thesis presents several aspects of the stochastic growth, through its most paradig-matic model, the Kardar-Parisi-Zhang equation (KPZ). Albeit very simple, this equa-tion shows a rich behaviour and has been extensively studied for decades. The existenceof a new universality class is now well established, containing numerous growth modelslike the Eden model or the Polynuclear Growth Model. The KPZ equation is closelyrelated to optimisation problems (the Directed Polymer) or turbulence of uids (theBurgers equation), a feature that underlines its importance. Nonetheless, the bound-aries of this universality class are still vague. The focus of this Thesis is to probe thoselimits through various modifications of the models. It is divided in four chapters:i) First, we present theoretical tools, borrowed from integrable systems, that allowto characterize in great details the evolution of the interface. Those tools exhibitconsiderable exibility due to the large corpus of work on integrable systems, and weillustrate it by tackling the case of confined geometry (growth close to a hard wall).ii) We investigate the inuence of the disorder distribution, and more specificallythe importance of large events, with heavy-tailed distributions. Those extreme eventsstretch the interface and notably modify the main scaling exponents. The consequenceson optimization strategies in disorder landscapes are emphasized.iii) The presence of correlations in the disorder is of natural experimental interest.Although they do not impact the KPZ class, they greatly inuence the average speed ofgrowth. The latter quantity is often overlooked because it is non-universal and ratherill-defined. Nonetheless, we show that a generic optimal average speed exists in presenceof time correlations, due to a competition between exploration and exploitation.iv) Finally, we consider a set of experiments about chemical front growth in porousmedium. While this growth process is not related to KPZ in an immediate way, wepresent different tools that effciently reproduce the observations.Along that work, the consequences of each Chapter in various domains, like opti-misation strategies, turbulence, population dynamics or finance, are detailed.
|
105 |
Le modèle d'Izergin-Korepin / The Izergin-Korepin modelGarbali, Alexandr 16 September 2015 (has links)
Parmi les modèles de mécanique statistique classique avec interaction les systèmes intégrables de yang—baxter (yb) jouent un rôle particulier. le modèle central dans la théorie des systèmes intégrables yb est le modèle à six vertex. plusieurs méthodes ont été développées pour étudier le modèle à six vertex. notre but est de comprendre la physique du modèle à dix-neuf vertex d’izergin—korepin (ik), qui peut être vu comme une généralisation du modèle à six vertex. on donne une vue d'ensemble de l’ansatz algébrique de bethe pour le modèle ik basé sur la matrice $r$ à dix-neuf vertex et on propose une nouvelle présentation pour les états propres de la matrice de transfert associée. on adresse aussi la question du calcul des produits scalaires pour le modèle ik. un objet important dans la théorie des produits scalaires est la fonction de partition avec des conditions aux bords de domaine. pour cette fonction de partition, définie pour le modèle ik, on obtient une relation de récurrence pour laquelle on trouve la solution dans un cas particulier. la théorie de la représentation du groupe quantique ($u_q(a_2^{(2)})$) associé au modèle ik nous permet d'obtenir toutes les représentations de dimension plus élevée pertinentes pour ce modèle (les modules de kirillov—reshetikhin (kr)). ceci est réalisé dans la présentation de drinfeld des groupes quantiques. cette présentation a des avantages techniques quand on calcule les matrices $r$ par la formule de khoroshkin—tolstoy (kt). on l'utilise pour calculer la matrice $r$ evaluée sur le produit tensoriel de la représentation fondamentale et d'un module kr de dimension plus élevée. d’un autre côté, la présentation de drinfeld montre la connexion entre les sous-algèbres de borel du groupe quantique $u_q(a_2^{(2)})$ et les algèbres d'oscillateurs $q$-deformés (osc$_q$). ces algèbres sont étroitement liées à la définition (par la théorie de la représentation) d'un certain type de matrices de transfert : les opérateurs $q$; ces opérateurs jouent un rôle central dans la théorie des relations fonctionnelles des modèles intégrables. on utilise les algèbres de type osc$_q$ dans la formule kt pour calculer quelques matrices $l$, qui sont utilisées pour construire les opérateurs $q$. finalement, on considère un cas particulier de l'état fondamental du modèle ik avec paramètre de deformation $q$ égal à une racine de l'unité. dans ce cas, on calcule explicitement les valeurs propres de différentes matrices de transfert, y compris de l'opérateur $q$. on utilise ce dernier résultat pour obtenir l'état fondamental du modèle ik pour des petites tailles. / Among the models of interacting classical statistical mechanics the yang—baxter (yb) integrable systems play a special role. The central model in the theory of yb integrable systems is the six vertex