• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Köldbryggsanalys av kantbalk i passivhus / Analysis of thermal bridges at foundation edge in passive houses

Walleskog, Tobias January 2013 (has links)
Utformning av grundkonstruktioner har fått relativt lite uppmärksamhet när det kommer till  passivhus. Fokus har legat på att stoppa värmeflödet genom resterande delar av klimatskalet vilket har lett till att grundkonstruktionen inte är speciellt granskad ur de perspektivet. Rapporten är begränsad till att behandla endast linjära köldbryggor eftersom en punktformig köldbrygga angriper konstruktionen i tre dimensioner, vilket försvårar arbetet avsevärt. Tidigare har man inte heller behövt redovisa storleken på köldbryggor, vilket idag är ett krav. Det finns olika bestämmelser beroende på om man väljer att följa de svenska eller internationella kraven. Byggnaden i rapporten strävar mot att klara de internationella, vilket gör att det ställs högre krav. Att handberäkna en köldbrygga är väldigt tidskrävande och innehåller mängder av möjligheter att räkna fel. Det finns även schablonvärden för en förenklad metod, som dock inte är anpassade till byggnader som strävar efter att uppnå kraven för passivhus. Olika typer av konstruktioner utvärderas för att, dels kunna fastställa storleken på köldbryggan i den befintliga konstruktionen, men även jämföra hur den står mot två andra alternativ. De tre konstruktionerna som granskas är L-element, U-element och Koljerntekniken. I rapporten används datorberäkningar för att beräkna storleken på respektive köldbrygga, men även grunden för handberäkningar beskrivs genom schablonvärden samt den matematiska teorin bakom. Det intressanta är att den befintliga konstruktionen med L-element har bäst isolerande förmåga vid kantbalken, samt att Koljerntekniken inte alls isolerar lika bra som det beskrivs. Angivna isolerings mängder kan vara av betydande roll då de tre olika konstruktionerna inte är uppbyggda på exakt samma sätt. Även faktorer som grundläggning och fuktbeständighet kan vara väldigt avgörande vid val av konstruktionstyp. Det finns mycket att utvärdera inom kategorin byggnadsfysik och en av de stora frågorna är om det finns någon alternativ lösning för passivhus, annat än platta på mark. / The design of foundations has received relative little attention when it comes to passive houses. The focus has been on preventing the heat flow through the remaining parts of the building, which has led to that the slab is not particularly examined from that perspective. This report is limited to investigative only linear thermal bridges, because point thermal bridge affects the structure in three dimensions, which makes it much more complicated. Earlier it was no requirement to present the size of the thermal bridges, as it is today. There are different rules, depending on whether you choose to follow the Swedish or international requirements. The building in this report strives to meet the international standards, which means that it’s greater demands. To calculate the thermal bridge by hand is very hard and contains a wealth of opportunities for mistakes. There are also models ​​for a simplified method, however, is not suited to buildings that strive to achieve the requirements for passive houses. Different types of structures is calculated, just to be able to determine the size of the thermal bridge in the existing design, but also compare how it stands against two other types of constructions. The three different types of constructions examined are called L-element, U-element and Koljerntekniken. The report uses computer simulations to calculate the size of each thermal bridge, but also the basis for hand calculations is described by some standard values, ​​and the mathematical theory behind. What is interesting is that the existing design with L-element has the best insulating properties at the slab, and that Koljerntekniken won’t insulate as well as it is described. The amount of insulation can have an important role in the three different structures, when they’re not similar. Factors such as foundations and moisture resistance can be very crucial in the selection of a construction. There is much to evaluate in range building physics and one of the big questions is whether there is an alternative solution for passive houses, other than this.
2

