• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 50
  • 12
  • 1
  • Tagged with
  • 169
  • 169
  • 169
  • 81
  • 33
  • 30
  • 27
  • 25
  • 23
  • 23
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Développement d'une nouvelle méthodologie pour l'intéraction fluide structure nonlinéaire : concepts et validation / Development of a new method for non-linear fluid structure interaction : concepts and validation

Bosco, Elisa 29 November 2017 (has links)
Une méthode innovante pour simuler des interactions fluide-structure complexes tout en gardant un bon compromis temps de calcul/précision est présenté.Pour réduire le temps de simulation des modèles d’ordre réduits sont utilisés au lieu des modèles complets aussi bien pour les modèles structuraux que pour les modèles aérodynamiques. Un des challenges de base était d'utiliser des modèles industrielles hautes fidélités. La technique de condensation dynamique est utilisée pour réduire la taille du modèle éléments finis structures et la décomposition aux valeurs propres est utilisé sur une base de données aérodynamiques construite à partir de simulations CFD.Les non-linéarités structurelles sont réintroduites à posteriori.Une comparaison poussée des méthodes classique d'interpolation comme des méthodes de spline, d’interpolation sur des Manifold de Grassmann avec des méthodes innovantes d'apprentissage statistiques a été amené.Afin de valider complètement la méthodologie développée, une maquette expérimentale visant à imiter le comportement du carénage au sol avant le décollage a été conçue.Ce cas a pu être assimilé à une plaque avec des raideurs de liaisons dans une couche de mélange.La validation de cette méthode est réalisée en comparant les résultats des simulations numériques avec les données enregistrées pendant des essaies en soufflerie. On pourra ainsi comparer aussi bien des champs que des mesures locales. L'ensemble des essais a permis d'améliorer la compréhension de ce phénomène vibratoire qui mène à des problèmes récurrents de fatigue dans cette sous structures.Cette méthode est enfin appliquée à une structure aéronautique: les carénages de volet hypersustentateur / An innovative method for numerical simulating complex problems of fluid structure interaction, such as non-linear transients, characterized by good performances and high precision is presented in this manuscript. To cut down the simulation time, reduced order models are used for both the aerodynamic and structural modules. High fidelity industrial models have been used. A technique of dynamic condensation is employed to reduce the size of the finite element model while the technique of Proper Orthogonal Decomposition is used on a database of aerodynamic pressures built from CFD simulations. Structural non-linearities are reintroduced a posteriori. Different interpolation techniques such as the classic spline interpolation, interpolation on a Grassmann Manifold with more innovative methods of statistical learning have been compared. In order to validate the developed methodology a test campaign has been designed to reproduce a simplified mechanism of interaction inspired by a flap track fairing in take-off configuration. A plate whose stiffness depends on the springs at its attachment to the wind tunnel test section floor is immersed in a mixing layer. In parallel to the test activities a numerical model of the test rig has been developed. The validation of the methodology of fluid structure interaction is done through direct comparison between test data and simulation results. The testing activities have granted a deeper comprehension of the vibratory phenomenon that has led to recurrent fatigue problems on the impacted structures. The methodology is ultimately applied to an industrial problem: the load prediction on flap track fairings excited by engine exhaust.
142

Dynamique d'un hydrofoil dans un fluide visqueux : algorithmes de couplage en IFS et application / Dynamics of a hydrofoilin a viscous fluid : coupling algorithms and IFS application