model. many powerful techniques were developed to study the six vertex model. the model under consideration is the izergin—korepin (ik) nineteen vertex model, which can be viewed as a generalization of the six vertex model. our aim is to understand the physics of the ik model using the extensions of the methods which were applied to the six vertex model. We review the algebraic bethe ansatz for the ik model based on the nineteen-vertex $r$-matrix and propose a new presentation for the eigenstate of the relevant transfer matrix. we also address the question of the calculation of the scalar products of the ik model. an important object in the theory of scalar products is the domain wall boundary partition function. for this partition function defined for the ik model we derive a recurrence relation and solve it in a special case. we move on to the representation theory of the underlying quantum group ($u_q(a_2^{(2)})$), for which we compute all higher dimensional irreducible representations which are relevant for the ik model (kirillov—reshetikhin (kr) modules). the latter is accomplished in the so-called drinfeld presentation of quantum groups. this presentation has technical advantages for computations of the $r$-matrices by means of the khoroshkin—tolstoy (kt) formula. we use this to compute the $r$-matrix in a tensor product of the fundamental representation and a generic higher dimensional kr module. on the other hand, the drinfeld presentation makes apparent the connection between the borel subalgebras of the quantum group $u_q(a_2^{(2)})$ and the $q$-deformed oscillator algebras (osc$_q$). the latter algebras are closely related to the representation theoretic definition of special transfer matrices: the $q$-operators; these operators are central in the theory of functional relations of integrable models. we use the osc$_q$ type algebras in the kt formula to compute some $l$-matrices which are used to build the $q$-operators. finally, we consider a special case of the ground state of the ik model when the deformation parameter $q$ is equal to a root of unity. in this case we compute explicitly the ground state eigenvalues of various transfer matrices including the $q$-operator. we use the latter result to compute the components of the ground state of the ik model for small systems.
|
106 |
Out-of-equilibrium dynamics in 1D Bose gases / Dynamique hors équilibre des gaz bosoniques 1DSchemmer, Maximilian 22 March 2019 (has links)
Cette thèse contient plusieurs études expérimentales centrées sur la dynamique des bosons dans une dimension (1D). En utilisant une expérience de type puce atomique, nous créons des géométries de piègage très allongées pour des atomes de 87Rb. Cela conduit à geler deux dimensions et à créer un gaz 1D avec des interactions de contact qui est décrit par le modèle de Lieb-Liniger. Le manuscrit contient trois études expérimentales indépendantes: La première étude traite de la dynamique hors équilibre suite à une trempe des interactions. Nous observons l'évolution temporelle des modes de Bogoliubov comprimés et montrons que cette dynamique continue sur des temps qui ne seraient pas observable sur la fonction de corrélation d'ordre un.La deuxième étude montre que les pertes à trois-corps refroidissent un gaz de Bose 1D dans le régime quasi-condensat. Ce travail est accompagné d'une étude théorique qui prédit ce refroidissement pour les pertes à j-corps.La troisième étude est la première étude expérimentale d'une nouvelle théorie des systèmes intégrables, nommé HydroDynamics Généralisé (HDG).Nous montrons que HDG est la seule théorie <<simple>> qui décrit correctement les résultats expérimentaux.En particulier, l’approche de l'HydroDynamique Conventiennelle (HDC) ne reproduit pas l’observation expérimentale. Contrairement au HDG, HDC ne prend pas en compte l’intégrabilité du système. / This thesis contains several experimental studies centered around the dynamics of bosons in one dimension (1D). With the use of an atomchip setup we create very elongated trapping geometries for $^{87}$Rb. This leads to the freeze-out of two dimensions and the creation of a 1D gas with contact interactions, described the Lieb-Liniger model. The manuscript contains three independent experimental studies: The first one investigates the out-of-equilibrium dynamics after an interaction quench. We observe the time evolution of squeezed Bogoliubov modes and show that this dynamics continues on times which cannot be observed on the first order correlation function.The second study shows that three-body losses cool a 1D Bose gas in the quasi-condensate regime. This work is accompanied by a theoretical study, which predicts this cooling for $j$-body losses.The third study consists of the first experimental study of a new theory in integrable systems -- the Generalized HydroDynamics (GHD).We show that GHD is the only "simple" theory which correctly describes the experimental results.In particular, the Conventional HydroDynamics (CHD) approach fails to reproduce the experimental observation. In contrast to GHD, CHD does not take into account the integrability of the system.