Utveckling av uterumsparti med brutenköldbrygga

Hellberg, Joel, Karlsson, Adam January 2015 (has links)
The purpose of the thesis has been that in cooperation with Sweden today's leading distance and ecommerce,Skåne Byggvaror AB, construct and design a modern and cost effective sliding doorsystem with thermal breaks in the category 'best'. Skånska Byggvarors business idea is to offercustomers the right quality at the right price with free delivery to the door. Today the companymanufactures 4 of 5 sliding door systems themselves and only the "best" model is manufacturedexternally. The goal of this project is the result to be good enough so the new system will be able toreach the company's production in Bjuv and then sold at Skånska Byggvarors website and in theirstores around the Skandinavien.The outcome of the project was a product of consensus with the company's business concept thatmet the specifications and offered little thereto. After being in contact and requested bids fromdifferent suppliers, it could also be said that the company could increase the product's annualearnings by about 4 million by producing and introducing our new sliding door systems.
3

Passivhus : Jämförelse av två väggkonstruktioner

Åberg, Filip January 2010 (has links)
Av den totala energianvändningen i Sverige och övriga EU så kommer 40 % från byggnadsbeståndet. Siffran blir alltmer omtalad och pressar automatiskt upp efterfrågan av energisnåla byggnader. Finns det enkla utföranden att sänka energiförbrukningen i byggnader på, genom att energieffektivisera byggnaden på olika sätt? Eller krävs det flera års erfarenhet samt en stor plånbok? Energimyndigheten sätter nya riktlinjer för att ett hus ska kunna kalla sig ett passivhus. Sverige delas in i tre klimatzoner och passivhus mindre än 200 m² i klimatzon III får idag högst ha en energiförbrukning på 30 kWh/m² uppvärmd yta och år. Samt 50 kWh/m² uppvärmd yta och år om passivhuset är större än 200 m². Denna rapport syftar till att jämföra två passivhusväggar i ett passivhus med samma energiprestanda och med en bruksarea på 183 m². Målet är att se hur väggarna skiljer sig i förhållande till material, energi, area och kostnad. Båda förslagen är byggda med förtillverkade isoleringselement, Besta-block respektive BBI Scandinavia element, där båda har bra energiegenskaper. Ett färdigprojekterat passivhus i norra Stockholm har en yttervägg som är 471 mm tjock, bestående av Besta-block. Passivhusväggen ersätts med en annan passivhusvägg med tjocklek 338 mm, uppbyggd med BBI Scandinavias element. Vilket resulterar till att passivhuset får en bruksarea som är 193 m2 vilket i sin tur leder till en 10,4 m2 sparad bruksarea. Samtidigt ger båda väggarna liknande energiförbrukning på 30,2 kWh/m2 bruksarea och år, respektive 30,3 kWh/m2 bruksarea och år. Energijämförandet mellan de båda väggarna är beräknade med hjälp av energiprogrammet BV2 samt Swedisols beräkningsmodeller för köldbryggor. En tredje passivhusvägg som är konstruerad med en traditionell träregelstomme jämförs också med de två andra väggtyperna men bara inom material och kostnad. Detta eftersom väggen i övrigt har liknande egenskaper som väggen försedd med Besta-block. U-värdet för alla tre exemplen är strax under 0,1 W/m2°C och relativt lika. Ändå bidrar ytterväggarna med olika stora areor, kostnad och material. Emissioner från material får inte ha en negativ effekt på dem som vistas i huset, därför är det viktigt att välja sunda material även om materialet i övrigt har bra egenskaper. En byggvarudeklaration åskådliggör en byggvaras relation till miljön i olika byggskeden. I projektet uppvisas en deklaration för en EPS-cellplast som bl.a. Besta-blocken består av. Undersökningar kan göras för att se hur mycket partiklar ett material avger till luften. Deklarationen påvisar att EPS-cellplasten avger ca 45 µg/m2h. I andra deklarationer påvisas att mineralull avger mindre än 20 µg/m2h och att linoleumgolv avger ca             110 µg/m2h.    Båda alternativen med förtillverkade isoleringselement har ett högt pris per m2 vägg, som båda kostar omkring 1600-1700 kr/m2. Den tredje passivhusväggen med träregelstomme kostar endast 422 kr/m2 och har en väggtjocklek på 483 mm.
4