Rajaomazava III, Tolotra Emerry 17 April 2014 (has links)
Le travail engagé dans cette thèse porte sur l'étude numérique des Interactions Fluide-structure en hydrodynamique. Dans une première partie, une analyse détaillée des méthodes de couplage (schémas décalés) a été effectuée sur un cas académique. Il s'agit de la résolution de l'équation non-linéaire de Burgers dans un domaine mobile, dont I'interface mobile est représentée par un système de type masse ressort. Selon la discrétisation en temps et la linéarisation du problème couplé, on distingue quatre schémas de couplages différents : explicite, semi-implicite, implicite-externe et implicite-interne. Une étude comparative des performances en vitesse de convergence et en temps de calcul de ces schémas a été effectuée. Les performances varient suivant le schéma de couplage utilisé. Le schéma explicite permet un calcul rapide en comparaison des autres schémas. En revanche il n'assure pas la conservation de l'énergie mécanique à I'interface fluide-structure. D'où le problème de stabilité du schéma numérique. Ce problème ne se pose pas pour les algorithmes de couplage implicites, car dans ce cas la conservation de l'énergie à I'interface est assurée. Il s'agit en effet d'une condition de convergence du schéma implicite. Ce schéma requière plus de temps de calcul, mais il est nécessaire pour avoir plus de précision dans les résultats. Par ailleurs, I'analyse des déplacements de I'interface fluide-structure montre que l'écart entre la position de I'interface comme étant le bord mobile du fluide et la position de la structure, dépend principalement du schéma d'actualisation du maillage choisi.Dans une deuxième partie une extension de l'étude des algorithmes de couplage à un problème plus concret d'IFS est effectuée. Un hydrofoil en pilonnement et tangage est ainsi étudié. L'équation de la dynamique de I'hydrofoil est écrite en considérant un centre de rotation situé à une distance non nulle du centre de gravité.Ce qui rend l'équation non-linéaire et introduit un couplage des deux modes pilonnement et tangage) ainsi qu'un amortissement du tangage. La dynamique de I'hydrofoil est étudiée pour différentes configurations : en mouvement libre ou forcé, dans un fluide au repos ou en écoulement. On observe que le mouvement de I'hydrofoil est pseudo périodique amorti. L'évolution des charges hydrodynamiques suit également cette tendance et tend vers un point d'équilibre. L'étude vibratoire montre bien une modification des fréquences propres du système, qui varient suivant que le fluide est au repos ou en écoulement. Le problème est également couplé à l'équation de la position du centre de pression, qui dépend de la position de I'hydrofoil et de l'écoulement. Celle-ci présente une singularité lorsque la portance et la traînée s'annulent simultanément.Enfin Les équations prenant en compte la présence d'un fluide non-homogène à I'interface fluide-structure, du type des écoulements cavitants par poche stationnaire ou auto-oscillante, ont été développés. La méthode consiste à séparer les variables du fluide en écoulement autour d'un hydrofoil immobile d'une part et celles de l'écoulement généré par la vibration de I'hydrofoil d'autre part. Il en résulte un opérateur de masse ajoutée non symétrique en milieu non homogène et un opérateur d'amortissement ajouté dû au taux de variations de masse volumique à l’interface dans le cas auto-oscillant. L'ensemble se traduit par une modulation au cours du temps des fréquences propres et des amplitudes du système. / A numerical study of Fluid Structure Interaction (FSI) in hydrodynamic case is adressed in this thesis. Thirstly, the analysis of coupling methods (staggered schemes) was established to an academic case. It corresponds to the resolution of non linear Burgers equation in a moving domain where the moving interface is assimilated to a mass spring system. According to the time discretisation and linearization of the coupled problem, four coupling scheme can be defined : explicit, semi-implicit, implicit-outer and implicit-inner. A comparative performance study in convergence and computing time were performed. The performance depends on the coupling scheme used. The explicit scheme requires less time compared to the others schemes. However it does not allow the mechanical energy conservation at the interface, inducing the stability issue of the numerical scheme. This instabilities does not arise for the implicit coupling algorithms because the energy conservation at the interface is fulfilled. lndeed, a convergence condition is added for implicit schemes. Even though these schemes require more computing time, they are necessary to get better precision. Inter alia, the fluid-structure interface analysis shows that the gap between the interface taken as the moving boundary and the structure position mostly depends on the actualization scheme of the chosen mesh.In the second part, the coupling algorithm study is extended to physical problem of FSI. A hydrofoil in heave and pitch immersed in a fluid flow is then studied. The equation of hydrofoil movement takes account the distance between the rotation center and the center of gravity. This causes the equation to be nonlinear and introduces a coupling of the two movements (heave and pitch) and a damping of the heave movement. The hydrofoil dynamic is studied for different configurations : forced movements or not, immersed in a fluid at rest or a flowing one. It shows that the hydrofoil movement is pseudo-periodic followed by a damping movement. The hydrodynamic forces tend to follow the same evolution and converge to an equilibrium point. The vibration study clearly shows a frequency modification of the system that depends on the fluid flow (at rest or with an inflow). The problem is also coupled to center of pressure position's equation which depends on the hydrofoil position and the fluid flow. The trend of the position presents a singularity when the lift and drag coefficients vanishes at the same time.Last part, the equation that take into account the inhomogeneous characteristic of the fluid at the fluid-structure interface as well as sheet cavitation in steady or unsteady case, was developed. The method allows the separation of the fluid variables when flowing around the fixed hydrofoil on one hand and the flow generated by the hydrofoil vibration one the other. This introduces an asymmetric added mass operator and an added damping operation due to the variation of the density of the fluid at the interface in unsteady case.The whole system results in a natural frequencies and amplitudes modulation over time.
143

