• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 24
  • 5
  • Tagged with
  • 102
  • 102
  • 51
  • 22
  • 22
  • 21
  • 17
  • 16
  • 14
  • 13
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Reconnaissance de surfaces de protéines par des foldamères aromatiques / Protein surface recognition by aromatic foldamers

Stupfel, Marine 22 December 2010 (has links)
Les interactions protéine-protéine jouent un rôle primordial dans de nombreux processus biologiques. L’importance de ces interactions a suscité le développement de nouvelles approches thérapeutiques qui ciblent ces complexes protéiques. Nous nous proposons d’inhiber ces interactions en élaborant une stratégie de reconnaissance de surfaces de protéines par des molécules synthétiques de taille intermédiaire, les foldamères d’oligoquinoline. Ces composés se replient en des structures hélicoïdales stables dont chaque élément constitutif peut être fonctionnalisé pour permettre des propriétés de reconnaissance de surface de protéine.Afin de valider ce concept, l’interaction entre l’anhydrase carbonique humaine de type II (HCAII) et son inhibiteur N-benzyl-4-sulphamoylbenzamide (SBB) a été sélectionnée comme système modèle. Plusieurs étapes de synthèse ont permis de concevoir de nouveaux foldamères capables de former un complexe avec l’enzyme par l’intermédiaire de l’inhibiteur SBB et d’un espaceur approprié. Chaque complexe protéine-foldamère a été co-cristallisé et l’affinité des interactions a été caractérisée par dichroïsme circulaire induit et par résonance plasmonique de surface. Ce concept a ensuite été appliqué à une interaction protéine-protéine d’intérêt thérapeutique, le complexe IL-4/IL-4R, dans le cadre du programme européenFOLDAPPI (FP7-PEOPLE-IAPP-2008). / Protein-protein interactions play key roles in many biological processes as well as in many diseases. The importance of these interactions has led to the development of new therapeutic approaches that target protein interfaces. We have developed a protein surface recognition strategy to inhibit protein-protein interactions by using intermediate size organicmolecules called oligoquino line foldamers, that result in very stable and well defined helical structures. These helical backbones are used as templates within each building block can be modulated to allow protein surface recognition.In order to validate this concept, the well-characterized interaction between the enzyme human carbonic anhydrase II (HCAII) and its N-benzyl-4-sulphamoylbenzamide (SBB) inhibitor was selected as a model system. Multi-steps synthesis allowed functionalization of new foldamers able to bind to the enzyme through the SBB inhibitor attached by a spacer.Each foldamer–protein complex was cocrystallized and the affinity of the interactions was assayed using both induced circular dichroïsm and surface plasmon resonance. The concept of using a foldamer against protein-protein interaction was then applied to a protein complex of therapeutic interest, IL-4/IL-4R, within the European FOLDAPPI program (FP7-PEOPLEIAPP- 2008).
82

Étude du réseau d'interactions entre les protéines du Virus de l'Hépatite C

Racine, Marie-Eve January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
83

Étude des interactions protéine-protéine entre le complexe de Survie des MotoNeurones (SMN) et les facteurs d'assemblage des RNP à boîtes C/D et H/ACA / Study of the protein-protein interactions between the SMN complex and the factors required for box C/D and H/ACA RNP assembly