Minimering av köldbryggor vid balkonger hos miljonprogramshus / Minimize thermal bridges at the balconies of Swedish million program houses

Aronsson, Alexander, Gustavsson, Markus January 2015 (has links)
I studien görs en klimatsimulering av en byggnad från miljonprogrammet och jämförs sedan med en klimatsimulering där en ombyggnation av byggnadens indragna balkonger har gjorts. Studien ger konstruktionslösningar på hur en ombyggnation skulle kunna se ut. Resultatet visar att det går att minska energibehovet om balkongväggarna rivs och nya väggar konstrueras i liv med fasaden.
5

Kartläggning av energianvändning och beräkning av kallras vid fönster i en kulturhistoriskt värdefull byggnad / Mapping of the energy consumption and a calculation of cold draft at windows in an historical building

Hultman, Matilda January 2016 (has links)
Energianvändningen i världen har ökat kraftigt de senaste åren och byggnadssektorn är bidragande faktor till den ökningen. Byggnadssektorn står idag för närmare 40% av den totala energianvändningen och för en tredjedel av utsläppen av växthusgaser. För att minska energianvändningen och påverkan på klimatet finns stora vinster att hämta genom att energieffektivisera de befintliga byggnaderna.   De kulturhistoriska byggnaderna utgör en viktig del av det befintliga byggnadsbeståndet. Vid renovering av dessa byggnader måste hänsyn tas dels till energieffektivisering men även till det kulturhistoriska värdet hos byggnaden. Något som i dag kan vara ett komplext problem. Energiprestandan i en byggnad är väl förknippad med inomhusklimatet. Obehagligt inomhusklimat kan orsakas av flera anledningar. En anledning kan vara från kalla ytor i ett rum, då drag i form av kallras skapas. För att motverka drag i form av kallras krävs mer energi för att värma upp luften. Målet med studien är att kartlägga energianvändningen och dess förluster i en kulturhistoriskt värdefull byggnad belägen i Växjö. Samt att beräkna det kallras som uppstår i byggnadens djupa fönsternischer. Kartläggning av byggnaden görs i datorsimuleringsprogrammet VIP+ utifrån uppmätta värden från byggnadens ritningar. I programmet byggs även tvådimensionella konstruktionsdelar av fönsteranslutning i yttervägg upp som sedan används till beräkning av kallras. Kallraset beräknas med hjälp av ekvationer som Per Heiselberg har tagit fram tillsammans med de värden som kan avläsas i VIP+. Resultat av energisimuleringen visar att de största energiförlusterna sker genom transmission i klimatskalet, dvs 76 %. Resultatet visar även att kallraset som skapas i fönsterdörrarnas nisch inte uppfyller kraven från Folkhälsomyndigheten på luftrörelse under 0,15 m/s inom vistelsezonen när temperaturen understiger ca 0 oC.
6