Stabilisation et simulation de modèles d'interaction fluide-structure / Stabilisation and simulation of fluid-structure interaction models

Ndiaye, Moctar 09 December 2016 (has links)
L'objet de cette thèse est l'étude de la stabilisation de modèles d'interaction fluide-structure par des contrôles de dimension finie agissant sur la frontière du domaine fluide. L'écoulement du fluide est décrit par les équations de Navier-Stokes incompressibles tandis que l'évolution de la structure, située à la frontière du domaine fluide, satisfait une équation d'Euler-Bernoulli avec amortissement. Dans le chapitre 1, nous étudions le cas où le contrôle est une condition aux limites de Dirichlet sur les équations du fluide (contrôle par soufflage/aspiration). Nous obtenons des résultats de stabilisation locale du système non-linéaire autour d'une solution stationnaire instable de ce système. Dans les chapitres 2 et 3, nous nous intéressons au cas où le contrôle est une force appliquée sur la structure (contrôle par déformation de paroi). Dans le chapitre 2, nous considérons un modèle simplifié, où l'équation d'Euler-Bernoulli pour la structure est remplacée par un système de dimension finie. Nous construisons des lois de contrôle pour les systèmes de dimension infinie, ou pour leurs approximations semi-discrètes, capables de stabiliser les systèmes linéarisés avec un taux de décroissance exponentielle prescrit, et localement les systèmes non-linéaires. Nous présenterons des résultats numériques permettant de vérifier l'efficacité de ces lois de contrôles. / The aim of this thesis is to study the stabilization of fluid-structure interaction models by finite dimensional controls acting at the boundary of the fluid domain. The fluid flow is described by the incompressible Navier-Stokes equations while the displacement of the structure, localized at the boundary of the fluid domain, satisfies a damped Euler-Bernoulli beam equation. First, we study the case where the control is a Dirichlet boundary condition in the fluid equations (control by suction/blowing). We obtain local feedback stabilization results around an unstable stationary solution of this system. Chapters 2 and 3 are devoted to the case where control is a force applied to the structure (control by boundary deformation). We consider, in chapter 2, a simplified model where the Euler-Bernoulli equation for the structure is replaced by a system of finite dimension. We construct feedback control laws for the infinite dimensional systems, or for their semi-discrete approximations, able to stabilize the linearized systems with a prescribed exponential decay rate, and locally the nonlinear systems. We present some numerical results showing the efficiency of the feedback laws.
144

Études expérimentales de l'interaction fluide-structure sur surface souple : application aux voiles de bateaux / Experimental studies of the Fluid Structure Interaction on a soft surface : application to yacht sails