Huttin, Alexandra 11 December 2012 (has links)
Les particules ribonucléoprotéiques (RNP) à boîtes C/D et H/ACA sont impliquées dans la maturation des UsnRNA et des précurseurs des ARNr. L'assemblage de ces RNP dans les cellules est un processus complexe faisant intervenir de nombreux facteurs cellulaires dont NUFIP, commun aux deux RNP, et NAF1, spécifique aux RNP à boîtes H/ACA. Le complexe de Survie des Motoneurones (SMN) est essentiel à la survie cellulaire et est nécessaire à l'assemblage d'une autre RNP, les UsnRNP, composants des spliceosomes. Un déficit en protéine SMN conduit à une pathologie grave, l'amyotrophie spinale. Plusieurs études suggèrent que le complexe SMN puisse également jouer un rôle dans l'assemblage des RNP à boîtes C/D et H/ACA. Dans le but d'obtenir de plus amples informations, nous avons testé si des interactions existent entre les constituants du complexe SMN et i) les protéines associées aux RNP matures, ainsi que ii) les autres facteurs d'assemblage déjà connus. Ainsi, par une approche de double hybride chez la levure, nous avons observé des interactions fortes entre NAF1 et les protéines Gemin3 et Gemin8 du complexe SMN. Comme la protéine coeur GAR1 des RNP à boîte H/ACA interagit avec la protéine SMN, ces données suggèrent que le complexe SMN participe à l'échange de NAF1 par GAR1, qui est une étape clé de la biogenèse des RNP à boîtes H/ACA. De plus, nous avons mis en évidence des interactions entre Gemin3/NUFIP, Gemin4/NUFIP et Gemin6/NUFIP. L'étude de cette dernière interaction a été approfondie. Nous avons montré que l'interaction est directe, qu'elle existe dans les cellules de mammifères à la fois dans le cytoplasme et le noyau, et nous avons défini les domaines de chaque protéine nécessaires à l'interaction, en collaboration avec l'équipe d'E. Bertrand (IGM Montpellier). Ces résultats ouvrent de larges perspectives quant à un lien fonctionnel entre le complexe SMN et NUFIP dans l'assemblage des RNP à boîtes C/D et H/ACA, mais aussi dans l'assemblage de la snRNP U4 et dans le mécanisme de traduction localisée dans les cellules / Box C/D and H/ACA ribonucleoparticles (RNPs) are required for UsnRNA and ribosomal RNA maturation. Their assembly in cells is a complex process, which implicates numerous cellular factors, such as NUFIP, a common assembly factor, and NAF1, which is a specific factor for H/ACA box RNP assembly. The Survival of Motoneurons (SMN) complex is essential for cell survival and is required for the assembly of another class of RNPs, the UsnRNPs, which are essential components of the splicing machinery. Decreased levels of the SMN protein lead to a severe disease, the spinal muscular atrophy. Several studies led to the proposal that the SMN complex also plays a role in the assembly of box C/D and H/ACA RNPs. In order to obtain more information, we analyzed whether some interactions may exist between components of the SMN complex and i) core proteins of mature RNPs, or ii) factors already known to be involved in the assembly. Using a yeast two-hybrid approach, we observed strong interactions between NAF1 and the SMN complex components, Gemin3 and Gemin8. Since the core H/ACA protein GAR1 interacts with the SMN protein, our data suggest that the SMN complex participates to the exchange of NAF1 by GAR1, which is a crucial step of H/ACA box RNP biogenesis. Furthermore, we discovered strong interactions between Gemin3/NUFIP, Gemin4/NUFIP and Gemin6/NUFIP. Concerning the Gemin6/NUFIP interaction, we showed that is direct, that it exists in both compartments in mammalian cells and we defined domains of both proteins necessary for the interaction in collaboration with the E. Bertrand team (IGM Montpellier). These results open new perspectives concerning functional links between the SMN complex and NUFIP in box H/ACA and C/D RNP assembly, but also in U4 snRNP assembly and in the mechanism of localized translation
84

Conception d'inhibiteurs du domaine SH3 de la protéine RasGAP à activité anti-tumorale potentielle

Samson, Jerome 29 March 2005 (has links) (PDF)
L'objectif de cette thèse consiste à inhiber la voie de signalisation liée aux protéines Ras, très fréquemment impliquée dans les tumeurs humaines, en concevant des inhibiteurs d'interactions protéine-protéine. Au sein de cette voie, la protéine RasGAP joue un rôle particulier, à la fois régulateur négatif et effecteur de Ras. La cible thérapeutique constituée par le domaine SH3 de la protéine RasGAP avait déjà été identifiée par plusieurs équipes (Tocqué et al., 1997). Plus récemment, notre laboratoire a complété ces travaux par l'identification des protéines Aurora comme partenaires de RasGAP-SH3. En collaboration avec Aptanomics, en mettant en oeuvre la technique des aptamères peptidiques, nous avons apporté une nouvelle validation de cette cible : nous avons obtenu par un crible double-hybride de nouvelles protéines synthétiques (aptamères) interagissant spécifiquement avec le domaine SH3 de RasGAP, et dont l'expression dans des cellules tumorales provoque une diminution de la capacité à former des colonies et de la viabilité cellulaire. Afin d'amorcer une démarche de conception rationnelle d'inhibiteurs de ce SH3, nous avons synthétisé les peptides exposés à la surface de ces aptamères et responsables de leur interaction avec RasGAP-SH3. Nous avons ensuite mesuré l'affinité de ces peptides pour RasGAP-SH3 par anisotropie de fluorescence. Nous avons ainsi obtenu un peptide cyclique dont l'affinité pour le domaine SH3 est de l'ordre de quelques centaines de nanomolaire, et dont nous avons déterminé l'empreinte sur ce domaine enrichi en 15N par RMN, en nous appuyant sur la structure du domaine, déjà résolue au laboratoire (Yang et al., 1994). Les données structurales que nous avons obtenues devraient permettre, dans un court délai, de proposer des modifications de ces peptides, afin d'augmenter l'affinité de nos inhibiteurs et de les vectoriser pour leur conférer une activité sur cellules tumorales en culture. Enfin, ces peptides, rendus fluorescents par leur couplage à un fluorophore, vont être utilisés comme ligands de référence dans un crible de chimiothèque à haut débit, afin de découvrir de petites molécules inhibitrices du domaine SH3 de RasGAP.
85