Slitsade stålreglar för fönstermontage : En jämförande analys av karmreglar

Wallgren, Hanna January 2016 (has links)
No description available.
7

Utfackningsvägg av lättbetongblock i passivhus

Sundemo, Sörensson, Malin, Frederic January 2010 (has links)
Abstract This report intends through a case study to investigate if lightweight concrete is appropriate as main material in the outer wall of a seven storey residential building. A technical design is carried out in accordance with the definitions and requirements for passive houses, given by FEBY’s1 “Demand specification for passive houses”. A literature review is also carried out for a comparison between regular bolt wall and light weight concrete wall, with a focus on the safety of moisture. The lightweight concrete block used in the report is as a celblock produced by the company H+H Sweden AB. The methods used have resulted in compliance with requirements and recommendations from authorities. Calculations of energy, noise and moisture risk assessment has been carried out. The work has resulted in the conclusion that the lightweight concrete itself is not able to isolate in the extent necessary to obtain chosen U-value of 0,1 W/m2 ° C, without getting to thick. Therefore additional insulation is needed. There are few relevant reference objects built with only light weight concrete. A villa in Lomma, Sweden, has been designed but is not yet built. The house has no additional insulation and the climate screen consists only of light weight concrete and plaster. The multi storey building designed within this report has generally large windows, also to the north, which in passive house context is unusual. The large window areas result in greater thermal bridges around the windows and greater losses of heat through transmission. As compensation a very low U- value of 0,1 W/m2 ° C was set as a prerequisite from the start ensuring a positive energy balance. This action has proved necessary when implemented energy balance calculation resulted in the heating demand of 42 kWh/m2 per year. Maximum allowable energy for a passive house is according to FEBY under 50 kWh/m2 per year. There are several advantages identified when using light weight concrete. All problems related to moister are avoided with this completely mineral material. Light weight concrete offers good thermal insulation by its porosity. It has heat storing properties during the winters. The material is fireproof and free from chemicals. Together with additional insulation a quiet and healthy indoor environment is derived. It has been difficult to find potential risks of using concrete in the climate screen of a passive house. Passive house technology is relatively new, and passive house technology with concrete is even newer. In fact, the villa in Lomma is said to be the first in Sweden carried out in light weight concrete. A minor estimation upon the costs of a the insulated light weight concrete wall, contra a wood bolt wall has proved the light weight concrete wall to be twice as expensive. Perhaps the future will prove risks that have not yet been revealed?
8

Utfackningsvägg av lättbetongblock i passivhus

Sundemo, Sörensson, Malin, Frederic January 2010 (has links)
<p><strong>Abstract</strong></p><p>This report intends through a case study to investigate if lightweight concrete is</p><p>appropriate as main material in the outer wall of a seven storey residential building.</p><p>A technical design is carried out in accordance with the definitions and requirements</p><p>for passive houses, given by FEBY’s1 <em>“Demand specification for passive houses”</em>.</p><p>A literature review is also carried out for a comparison between regular bolt wall and</p><p>light weight concrete wall, with a focus on the safety of moisture.</p><p>The lightweight concrete block used in the report is as a celblock produced by the</p><p>company H+H Sweden AB.</p><p>The methods used have resulted in compliance with requirements and</p><p>recommendations from authorities. Calculations of energy, noise and moisture risk</p><p>assessment has been carried out.</p><p>The work has resulted in the conclusion that the lightweight concrete itself is not</p><p>able to isolate in the extent necessary to obtain chosen U-value of 0,1 W/m2 ° C,</p><p>without getting to thick. Therefore additional insulation is needed. There are few</p><p>relevant reference objects built with only light weight concrete. A villa in Lomma,</p><p>Sweden, has been designed but is not yet built. The house has no additional</p><p>insulation and the climate screen consists only of light weight concrete and plaster.</p><p>The multi storey building designed within this report has generally large windows,</p><p>also to the north, which in passive house context is unusual. The large window areas</p><p>result in greater thermal bridges around the windows and greater losses of heat</p><p>through transmission.</p><p>As compensation a very low U- value of 0,1 W/m2 ° C was set as a prerequisite from</p><p>the start ensuring a positive energy balance. This action has proved necessary when</p><p>implemented energy balance calculation resulted in the heating demand of 42</p><p>kWh/m2 per year. Maximum allowable energy for a passive house is according to</p><p>FEBY under 50 kWh/m2 per year.</p><p>There are several advantages identified when using light weight concrete. All</p><p>problems related to moister are avoided with this completely mineral material. Light</p><p>weight concrete offers good thermal insulation by its porosity. It has heat storing</p><p>properties during the winters. The material is fireproof and free from chemicals.</p><p>Together with additional insulation a quiet and healthy indoor environment is</p><p>derived.</p><p>It has been difficult to find potential risks of using concrete in the climate screen of</p><p>a passive house. Passive house technology is relatively new, and passive house</p><p>technology with concrete is even newer. In fact, the villa in Lomma is said to be the</p><p>first in Sweden carried out in light weight concrete. A minor estimation upon the</p><p>costs of a the insulated light weight concrete wall, contra a wood bolt wall has proved</p><p>the light weight concrete wall to be twice as expensive. Perhaps the future will prove</p><p>risks that have not yet been revealed?</p>
9