Augier, Benoît 04 July 2012 (has links)
Cette thèse vise à une meilleure compréhension de la dynamique du voilier et à la validation des outils numériques de prédiction de performances et d’optimisation par l'étude expérimentale in situ du problème aéro-élastique d'un gréement. Une instrumentation est développée sur un voilier de 8m de type J80 pour la mesure dynamique des efforts dans le gréement, de la forme des voiles en navigation, du vent et des attitudes du bateau. Un effort particulier est apporté à la mesure des caractéristiques géométriques et mécaniques des éléments du gréement, la calibration des capteurs et au système d'acquisition des données. Les principaux résultats montrent que le voilier instrumenté est un outil adapté pour les mesures instationnaires et soulignent l'amplitude de variation d'effort rencontrée en mer (20 à 50% de l'effort moyen dans une houle modérée). En outre, les variations du signal d'effort sont déphasées avec l'angle d'assiette, créant un phénomène d'hystérésis. Le comportement dynamique d'un voilier en mouvement diffère ainsi de l'approche quasi-statique. Les simulations numériques proviennent du code ARAVANTI, couplage implicite d’un code structure éléments finis ARA et d’un code fluide parfait, limitant son domaine de validité aux allures de près Les résultats de simulation sont très proches des cas stationnaires et concordent bien avec les mesures en instationnaire dans une houle de face. L'expérimentation numérique d'un gréement soumis à des oscillations harmoniques en tangage souligne l'importance de l'approche Interaction Fluide Structure (IFS) et montre que l’énergie échangée par le système avec la houle est reliée à la fréquence réduite et l'amplitude du mouvement. Certaines informations n'étant pas disponibles sur le voilier instrumenté, une expérience contrôlée en laboratoire est développée. Elle consiste en un carré de tissu tenu par deux lattes en oscillation forcée. Les mesures sur cette « voile oscillante » permettent d'étudier les phénomènes IFS avec décollement et sont utilisées pour la validation du couplage ARA-ISIS entre un code fluide Navier-Stokes (RANS) et le même code structure. / This work presents a full scale experimental study on the aero-elastic wind/sails/rig interaction in real navigation condition with the aim to give a reliable database of unsteady measurement. This database is used for the investigation of the dynamic behavior and loads in the rigging and for an experimental validation of an unsteady Fluid Structure Interaction (FSI) model. An inboard instrumentation system has been developed on a 8 meter yacht (J80 class) to simultaneously and dynamically measure the navigation parameters, yacht's motion, sails flying shape, wind and loads in the rigging. A special effort is made on mechanical and geometrical characteristics measurement, sensors calibration and data acquisition system synchronization. Results show that the instrumented boat is a reliable tool to measure the unsteady phenomena in navigation. Dynamic measurements at sea underline the load variation encountered, which represent 20 to 50% of the mean value in a moderate sea state. Oscillations of loads exhibit phase shift with the trim angle, reason for an hysteresis phenomenon, which shows that the dynamic behavior of a sail plan subject to yacht motion clearly deviates from the quasi-steady theory. Simulations are made with ARAVANTI, an implicit coupling of a Finite Element Method structural model ARA and an inviscid fluid model which restricts the simulation domain to upwind conditions. The simulation results compare very well with the experimental data for steady sailing conditions and show a good agreement in unsteady conditions (head swell). Numerical investigation of a sail plan submitted to harmonic pitching motion underlines the importance of FSI modeling and shows that the energy exchanged by the system with the swell increases with the motion reduced frequency and amplitude. Some information is not accessible on the instrumented boat and requires developing a controlled test case in laboratory. The experiment consists of a spinnaker fabric square mounted on two carbon battens moved in forced oscillation. This test case is used to study FSI phenomena with a separated flow and gives experimental results for the validation of the coupling ARA-ISIS of a RANS fluid model with the same structure model.
145

Optimisation de la qualité vibro-acoustique des structures d'automobiles pour les basses fréquences

Bourmich, Sophie 21 September 2012 (has links)
Les modèles d'éléments finis des automobiles donnent des grandes tailles de problèmes matriciels, ce qui demeure coûteux en ressources numériques pour une procédure d'optimisation. La multiplicité des phénomènes couplés du problème d'interaction de l'air de l'habitacle et de la superstructure rend plus sensible, à des variations mineures des paramètres, une optimisation directe du véhicule. Pour réduire les temps de calculs et l'espace mémoire liés à la simulation numérique en éléments finis, une méthode de double synthèse modale est appliquée sur la structure et le fluide. Ceci permet de diminuer le nombre de degrés de liberté de frontière. Egalement, un algorithme a été développé pour minimiser le nombre d'évaluations de fonction au cours des itérations d'optimisation. L'approche modale permet également de décomposer le problème d'optimisation de la réponse vibro-acoustique par des sous-problèmes couplés d'optimisation de critères modaux. Ces critères modaux explicitent les couplages fréquentiels par des termes d'amplification et les couplages spatiaux par des paramètres effectifs modaux. Ils favorisent ainsi le développement d'une stratégie d'optimisation robuste par le contrôle modal des effets prépondérants sur la qualité vibro-acoustique des véhicules. / Finite element models and the complexity of vehicle passenger compartments make it harder the optimization, mainly because of expensive computing resources and multiple coupled phenomena of fluid-structure problems. Strategies to improve time and memory performance consist in the use of reduction methods, and combined with efficient optimization techniques, vibro-acoustic solutions of better quality can be performed. The complexity of the system is taken into account thanks to a hierarchical optimization process. Both reduction method and gradient-based optimization algorithm are investigated. Based on modal synthesis, special criteria help to determine critical vibration propagation paths. A modified SQP (Sequential Quadratic Programming) algorithm is also developed in order to provide a faster convergence speed. Such process is to be applied on an academic example and hollow parts and panels of a whole passenger compartments. It allows to find relevant and non obvious solutions by minimizing noise and vibration transfer functions in a relatively wide range of frequencies.
146