Nouvelles méthodes de calcul pour la prédiction des interactions protéine-protéine au niveau structural / Novel computational methods to predict protein-protein interactions on the structural level

Popov, Petr 28 January 2015 (has links)
Le docking moléculaire est une méthode permettant de prédire l'orientation d'une molécule donnée relativement à une autre lorsque celles-ci forment un complexe. Le premier algorithme de docking moléculaire a vu jour en 1990 afin de trouver de nouveaux candidats face à la protéase du VIH-1. Depuis, l'utilisation de protocoles de docking est devenue une pratique standard dans le domaine de la conception de nouveaux médicaments. Typiquement, un protocole de docking comporte plusieurs phases. Il requiert l'échantillonnage exhaustif du site d'interaction où les éléments impliqués sont considérées rigides. Des algorithmes de clustering sont utilisés afin de regrouper les candidats à l'appariement similaires. Des méthodes d'affinage sont appliquées pour prendre en compte la flexibilité au sein complexe moléculaire et afin d'éliminer de possibles artefacts de docking. Enfin, des algorithmes d'évaluation sont utilisés pour sélectionner les meilleurs candidats pour le docking. Cette thèse présente de nouveaux algorithmes de protocoles de docking qui facilitent la prédiction des structures de complexes protéinaires, une des cibles les plus importantes parmi les cibles visées par les méthodes de conception de médicaments. Une première contribution concerne l‘algorithme Docktrina qui permet de prédire les conformations de trimères protéinaires triangulaires. Celui-ci prend en entrée des prédictions de contacts paire-à-paire à partir d'hypothèse de corps rigides. Ensuite toutes les combinaisons possibles de paires de monomères sont évalués à l'aide d'un test de distance RMSD efficace. Cette méthode à la fois rapide et efficace améliore l'état de l'art sur les protéines trimères. Deuxièmement, nous présentons RigidRMSD une librairie C++ qui évalue en temps constant les distances RMSD entre conformations moléculaires correspondant à des transformations rigides. Cette librairie est en pratique utile lors du clustering de positions de docking, conduisant à des temps de calcul améliorés d'un facteur dix, comparé aux temps de calcul des algorithmes standards. Une troisième contribution concerne KSENIA, une fonction d'évaluation à base de connaissance pour l'étude des interactions protéine-protéine. Le problème de la reconstruction de fonction d'évaluation est alors formulé et résolu comme un problème d'optimisation convexe. Quatrièmement, CARBON, un nouvel algorithme pour l'affinage des candidats au docking basés sur des modèles corps-rigides est proposé. Le problème d'optimisation de corps-rigides est vu comme le calcul de trajectoires quasi-statiques de corps rigides influencés par la fonction énergie. CARBON fonctionne aussi bien avec un champ de force classique qu'avec une fonction d'évaluation à base de connaissance. CARBON est aussi utile pour l'affinage de complexes moléculaires qui comportent des clashes stériques modérés à importants. Finalement, une nouvelle méthode permet d'estimer les capacités de prédiction des fonctions d'évaluation. Celle-ci permet d‘évaluer de façon rigoureuse la performance de la fonction d'évaluation concernée sur des benchmarks de complexes moléculaires. La méthode manipule la distribution des scores attribués et non pas directement les scores de conformations particulières, ce qui la rend avantageuse au regard des critères standard basés sur le score le plus élevé. Les méthodes décrites au sein de la thèse sont testées et validées sur différents benchmarks protéines-protéines. Les algorithmes implémentés ont été utilisés avec succès pour la compétition CAPRI concernant la prédiction de complexes protéine-protéine. La méthodologie développée peut facilement être adaptée pour de la reconnaissance d'autres types d'interactions moléculaires impliquant par exemple des ligands, de l'ARN… Les implémentations en C++ des différents algorithmes présentés seront mises à disposition comme SAMSON Elements de la plateforme logicielle SAMSON sur http://www.samson-connect.net ou sur http://nano-d.inrialpes.fr/software. / Molecular docking is a method that predicts orientation of one molecule with respect to another one when forming a complex. The first computational method of molecular docking was applied to find new candidates against HIV-1 protease in 1990. Since then, using of docking pipelines has become a standard practice in drug discovery. Typically, a docking protocol comprises different phases. The exhaustive sampling of the binding site upon rigid-body approximation of the docking subunits is required. Clustering algorithms are used to group similar binding candidates. Refinement methods are applied to take into account flexibility of the molecular complex and to eliminate possible docking artefacts. Finally, scoring algorithms are employed to select the best binding candidates. The current thesis presents novel algorithms of docking protocols that facilitate structure prediction of protein complexes, which belong to one of the most important target classes in the structure-based drug design. First, DockTrina - a new algorithm to predict conformations of triangular protein trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) is presented. The method takes as input pair-wise contact predictions from a rigid-body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation (RMSD) test. Being fast and efficient, DockTrina outperforms state-of-the-art computational methods dedicated to predict structure of protein oligomers on the collected benchmark of protein trimers. Second, RigidRMSD - a C++ library that in constant time computes RMSDs between molecular poses corresponding to rigid-body transformations is presented. The library is practically useful for clustering docking poses, resulting in ten times speed up compared to standard RMSD-based clustering algorithms. Third, KSENIA - a novel knowledge-based scoring function for protein-protein interactions is developed. The problem of scoring function reconstruction is formulated and solved as a convex optimization problem. As a result, KSENIA is a smooth function and, thus, is suitable for the gradient-base refinement of molecular structures. Remarkably, it is shown that native interfaces of protein complexes provide sufficient information to reconstruct a well-discriminative scoring function. Fourth, CARBON - a new algorithm for the rigid-body refinement of docking candidates is proposed. The rigid-body optimization problem is viewed as the calculation of quasi-static trajectories of rigid bodies influenced by the energy function. To circumvent the typical problem of incorrect stepsizes for rotation and translation movements of molecular complexes, the concept of controlled advancement is introduced. CARBON works well both in combination with a classical force-field and a knowledge-based scoring function. CARBON is also suitable for refinement of molecular complexes with moderate and large steric clashes between its subunits. Finally, a novel method to evaluate prediction capability of scoring functions is introduced. It allows to rigorously assess the performance of the scoring function of interest on benchmarks of molecular complexes. The method manipulates with the score distributions rather than with scores of particular conformations, which makes it advantageous compared to the standard hit-rate criteria. The methods described in the thesis are tested and validated on various protein-protein benchmarks. The implemented algorithms are successfully used in the CAPRI contest for structure prediction of protein-protein complexes. The developed methodology can be easily adapted to the recognition of other types of molecular interactions, involving ligands, polysaccharides, RNAs, etc. The C++ versions of the presented algorithms will be made available as SAMSON Elements for the SAMSON software platform at http://www.samson-connect.net or at http://nano-d.inrialpes.fr/software.
86