Åtgärder för att energieffektivisera befintliga industrilokaler vid renovering av klimatskal / Actions to improve energy efficiency of existing industrial buildings trough renovation of building envelope

Martinsson, Emil, Gradell Brandström, Sara January 1900 (has links)
För att minska energiförbrukningen i Sverige krävs att befintliga byggnaderen ergieffektiviseras. Det finns även befintliga lokaler i landet som är i behov av en sänkt energiförbrukning. Det sker ständigt initiativ kring arbete med energieffektivisering av framför allt bostadshus. När energiförbrukning ska sänkas i industrilokaler läggs fokus på att minska energiåtgången i de invändigaprocesserna men inte i det omgivande klimatskalet där transmissionen utgör en stor del av energiläckaget. Syftet med arbetet är att öka kunskapen om energieffektiva åtgärder vid renovering av klimatskal hos industrilokaler. Målet ä ratt ta fram olika lösningsförslag som reducerar energiläckaget vid renovering av befintliga industrilokaler anpassat till projektet Dalern. Projektet Dalern är en byggnad uppförd på Åland vid 1990 som används vid fallstudie av förbättrade tekniska lösningar. I rapporten behandlas följande tre frågeställningar. Vilka metoder finns för att energieffektivisera klimatskal hos industrilokaler? Vilka alternativ är mest energieffektiva? Vilka tekniska lösningar skulle fungera i projektet Dalern? För att besvara dessa frågeställningar har en litteraturstudie över vanliga, energisparande renoveringsmetoder utförts. Dokumentstudier har genomförts av referensobjektet Dalerns ritningar. Studien har resulterat i en fallstudie där olika åtgärder beräknats för att se vilka potentialer det finns att energieffektivisera klimatskalet. De resultat som framkommit av arbetet är att det finns många olika metoder att energieffektivisera framför allt husbyggnader. De åtgärder som ger en mest energieffektiv besparing är framför allt byte av fönster och dörrar samt tilläggsisolering av tak och väggar. I fallstudien har olika åtgärder beräknats med handberäkning och med hjälp av energiberäkningsprogrammet VIP-Energy. Byggnadsdelar, möten mellan byggnadsdelar och hela referensobjektets energianvändning har beräknats. Eftersom rapportens tyngdpunkt är energieffektivisering har värmeövergång, köldbryggor och specifik energianvändning beräknats med omsorg. Andra faktorer som tagits hänsyn till är fukt, lufftäthet och brand. Uträkningen i energiberäkningsprogrammet har resulterat i att referensobjektets genomsnittliga värmeövergång kan minska med cirka 30 % vid användning av rätt åtgärder. Referensobjektets specifika energianvändning kan minskas med cirka 33% efter åtgärder som enbart berör klimatskalet. / It’s necessary to make existing buildings more energy efficient in order to reduce the energy consumption in Sweden. There are also existing premises in the country which are in need of reduced energy consumption. Initiatives on energy efficiency takes place continuously. Particularly in residential buildings. When the energy consumption is to be reduced in industrial facilities, the focus is on reducing the consumption of the internal processes. The building envelope where the transmission is a major energy leakage is often forgotten. The purpose is to increase the knowledge of energy-efficient renovation of industrial facilities. The project Dalern is an industrial facility which was built in Åland in 1990. The building is used in a case study of improved technical solutions. Three following questions are covered by this report. Which methods are available to make the building envelope of industrial facilities more energy efficient? Which options are most energy efficient? Which technical solutions would work in the project Dalern? A literature study of common, energy-saving renovation techniques has been implemented to answer the questions above. Document studies have also been implemented on the project Dalern. The document studies have resulted in a case study where different actions have been calculated to see what potential there is to improve the energy efficiency of the building envelope. The result that has emerged from the work is that there are many different methods to improve energy efficiency, especially in residential buildings. The actions that provide the most energy efficient savings are primarily replacement of windows and doors as well as additional insulation of walls and roofs. In the case study, various actions have been calculated using hand calculations and with use of an energy calculation program called VIP-Energy. Structures, meetings between building components and the entire reference object’s energy consumption have been calculated. Heat transfer, thermal bridges and specific energy has been calculated with care since the report’s emphasis is energy efficiency. Other factors that has been taken in consideration are moist, air leakage and fire. The calculation in VIP-Energy has resulted in the reference object’s average heat transfer can be reduced by about 30 % when using the correct actions. The reference object’s specific energy consumption can be reduced by approximately 33 %. These reductions were affected only by actions that concern the building envelope.
10