Algorithmic developments for a multiphysics framework

Wuilbaut, Thomas A.I.J. 17 December 2008 (has links)
In this doctoral work, we adress various problems arising when dealing with multi-physical simulations using a segregated (non-monolithic) approach. We concentrate on a few specific problems and focus on the solution of aeroelastic <p>flutter for linear elastic structures in compressible fl<p>ows, conjugate heat transfer for re-entry vehicles including thermo-chemical reactions and finally, industrial electro-chemical plating processes which often include<p>stiff source terms. These problems are often solved using specifically developed<p>solvers, but these cannot easily be reused for different purposes. We have therefore considered the development of a <p>flexible and reusable software platform for the simulation of multi-physics problems. We have based this<p>development on the COOLFluiD framework developed at the von Karman Institute in collaboration with a group of partner institutions.<p>For the solution of fl<p>uid fl<p>ow problems involving compressible <p>flows, we have used the Finite Volume method and we have focused on the application of the method to moving and deforming computational domains using the Arbitrary Lagrangian Eulerian formulation. Validation on a series of testcases (including turbulent flows) is shown. In parallel, novel time integration<p>methods have been derived from two popular time discretization methods.<p>They allow to reduce the computational effort needed for unsteady fl<p>ow computations.<p>Good numerical properties have been obtained for both methods.<p>For the computations on deforming domains, a series of mesh deformation techniques are described and compared. In particular, the effect of the stiffness definition is analyzed for the Solid material analogy technique. Using<p>the techniques developed, large movements can be obtained while preserving a good mesh quality. In order to account for very large movements for which mesh deformation techniques lead to badly behaved meshes, remeshing is also considered.<p>We also focus on the numerical discretization of a class of physical models that are often associated with <p>fluid fl<p>ows in coupled problems. For the elliptic problems considered here (elasticity, heat conduction and electrochemical<p>potential problems), the implementation of a Finite Element solver is presented. Standard techniques are described and applied for a variety of problems, both steady and unsteady.<p>Finally, we discuss the coupling of the <p>fluid flow solver with the finite element solver for a series of applications. We concentrate only on loosely and strongly coupled algorithms and the issues associated with their use and implementation. The treatment of non-conformal meshes at the interface between two coupled computational domains is discussed and the problem<p>of the conservation of global quantities is analyzed. The software development of a <p>flexible multi-physics framework is also detailed. Then, several coupling algorithms are described and assessed for testcases in aeroelasticity and conjugate heat transfer showing the integration of the <p>fluid and solid solvers within a multi-physics framework. A novel strongly coupled algorithm, based on a Jacobian-Free Newton-Krylov method is also presented and applied to stiff coupled electrochemical potential problems. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
147

Fluid-structure interaction on yacht sails : from full-scale approach to wind tunnel unsteady study / Interaction fluide-structure sur voiles de bateau : de l’approche in situ à l’étude instationnaire en soufflerie