Étude du réseau d'interactions entre les protéines du Virus de l'Hépatite C

Racine, Marie-Eve January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
87

Nouvelles méthodes de calcul pour la prédiction des interactions protéine-protéine au niveau structural / Novel computational methods to predict protein-protein interactions on the structural level

Popov, Petr 28 January 2015 (has links)
Le docking moléculaire est une méthode permettant de prédire l'orientation d'une molécule donnée relativement à une autre lorsque celles-ci forment un complexe. Le premier algorithme de docking moléculaire a vu jour en 1990 afin de trouver de nouveaux candidats face à la protéase du VIH-1. Depuis, l'utilisation de protocoles de docking est devenue une pratique standard dans le domaine de la conception de nouveaux médicaments. Typiquement, un protocole de docking comporte plusieurs phases. Il requiert l'échantillonnage exhaustif du site d'interaction où les éléments impliqués sont considérées rigides. Des algorithmes de clustering sont utilisés afin de regrouper les candidats à l'appariement similaires. Des méthodes d'affinage sont appliquées pour prendre en compte la flexibilité au sein complexe moléculaire et afin d'éliminer de possibles artefacts de docking. Enfin, des algorithmes d'évaluation sont utilisés pour sélectionner les meilleurs candidats pour le docking. Cette thèse présente de nouveaux algorithmes de protocoles de docking qui facilitent la prédiction des structures de complexes protéinaires, une des cibles les plus importantes parmi les cibles visées par les méthodes de conception de médicaments. Une première contribution concerne l‘algorithme Docktrina qui permet de prédire les conformations de trimères protéinaires triangulaires. Celui-ci prend en entrée des prédictions de contacts paire-à-paire à partir d'hypothèse de corps rigides. Ensuite toutes les combinaisons possibles de paires de monomères sont évalués à l'aide d'un test de distance RMSD efficace. Cette méthode à la fois rapide et efficace améliore l'état de l'art sur les protéines trimères. Deuxièmement, nous présentons RigidRMSD une librairie C++ qui évalue en temps constant les distances RMSD entre conformations moléculaires correspondant à des transformations rigides. Cette librairie est en pratique utile lors du clustering de positions de docking, conduisant à des temps de calcul améliorés d'un facteur dix, comparé aux temps de calcul des algorithmes standards. Une troisième contribution concerne KSENIA, une fonction d'évaluation à base de connaissance pour l'étude des interactions protéine-protéine. Le problème de la reconstruction de fonction d'évaluation est alors formulé et résolu comme un problème d'optimisation convexe. Quatrièmement, CARBON, un nouvel algorithme pour l'affinage des candidats au docking basés sur des modèles corps-rigides est proposé. Le problème d'optimisation de corps-rigides est vu comme le calcul de trajectoires quasi-statiques de corps rigides influencés par la fonction énergie. CARBON fonctionne aussi bien avec un champ de force classique qu'avec une fonction d'évaluation à base de connaissance. CARBON est aussi utile pour l'affinage de complexes moléculaires qui comportent des clashes stériques modérés à importants. Finalement, une nouvelle méthode permet d'estimer les capacités de prédiction des fonctions d'évaluation. Celle-ci permet d‘évaluer de façon rigoureuse la performance de la fonction d'évaluation concernée sur des benchmarks de complexes moléculaires. La méthode manipule la distribution des scores attribués et non pas directement les scores de conformations particulières, ce qui la rend avantageuse au regard des critères standard basés sur le score le plus élevé. Les méthodes décrites au sein de la thèse sont testées et validées sur différents benchmarks protéines-protéines. Les algorithmes implémentés ont été utilisés avec succès pour la compétition CAPRI concernant la prédiction de complexes protéine-protéine. La méthodologie développée peut facilement être adaptée pour de la reconnaissance d'autres types d'interactions moléculaires impliquant par exemple des ligands, de l'ARN… Les implémentations en C++ des différents algorithmes présentés seront mises à