KÖLDBRYGGOR I PREFABRICERADE SANDWICHVÄGGAR AV BETONG : DETALJERADE 2D-BERÄKNINGAR ENLIGT STANDARD ISO 10211:2017 / Thermal bridges in prefabricated concrete sandwich wall panels : Numerical calculations in 2D according to ISO 10211:2017

Kruth, Sebastian January 2018 (has links)
År 2010 beslutade Europaparlamentet att från år 2021 ska alla nya byggnadervara nära-nollenergibyggnader (NNE). I linje med förslaget fick myndigheten Boverket i uppdrag av regeringen att skapa Sveriges definition på NNE-byggnaderoch ta fram riktlinjer som är kopplade till energikraven. Första steget enligtKyoto-pyramiden för att effektivisera en byggnads energianvändning är att minskadess värmebehov där primära åtgärden är att förbättra byggnadens klimatskärm. En egenskap som påverkar klimatskärmens prestanda är köldbryggor som kan uppstå vid komponentanslutningar. Idag kan olika metoder och dimensionsval användas för att beräkna köldbryggor och utslaget kan variera kraftigt beroende dessa val. Enligt Boverket ska köldbryggor beräknas enligt standard ISO 13789:2017. Standarden hänvisar dock till två andra beräkningstandarder nämligen förenklad (ISO 14683) eller detaljerad beräkning (ISO 10211). Förutom detta kan beräkningen göras utifrån tre olika dimensionsval. Målet med denna studie var att utföra detaljerade tvådimensionella beräkningar enligt standard ISO 10211:2017 med köldbryggeberäkningsprogrammet Flixo. Detta med syfte att försöka reda ut den oklarhet som kan uppstå vid beräkning av köldbryggor samt belysa osäkerheten kring val av metod. Rapporten ska även fungera som ett beräkningsunderlag för ett antal köldbryggedetaljer som Veidekke Entreprenad i Stockholm kan nyttja vid behov. Simuleringar har utförts enligt standard ISO 10211:2017 för tre vanligt förekommande köldbryggor kopplat till sandwichväggar i betong. Dessa tre detaljer har beräknats för fyra olika prefab-leverantörer som Veidekke Entreprenad samarbetar med, där samtliga har relativt liknande konstruktionslösningar. Utifrån studien har en djupare inblick erhållits gällande köldbryggeproblematiken. Beskrivningar i standard 10211:2017 upplevs kunna förbättras med detaljerade exempel. Simuleringsprogrammet Flixos användarvänlighet och genomgångar bidrog till bättre förståelse. Från studien bedömdes att tre val för dimensioner ger en onödig förvirring där inre dimensioner upplevs mer överflödig än de andra två. Studien visar på i dessa fall märkbart varierade resultat för liknande konstruktionslösningar, vilket ger alarmerande signaler till användning av andra beräkningsmetoder, så som schabloniserade värden.

Page generated in 0.4416 seconds