Aubin, Nicolas 25 January 2017 (has links)
Ce travail s’inscrit dans le projet VOILENav qui vise à améliorer la compréhension des phénomènes d’Interaction Fluide-Structure appliqués aux voiles. Des comparaisons numériques expérimentales sont réalisées sur des mesures « in situ » au près à l’aide d’un code fluide parfait. Un critère, fondé sur l’équilibre du couple aérodynamique avec le couple de redressement, est proposé, permettant de vérifier l’hypothèse d’un écoulement attaché. Les précédentes études sur un voilier instrumenté ont montré les limites d’une approche « in situ » de par l’instationnarité naturelle liée aux évolutions du vent et de l’état de mer. Les autres limites résident dans la mesure de ces dernières – et tout particulièrement la mesure du vent réel – ainsi que dans le spectre des conditions rencontrées au réel. Des essais en soufflerie sont ainsi réalisés dans le cadre de ces travaux pour répondre, par une approche systématique et contrôlée, aux interrogations soulevées par les mesures « in situ ». Deux campagnes expérimentales successives, soutenues par le programme d’échange Sailing Fluids ont été menées dans la soufflerie du Yacht Research Unit de l’Université d’Auckland se focalisant sur les essais de voiles au près puis au portant. Les essais au près sont réalisés sur trois modèles réduits de grand-voiles d’IMOCA60 dans des conditions de réglages statiques et dynamiques. Le meilleur réglage statique est obtenu grâce à l’utilisation d’un algorithme d’optimisation original puis l’influence de l’amplitude et de la fréquence du « pumping » sont étudiés. Les performances aérodynamiques du système soumis à un réglage dynamique sont supérieures à celles du réglage optimum statique et un maximum est observé autour d’une fréquence réduite de 0.25 à 0.3. Au portant, les effets de l’instationnarité naturelle du spinnaker connue sous le terme « curling » (repliement du bord d’attaque) sont étudiés. Quatre modèles de spinnakers de J80 de forme identique sont testés pour différents matériaux et différentes coupes. Les mesures en soufflerie montrent que, pour des angles de vent apparent supérieurs à 100°, l’apparition du « curling » conduit à une augmentation de la force propulsive pouvant atteindre 10%. Les effets de la vitesse et de l’angle de vent apparent sont également étudiés et permettent d’extraire une fréquence réduite de curling indépendante de la vitesse de l’écoulement de 0.4 pour un vent apparent de 120°. L’étendue de la gamme de mesures explorées et le soin particulier apporté aux données expérimentales font de ces travaux une base de données remarquable pour des comparaisons avec des simulations de l’Interaction Fluide-Structure. / This work is part of the VOILENav project which aims to improve the understanding of Fluid-Structure Interaction applied to sails. Full-scale numerical experimental comparisons are achieved in upwind conditions with an inviscid flow code. A criterion using the equilibrium between the righting and heeling moment is suggested to check the attached flow hypothesis. Previous fullscale studies on instrumented boat are limited by the natural unsteadiness of wind and sea conditions and the measurement of these conditions. True wind computation and the wide range of encountered sailing conditions are still challenging. Complementary wind tunnel tests are carried out in this PhD project, using controlled conditions, to address some issues observed at full-scale. Thanks to the Sailing Fluids collaboration, two experimental campaigns in the Twisted Flow Wind Tunnel of the Yacht Research Unit of the University of Auckland have investigated upwind and downwind conditions. Upwind tests investigate static and dynamic trimming on three model IMOCA60 mainsails. The optimum static trim is determined thanks to an innovative optimization algorithm then the pumping amplitude and frequency are investigated. Aerodynamic performances under dynamic trimming are better than the optimum static trim with a maximum located for a reduced frequency about 0.25 to 0.3. For the downwind test, the natural unsteadiness known as curling (repeated foldingunfolding of leading edge) is studied. Four model J80 spinnakers with identical design shape are tested with different materials and cuts. Wind tunnel measurements show that for apparent wind angles higher than 100°, the curling apparition increases the drive force by up to 10%. Wind speed and wind angle effects are investigated and show a reduced curling frequency of 0.4 independent from the flow velocity for an apparent wind angle of 120°. The variety of the experimental conditions tested makes this work a precious database for Fluid Structure Interaction numerical-experimental comparison in the future.
148

Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

Conti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
149

Nonlinear fluid-structure interaction : a partitioned approach and its application through component technology / Interaction fluide-structure non-linéaire : une approche partitionnée et son application par la technologie des composants