disposition comme SAMSON Elements de la plateforme logicielle SAMSON sur http://www.samson-connect.net ou sur http://nano-d.inrialpes.fr/software. / Molecular docking is a method that predicts orientation of one molecule with respect to another one when forming a complex. The first computational method of molecular docking was applied to find new candidates against HIV-1 protease in 1990. Since then, using of docking pipelines has become a standard practice in drug discovery. Typically, a docking protocol comprises different phases. The exhaustive sampling of the binding site upon rigid-body approximation of the docking subunits is required. Clustering algorithms are used to group similar binding candidates. Refinement methods are applied to take into account flexibility of the molecular complex and to eliminate possible docking artefacts. Finally, scoring algorithms are employed to select the best binding candidates. The current thesis presents novel algorithms of docking protocols that facilitate structure prediction of protein complexes, which belong to one of the most important target classes in the structure-based drug design. First, DockTrina - a new algorithm to predict conformations of triangular protein trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) is presented. The method takes as input pair-wise contact predictions from a rigid-body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation (RMSD) test. Being fast and efficient, DockTrina outperforms state-of-the-art computational methods dedicated to predict structure of protein oligomers on the collected benchmark of protein trimers. Second, RigidRMSD - a C++ library that in constant time computes RMSDs between molecular poses corresponding to rigid-body transformations is presented. The library is practically useful for clustering docking poses, resulting in ten times speed up compared to standard RMSD-based clustering algorithms. Third, KSENIA - a novel knowledge-based scoring function for protein-protein interactions is developed. The problem of scoring function reconstruction is formulated and solved as a convex optimization problem. As a result, KSENIA is a smooth function and, thus, is suitable for the gradient-base refinement of molecular structures. Remarkably, it is shown that native interfaces of protein complexes provide sufficient information to reconstruct a well-discriminative scoring function. Fourth, CARBON - a new algorithm for the rigid-body refinement of docking candidates is proposed. The rigid-body optimization problem is viewed as the calculation of quasi-static trajectories of rigid bodies influenced by the energy function. To circumvent the typical problem of incorrect stepsizes for rotation and translation movements of molecular complexes, the concept of controlled advancement is introduced. CARBON works well both in combination with a classical force-field and a knowledge-based scoring function. CARBON is also suitable for refinement of molecular complexes with moderate and large steric clashes between its subunits. Finally, a novel method to evaluate prediction capability of scoring functions is introduced. It allows to rigorously assess the performance of the scoring function of interest on benchmarks of molecular complexes. The method manipulates with the score distributions rather than with scores of particular conformations, which makes it advantageous compared to the standard hit-rate criteria. The methods described in the thesis are tested and validated on various protein-protein benchmarks. The implemented algorithms are successfully used in the CAPRI contest for structure prediction of protein-protein complexes. The developed methodology can be easily adapted to the recognition of other types of molecular interactions, involving ligands, polysaccharides, RNAs, etc. The C++ versions of the presented algorithms will be made available as SAMSON Elements for the SAMSON software platform at http://www.samson-connect.net or at http://nano-d.inrialpes.fr/software.
88

Les protéines ERM , Interactions entre la membrane cellulaire et le cytosquelette : une approche biomimétique. / Interactions between ERM proteins, cell membrane and cytoskeleton : a biomimetic approach.