|
107 |
Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert ApproachGharakhloo, Roozbeh 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying
definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.
|
108 |
Exotic states in condensed matter: I. Mesoscopic magnetism in integrable systems; II. Cooper pairing mediated by multiple-spin exchangesLou, Ming 23 September 2008 (has links)
No description available.
|
109 |
On the integrable structure of super Yang-Mills scattering amplitudesKanning, Nils 15 December 2016 (has links)
Die maximal supersymmetrische Yang-Mills-Theorie im vierdimensionalen Minkowski-Raum ist ein außergewöhnliches Modell der mathematischen Physik. Dies gilt vor allem im planaren Limes, in dem die Theorie integrabel zu sein scheint. So sind etwa ihre Streuamplituden auf Baumgraphenniveau Invarianten einer Yangschen Algebra, die die superkonforme Algebra psu(2,2|4) beinhaltet. Diese unendlichdimmensionale Symmetrie ist ein Kennzeichen für Integrabilität. In dieser Dissertation untersuchen wir Verbindungen zwischen solchen Amplituden und integrablen Modellen, um Grundlagen für eine effiziente, auf der Integrabilität basierende Berechnung von Amplituden zu legen. Dazu charakterisieren wir Yangsche Invarianten innerhalb der Quanten-Inverse-Streumethode, die Werkzeuge zur Behandlung integrabler Spinketten bereitstellt. In diesem Rahmen entwickeln wir Methoden zur Konstruktion Yangscher Invarianten. Wir zeigen, dass der algebraische Bethe-Ansatz für die Erzeugung von Yangschen Invarianten für u(2) anwendbar ist. Die zugehörigen Bethe-Gleichungen lassen sich leicht lösen. Unser Zugang erlaubt es zudem diese Invarianten als Zustandssummen von Vertexmodellen zu interpretieren. Außerdem führen wir ein unitäres Graßmannsches Matrixmodell zur Berechnung Yangscher Invarianten mit Oszillatordarstellungen von u(p,q|m) ein. In einem Spezialfall reduziert es sich zu dem Brezin-Gross-Witten-Model. Wir wenden eine auf Bargmann zurückgehende Integraltransformation auf unser Matrixmodell an, welche die Oszillatoren in Spinor-Helizitäts-artige Variablen überführt. Dadurch gelangen wir zu einer Weiterentwicklung der Graßmann-Integralformulierung bestimmter Amplituden. Die maßgeblichen Unterschiede sind, dass wir in der Minkowski-Signatur arbeiten und die Integrationskontur auf die unitäre Gruppenmannigfaltigkeit festgelegt ist. Wir vergleichen durch unser Integral gegebene Yangsche Invarianten mit Amplituden und kürzlich eingeführten Deformationen derselben. / The maximally supersymmetric Yang-Mills theory in four-dimensional Minkowski space is an exceptional model of mathematical physics. Even more so in the planar limit, where the theory is believed to be integrable. In particular, the tree-level scattering amplitudes were shown to be invariant under the Yangian of the superconformal algebra psu(2,2|4). This infinite-dimensional symmetry is a hallmark of integrability. In this dissertation we explore connections between these amplitudes and integrable models. Our aim is to lay foundations for an efficient integrability-based computation of amplitudes. To this end, we characterize Yangian invariants within the quantum inverse scattering method, which is an extensive toolbox for integrable spin chains. Making use of this setup, we develop methods for the construction of Yangian invariants. We show that the algebraic Bethe ansatz can be specialized to yield Yangian invariants for u(2). Our approach also allows to interpret these Yangian invariants as partition functions of vertex models. What is more, we establish a unitary Graßmannian matrix model for the construction of u(p,q|m) Yangian invariants with oscillator representations. In a special case our formula reduces to the Brezin-Gross-Witten model. We apply an integral transformation due to Bargmann to our unitary Graßmannian matrix model, which turns the oscillators into spinor helicity-like variables. Thereby we are led to a refined version of the Graßmannian integral formula for certain amplitudes. The most decisive differences are that we work in Minkowski signature and that the integration contour is fixed to be a unitary group manifold. We compare Yangian invariants defined by our integral to amplitudes and recently introduced deformations thereof.
|
110 |
Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operatorsMeidinger, David 25 June 2018 (has links)
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. / This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.
|
Page generated in 0.039 seconds