Kassiotis, Christophe 20 November 2009 (has links)
Au cours de ces travaux de thèse, la résolution de problèmes non-linéaires en interaction forte entre une structure et un fluide a été étudiée par une approche partitionnée. La stabilité, la convergence et les performances de différents schémas de couplages explicites et implicites ont été explorées. L'approche partitionnée autorise la réutilisation des codes existants dans un contexte plus général. Un des objectifs de nos travaux est de les utiliser comme des boites noires, dont on n'a pas le besoin de connaitre le fonctionnement interne. A cette fin, la technologie des composants et le middleware CTL ont été utilisés. Ainsi, deux composants basés sur des codes existants pour le fluide et la structure ont été développés puis couplés par une approche de type code maître.Les performances de différentes architectures de composants aussi bien que la communication entre composants parallélisés sont décrites dans ce document. La réutilisation de codes existants permet de profiter au plus vite des modèles avancés développés de manière spécifique pour nos sous-problèmes. Pour la partie solide, par exemple, il est possible d'utiliser différents modèles éléments finis en grandes déformations avec des matériaux non-linéaires. Pour la partie fluide, nous avons choisi une approche arbitrairement Lagrangienne-Eulérienne, et la résolution par volumes finis. Différents régimes d'écoulements instationnaires aussi bien incompressibles (modélisés alors par les équations de Navier-Stokes) qu'à surfaces libres sont ici considérés. La description de phénomènes tels que le déferlement des vagues et leur impact sur des structures est ainsi rendu possible / A partitioned approach is studied to solve strongly coupled nonlinear fluid structure interaction problems. The stability, convergence and performance of explicit and implicit coupling algorithms are explored. The partitioned approach allows to re-use existing codes in a more general context. One purpose of this work is to be able to couple them as black-boxes. To that end, the scientific software component framework CTL is considered. Therefore a fluid and a structure component based on existing software are developed and coupled with a master code approach. Computational performance of different remote calls and parallel implementation of components are also depicted herein. The re-use of existing software allows to couple advanced models developed for both sub-problems. In this work, the structure part is solved by the Finite Element Method, with the possibility to use different non-linear and large deformation behaviors. For the fluid part, examples modeled with an arbitrary Lagrangian Eulerian formulation are considered, solved with a finite volume method. The models used are first transient incompressible flows described by the Navier-Stokes equation, then free surface flows. With the latter, the impact of sloshing and breaking waves on model structures can be computed / In dieser Doktorarbeit wird ein partiotionierter Ansatz zur Lösung nichlinearer stark gekoppelter Fluid-Struktur-Interaktionsprobleme behandelt. Dabei werden die Stabilität, die Konvergenz und die Performanz expliziter und impliziter Kopplungsalgorithmen untersucht. Der partitionierte Ansatz ermöglicht die Wiederverwendung von existierender Software in einem allgemeineren Kontext. Ein Ziel dieser Arbeit ist hierbei die Nutzung dieser Software als Blackboxen. Hierzu verwenden wir das komponentenbasierte Framework CTL. Die existierenden Simulationscodes für das Strömungs- und das Strukturproblem werden als CTL Komponenten umgesetzt und über einen Mastercode gekoppelt. Die Performanz des Gesamtsystems wird hinsichtlich unterschiedlicher Komponentenbindungen und der parallelen Implementierungen der Simulationskomponenten analysiert. Existierende Simulationscodes weisen mitunter viele Mannjahre Entwicklungszeit auf, bieten auf die einzelnen Probleme abgestimmte numerische Verfahren und unterstützen unterschiedliche Modelle des betrachteten physikalischen Fachgebietes. Daher ist eine Wiederverwendung erstrebenswert. Der Strukturteil wird über die Finite Elemente Methode approximiert, wobei groé Deformationen und verschiedene nicht-lineare Materialmodelle unterstützt werden. Auf der Strömungsseite werden Beispielprobleme (von instationären inkompressiblen Strömungen zu Strömungen mit freier Oberäche) herangezogen, die mit der Arbitrary Lagrangian Eulerian Methode formuliert und der Finite Volumen Methode diskretisiert werden
150

Etudes expérimentales de l'Interaction fluide-structure sur les voiles de bateaux au portant / Experimental studies of fluid-structure interaction on downwind sails