Lubart, Quentin 12 December 2016 (has links)
Les protéines ERMs (Ezrine, radixine et moésine) jouent un rôle central in cellulo, dans de nombreux processus cellulaires tels que les infections, la migration et la division cellulaire. Parmi celles-ci, la moésine est plus particulièrement impliquée dans la formation de la synapse immunologique, l’infection virale et bactérienne, et les métastases cancéreuses. D’un point de vue structural, les ERM peuvent être en conformation inactive (replies sur elles-mêmes) ou actives (ouvertes), ce qui permet leur interaction a la fois avec les constituants du cytosquelette (actine et tubuline) via leur domaine C-terminal et la membrane plasmique via leur domaine FERM. La liaison a la membrane plasmique se fait principalement et spécifiquement via un lipide de la famille des phosphoinositides, le phosphatidyl 4,5 bisphosphate (PIP2). De plus, les protéines peuvent être phosphorylées, ce qui contribue à leur ouverture structurale. Cependant, le rôle de la phosphorylation sur les interactions ERM/membrane et ERM/cytosquelette, bien que beaucoup étudié in cellulo, est peu compris au niveau moléculaire.Le but de cette thèse est précisément d’étudier, au niveau moléculaire et à l’aide de systèmes biomimétiques, les interactions entre des protéines recombinantes et des membranes biomimétiques contenant du PIP2. Pour cela, nous avons mis au point des membranes lipidiques sous forme de vésicules unilamellaires (petites ou larges) et de bicouches lipidiques supportées, qui permettent de caractériser les interactions entre protéines et membranes par des techniques biophysiques complémentaires, notamment la cosédimentation quantitative, la microscopie et spectroscopie de fluorescence, et la microbalance à cristal de quartz. Dans une première partie, nous avons étudié le rôle de la double phosphorylation de la moésine (réalisée par mutation sur site spécifique) sur les interactions moésine/membrane biomimétique, en comparaison de la protéine sauvage, les protéines recombinantes et les mutants ayant été produites et purifiées au laboratoire.Nos résultats mettent en évidence une interaction spécifique et coopérative pour le double mutant phosphomimétique alors que cette interaction est simple dans le cas de la protéine sauvage. Dans une seconde partie, nous avons employé les bicouches lipidiques supportées contenant le PIP2 pour étudier les mécanismes molécules d’adsorption de la protéine virale Gag et de ses mutants. Les méthodologies développées dans ce travail de thèse ouvrent des perspectives en biophysique moléculaires car elles sont facilement transposables à l’étude d’autres protéines sur des membranes lipidiques modèles contenant des phosphoinositides.Mots clés: Ezrine-Radixine-Moésine, phosphoinositides, PIP2, interactions protéine-lipide, membrane lipidique biomimétique, protéine virale Gag, cytosquelette. / ERM (ezrin, radixin, moesin) proteins play a central role in cellulo in a large number of physiological and pathological processes, including cell infection, migration and cell division. Among the ERMs, moesin is particularly involved in the formation of the immunological synapse, viral and bacterial infection, and cancer metastasis. From a structural point of view, ERMs can be in inactive (closed) conformation or active (open), which enable them to interact on one side with the cytoskeleton (actin and tubulin) via their C-terminal domain and on the other side with the plasma membrane via their FERM domain. Binding to the plasma membrane is mediated via a specific lipid of the phosphoinositide family, the phosphatidylinositol(4,5)bisphosphate (PIP2). In addition, ERM can be phosphorylated, which contribute to their structural opening. To date, the role of the phosphorylation in ERM/membrane and ERM/cytoskeleton interactions, although widely studied in cellulo, remains poorly understood at the molecular level.The aim of this PhD thesis is precisely to study, at the molecular level and using biomimetic systems, interactions between recombinant proteins and biomimetic membranes containing PIP2. To this end, we have engineered lipid membranes in the form of large and small unilamellar vesicles and supported lipid bilayers. These biomimetic membranes are used to characterize interactions between proteins and membranes by complementary biophysical techniques, notably quantitative cosedimentation, fluorescence microscopy and spectroscopy, and quartz crystal microbalance with dissipation monitoring. In a first part, we studied the role of double phosphorylation on moesin, achieved via a site-specific mutation on threonine residues, on moesin/biomimetic membrane interactions, in comparison to the wild type protein. The recombinant proteins and mutants were produced in our laboratory.Our results show that there is a specific and cooperative interaction for the double phosphomimetic mutant while interactions is 1:1 in the case of the wild type protein. In a second part, we used supported lipid bilayers containing PIP2 to study the molecular adsorption mechanism of the viral protein Gag and of its mutants. The methodologies that were developed in this work open perspectives in molecular biophysics since they are easily adaptable to other proteins on model lipid membranes containing phosphoinositidesKeywords: Ezrin-Radixin-Moesin, phosphoinositides, PIP2, protein/lipid interactions, biomimetic lipid membrane, Gag viral protein, cytoskeleton.
89

Conception de ligands protéiques artificiels par ingénierie moléculaire in silico / Design of artificial protein binders by in silico molecular engineering

Baccouche, Rym 30 November 2012 (has links)
Les travaux réalisés portent sur la conception de ligands protéiques capables de cibler le site catalytique des métalloprotéases matricielles (MMPs) grâce à une méthode d’ingénierie développée au laboratoire qui repose sur le greffage de motifs fonctionnels. Le motif fonctionnel choisi correspond aux 4 résidus N-terminaux du TIMP-2, un inhibiteur naturel des MMPs. Des plates-formes protéiques possédant des motifs d’acides aminés dans une topologie similaire à celle du motif de référence dans le complexe TIMP-2/MMP-14 ont été identifiées par criblage systématique de la PDB à l’aide du logiciel STAMPS (Search for Three-dimensional Atom Motif in Protein Structure). Dix candidats ligands satisfaisant les contraintes topologiques, stériques et de similarité électrostatique avec le ligand naturel TIMP-2 ont été sélectionnés. Ces ligands ont été produits par synthèse chimique ou par voie recombinante puis leur capacité à inhiber une série de 6 MMPs a été évaluée. Les résultats indiquent que tous les ligands protéiques conçus in silico sont capables de lier les sites catalytiques des MMPs avec des constantes d’association allant de 450 nM à 590 mM, sans optimisation supplémentaire. La caractérisation structurale par diffraction X de 2 variants d’un de ces ligands protéiques a permis de montrer que les interactions établies par le motif 1-4 dans ces ligands étaient similaires à celles observées dans le complexe TIMP-2/MMP-14, avec cependant des différences dans la géométrie de certaines d’entre elles. Des études de simulation par dynamique moléculaire ont également permis de mettre en évidence de possibles différences dans la géométrie et la stabilité de certaines des interactions reproduites dans les 10 plates-formes, pouvant contribuer aux affinités modestes observées pour ces ligands. Cependant, les résultats obtenus montrent que la méthode de conception in silico utilisée est capable de fournir une série de ligands protéiques de 1ère génération ciblant de manière spécifique un site catalytique d’intérêt avec un bon rendement. Cette méthode pourrait constituer la 1ère étape d’une approche hybride de conception in silico de ligands combinée à des techniques de sélection expérimentales. / Artificial mini-proteins able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif grafting approach. The motif corresponded to the 4 N-terminal residues of TIMP-2, a broad-spectrum natural protein inhibitor of MMPs. Scaffolds able to reproduce the functional topology of this motif as described in the TIMP-2/MMP-14 complex were obtained by exhaustive screening of the Protein Data Bank (PDB) using the STAMPS software (Search for Three-dimensional Atom Motif in Protein Structure). Ten artificial protein binders satisfying all topologic, steric and electrostatic criteria applied for selection were produced for experimental evaluation. These binders targeted catalytic sites of MMPs with affinities ranging from 450 nM and 590 μM prior to optimization. The crystal structures of two artificial binders in complex with the catalytic domain of MMP-12 showed that the intermolecular interactions established by the functional motif in these artificial binders corresponded to those found in the TIMP-2/MMP-14 complex, albeit with some differences in their geometry. Molecular dynamics simulations of the 10 binders in complex with MMP-14 suggested that these scaffolds could allow reproducing in part the native intermolecular interactions, but some differences in geometry and stability could contribute to the lower affinity of the artificial protein binders as compared to the natural one. Nevertheless, these results show that the in silico design method used can provide sets of starting protein binders targeting a specific binding site with a good rate of success. This approach could constitute the first step of an efficient hybrid computational-experimental protein binder design approach.
90

Interfaces électrochimiques appliquées à l'étude de composés d'intérêt biologique : application à l'étude de l'interaction entre cytochrome c et cardiolipide / Electrochemical interface for studying compounds of biological interest : application to the interaction between cytochrome c and cardiolipin