Deparday, Julien 06 July 2016 (has links)
Cette thèse présente une étude expérimentale sur un voilier instrumenté, menée pour décrire le comportement aéro-élastique des voiles et du gréement pour des navigations au portant. Les formes des voiles utilisées sont des surfaces non développables avec de fortes courbures provoquant une séparation massive de l’écoulement. De plus, les spinnakers sont des voiles fines et souples rendant l’interaction fluide-structure fortement couplée. A cause du non-respect de certaines règles de similitude, le comportement dynamique d’un spinnaker se prête mal à l’étude en soufflerie et nécessite une comparaison avec des mesures in-situ. Les simulations numériques instationnaires modélisant le comportement aéro-élastique des voiles et du gréement doivent être qualifiées et demandent également des validations. C’est pourquoi un système d’instrumentation embarquée est mis en place sur un J/80, un voilier de huit mètres de long. Il s’agit de mesurer dynamiquement la forme en navigation du spinnaker, les efforts dans les gréements dormant et courant, la répartition de pression sur la voile ainsi que le vent et les attitudes du bateau. La forme du spinnaker en navigation est obtenue grâce à un système de mesure photogrammétrique développé pendant la thèse. La précision de ce système, meilleure que 1,5%, permet de mesurer la forme générale de la voile ainsi que les déformations importantes telles que celles liées au faseyement du guindant. L’effort aérodynamique produit par le spinnaker est obtenu grâce à la mesure de l’intensité des efforts et de leurs directions aux trois extrémités (drisse, amure, écoute) ainsi que par la mesure des pressions sur la voile. Le comportement général du spinnaker est analysé en fonction de l’angle du vent apparent. Une nouvelle représentation utilisant les surfaces de Bézier triangulaires est développée pour décrire la forme tridimensionnelle du spinnaker. Quelques points de contrôles suffisent pour représenter la voile et caractériser le type de voile. Un comportement dynamique propre au spinnaker est également étudié. Le réglage supposé optimal d’un spinnaker est à la limite du faseyement, en laissant le guindant se replier légèrement. Cependant ce réglage n’a jamais été scientifiquement étudié auparavant. Nous avons montré qu’il s’agit d’une forte interaction fluide-structure tridimensionnelle où une importante dépression apparaît au bord d’attaque, qui augmente temporairement les efforts, ce qui n’est pas observé avec un réglage plus bordé. / A full-scale experimental study on an instrumented sailing yacht is conducted to better assess the aero-elastic behaviour of the sails and rigging in downwind navigations. The downwind sail shape is a non-developable surface with high curvature leading to massive flow separation. In addition, spinnakers are thin and flexible sails leading to a strongly coupled Fluid-Structure Interaction. Due to the non-respect of some rules of similitude, the unsteady behaviour of downwind sails cannot be easily investigated with wind tunnel tests that would need comparison with full-scale experiments. Moreover unsteady numerical simulations modelling the aero-elastic behaviour of the sails and rigging require validations. An inboard instrumentation system has been developed on a 8 meter J/80 sailboat to simultaneously and dynamically measure the flying shape of the spinnaker, the aerodynamic loads transmitted to the rigging, the pressure distribution on the sail as well as the boat and wind data. The shape of the spinnaker while sailing is acquired by a photogrammetric system developed during this PhD. The accuracy of this new system, better than 1.5%, is used to measure the global shape and the main dynamic deformations, such as the flapping of the luff. The aerodynamic load produced by the spinnaker is assessed by the measurements of the load magnitudes and directions on the three corners of the sail (head, tack and clew), and also by the pressure distribution on the spinnaker. The global behaviour of the spinnaker is analysed according to the apparent wind angle. A new representation using Bézier triangular surfaces defines the spinnaker 3D shape. A few control points enable to represent the sail and can easily characterise the type of sail. A typical unsteady behaviour of the spinnaker is also analysed. Letting the luff of the sail flap is known by sailors as the optimal trim but has never been scientifically studied before. It is found that it is a complex three dimensional fluid-structure interaction problem where a high suction near the leading edge occurs, producing a temporary increase of the force coefficient that would not be possible otherwise.

Page generated in 0.1416 seconds