Perhirin, Antoine 20 December 2012 (has links)
L’objectif de cette thèse était de mettre au point une interface électrochimique afin de caractériser les interactions entre le cytochrome c (cyt c), une protéine mitochondriale, et le cardiolipide (CL), un phospholipide présent dans les membranes des mitochondries. Le cyt c, dont la fonction est le transport d'électrons dans la chaîne respiratoire, est connu pour interagir avec le CL. Précédemment, un mécanisme d'accroche du cyt c sur une membrane contenant du CL a été mis en évidence par la théorie de l’« extented lipid anchorage ». Cette théorie prévoit, outre des interactions électrostatiques entre le CL (chargé négativement) et le cyt c (chargé positivement), des interactions hydrophobes issues de l'insertion d'une chaîne grasse du CL dans le cyt c. La nature particulière de la partie hydrophobe du CL, quatre chaines grasses dont la composition est très homogène, nous a amenés à émettre des hypothèses sur la présence d'interactions spécifiques entre le cyt c et différents types de chaines du CL. Dans le cadre de mes travaux, des techniques électrochimiques ont été utilisées pour étudier ces interactions. Une électrode de carbone vitreux a été modifiée par un dépôt de phosphatidylcholine (PC) et de CL en proportion 80/20 (mol/mol). Cette électrode modifiée au CL permet l'étude de l'électrochimie du cyt c. Nous avons montré que l’électroactivité du cyt c nécessite la présence de CL sur l'électrode modifiée, le cyt c étant électroinactif sur une électrode modifiée uniquement avec de la PC. De plus, le CL permet de retenir le cyt c à la surface de l'électrode. C'est la première fois que l'effet de « lipid anchorage » a été identifié sur une électrode modifiée. Une méthode électrochimique plus adaptée à l'étude des protéines adsorbées (AC voltamétrie) a été utilisée afin de caractériser les cinétiques de transfert électronique du cyt c. Par cette méthode, deux sous-populations de cyt c adsorbés ont été caractérisées. La sous-population 1 de cyt c, qui est majoritaire, possède un potentiel redox proche du potentiel du cyt c en solution (0V vs SCE). Sa vitesse de transfert électronique est de l'ordre de 20s-1. La sous-population 2, qui compte pour environ 10% du cyt c adsorbé total, possède un potentiel décalé vers les valeurs négatives (-0.15V vs SCE) et une vitesse de transfert électronique supérieure à la sous-population 1 (environ 500s-1). Afin de mieux cerner le type d'interaction dans ces deux sous-populations, l'effet d'une solution de forte force ionique (0.5M KCI), du pH, du calcium, de la classe de phospholipide ou de l'origine du cyt c a été testé. Ces expériences ont démontré que la sous-population 1 comporte des interactions de type électrostatiques et nécessite la présence d'un phospholipide ayant un motif glycérol terminal (comme le CL ou la PG), La nature de l'interaction protéine-lipide pour la sous-population 2 est plus complexe. Elle est sensible aux cations divalents ou au pH mais insensible aux fortes forces ioniques, laissant supposer la présence d'interactions de type hydrophobe.Les essais réalisés avec du cyt c de levure laissent entrevoir qu'il existe des spécificités entre cette protéine et les phospholipides d’un même organisme. La purification de cyt c de bivalve permettrait d'avancer pour valider cette hypothèse. / The main goal of this thesis was to set up an electrochemical interface in order to characterize interactions between cytochrome c (cyt c), a mitochondrial protein, and cardiolipin (CL), a phospholipid localized to the mitochondrial membrane.The cyt c, whereas the main function is to carrying electrons along the respiratory chain, is known to interact with CL.Previously, a mechanism of cyt c retention onto a CL containing membrane was highlighted by the “extended lipid anchorage” theory. This theory imply, with electrostatic interactions between CL (negatively charged) and cyt c (positively charged), the presence of hydrophobic interaction likely emanating from the insertion of an acyl chain of CL into the cyt c interior. The specificity of the hydrophobic moiety of CL, constituted of four similar chains lead us to make hypothesis about specific interactions between cyt c and acyl chains of CL. Attention have been made to the bivalves CL acyl chains carrying unique composition of 8O% DHA chains.Electrochemicals techniques have been used to study these interactions. A glassy carbon has been modified with a deposit by spin-coating of phosphatidylcholine (PC) and CL in 80/20 ratio (mol/mol). This CL modified electrode allows the study of the cyt c electrochemistry. Firstly, we showed that electroactivity of cyt c require the presence of CL onto the modified electrode meaning cyt c isn't electroactive on a modified electrode with PC only. ln add, CL allows retaining cyt c onto the electrode surface. lt is the first time that this lipid anchorage has been identified on a modified electrode.Electrochemical methods adapted to the study of adsorbed protein (AC voltametry) have been used in order to characterize the electrode transfer kinetics of cyt c. With these methods, two sub-populations of adsorbed cyt c have been characterized. The major part of cyt c, called sub-population 1, has a redox potential close to the formal potential of the native protein (around 0Vvs SCE). Electron transfer rate is in the range of 20s-1. The subpopulation 2, counting for ~10% of the total adsorbed cyt c, hold a negative shifted potential around -0.15V vs SCE and a faster electron transfer rate (~500s-1).To understand the nature of the interaction for the two subpopulations, the effect of an high ionic strength solution (0.5M KCI), pH, calcium, phospholipids classes or cyt c sources have been assayed. These tests shows that subpopulation t have electrostatics interactions and require the presence of a phospholipid holding a terminal glycerol pattern like PG or CL.The nature of the protein-lipid interaction in the case of the subpopulation 2 is more complex. lt is more sensitive to the presence of divalent cation or pH but high ionic strength solution doesn't affect it. This could be explained by hydrophobic interactions between lipid and the cyt c.The assays realized with cyt c from yeast let foresee specificity between these protein and the phospholipids carried by the same organism. The purification of bivalve cyt c could be a progress in order to validate this hypothesis.

Page generated in 0.179 seconds