31 |
Véhicule hybride et commande optimaleRousseau, Grégory 19 December 2008 (has links) (PDF)
Dans le contexte automobile actuel, étroitement lié à la volonté de réduire les émissions de CO2 dans l'atmosphère, les véhicules hybrides demeurent un passage obligé à court et moyen terme. Un véhicule hybride possède deux sources d'énergie pour assurer sa propulsion : en général un moteur thermique constitue la principale source d'énergie, tandis qu'un moteur électrique représente la source secondaire. La capacité d'un véhicule hybride à consommer moins de carburant, et à rejeter moins de CO2, provient de la présence du moteur électrique. Celui-ci peut être utilisé soit conjointement avec le moteur thermique, soit seul, aucun carburant n'étant alors consommé. La présence de ces deux sources d'énergie impose au système global d'être régi par une stratégie de contrôle déterminant la répartition du couple entre les deux moteurs en fonction de l'état de charge de la batterie. Cette répartition peut être déterminée pour être optimale vis-à-vis de critères tels que la consommation de carburant, les émissions de polluants, etc. L'objectif de la thèse est de développer des méthodes d'optimisation de la répartition de couple entre les deux moteurs d'un véhicule hybride, dans l'objectif de minimiser les émissions de CO2. Une première étape a consisté à développer des modèles représentatifs d'une architecture type adaptés aux types d'optimisation réalisée. Les algorithmes d'optimisation diffèrent selon qu'ils soient capables de traiter des problèmes hors-ligne, ou temps-réel. Parmi les algorithmes d'optimisation hors-ligne étudiés, la programmation dynamique a été utilisée pour déterminer le dimensionnement optimal des éléments principaux d'une architecture hybride, et en déterminer le gain théorique par rapport à une motorisation traditionnelle. Par ailleurs, un algorithme de tir original nommé SCOP a été développé, celui-ci permettant de traiter des problèmes de commande optimale avec contraintes sur l'état, tout en multipliant les performances par 50 par rapport à la méthode de programmation dynamique. Une stratégie de contrôle temps-réel, basée sur l'Equivalent Consumption Minimization Strategy (ECMS) utilisant le principe de Pontryagin, a été développée et implémentée sur un prototype de véhicule hybride, une Smart équipée d'un alterno-démarreur. Les résultats obtenus démontrent de l'action de la stratégie pour la réduction de la consommation de carburant et des émissions de CO2.
|
32 |
Tenue à la fatigue des culasses : modélisation du traitement thermique et développement de nouvelles méthodes numériques.Comte, François 24 January 2006 (has links) (PDF)
AFIN D'OBTENIR LES PROPRIETES METALLURGIQUES OPTIMALES DU MATERIAU, LES CULASSES AUTOMOBILES EN ALLIAGE D'ALUMINIUM SUBISSENT UN TRAITEMENT THERMIQUE (TREMPE-REVENU) GENERANT D'IMPORTANTES CONTRAINTES RESIDUELLES. LEUR MODELISATION EST NECESSAIRE POUR POUVOIR PREDIRE LA TENUE EN FATIGUE POLYCYCLIQUE. LES CONTRAINTES RESIDUELLES ETANT PILOTEES PAR LA THERMIQUE DE TREMPE, IDENTIFIER L'HISTOIRE THERMIQUE DU REFROIDISSEMENT EST PRIMORDIAL. LES COEFFICIENTS D'ECHANGE H(T), MODELISANT LES TRANSFERTS THERMIQUES AVEC L'EXTERIEUR, DETERMINENT LE REFROIDISSEMENT. LEUR EVOLUTION EST DEFINIE PAR UNE FONCTION ANALYTIQUE SIMPLE DONT LES PARAMETRES SONT RECALES PAR OPTIMISATION A PARTIR DE DONNEES EXPERIMENTALES. UNE FOIS L'HISTOIRE THERMIQUE SIMULEE CORRECTEMENT, LES CONTRAINTES RESIDUELLES SONT OBTENUES SUITE A UN CALCUL MECANIQUE METTANT EN EVIDENCE, DANS LES REGIONS A RISQUE, DES ZONES DE TRACTION DEFAVORABLES A LA TENUE EN SERVICE. LA PRISE EN COMPTE DE CET ETAT INITIAL PERMET ALORS DE CARACTERISER LES ZONES CRITIQUES EXPERIMENTALEMENT OBSERVEES. PAR AILLEURS, AFIN DE RENDRE L'OUTIL OPERATIONNEL EN BE, IL EST NECESSAIRE DE PROPOSER UNE METHODE NUMERIQUE PERMETTANT DE DIMINUER LES DUREES DE SIMULATION POUR LA RESOLUTION D'UN PROBLEME D'EVOLUTION ET POUR LA RECHERCHE DIRECTE DE LA REPONSE STABILISEE D'UNE STRUCTURE SOUMISE A UN CHARGEMENT CYCLIQUE. L'APPROCHE DEVELOPPEE REPOSE SUR LA METHODE A GRAND INCREMENT DE TEMPS ET LA METHODE CYCLIQUE DIRECTE : L'EQUILIBRE GLOBAL, ECRIT SOUS SA FORME RESIDUELLE, EST RESOLU SUR UNE BASE D'ONDELETTES REDUITE. DES GAINS SIGNIFICATIFS EN TEMPS CPU SONT OBTENUS POUR LA RECHERCHE DU CYCLE STABILISE.
|
33 |
A new mapped infinite partition of unity method for convected acoustical radiation in infinite domainsMertens, Tanguy 23 January 2009 (has links)
Résumé:
Cette dissertation s’intéresse aux méthodes numériques dans le domaine de l’acoustique. Les propriétés acoustiques d’un produit sont devenues une part intégrante de la conception. En effet, de nos jours le bruit est perçu comme une nuisance par le consommateur et constitue un critère de vente. Il y a de plus des normes à respecter. Les méthodes numériques permettent de prédire la propagation sonore et constitue dès lors un outil de conception incontournable pour réduire le temps et les coûts de développement d’un produit.
Cette dissertation considère la propagation d’ondes acoustiques dans le domaine fréquentiel en tenant compte de la présence d’un écoulement. Nous pouvons citer comme application industrielle, le rayonnement d’une nacelle de réacteur d’avion. Le but de la thèse est de proposer une nouvelle méthode et démontrer ses performances par rapport aux méthodes actuellement utilisées (i.e. la méthode des éléments finis).
L’originalité du travail consiste à étendre la méthode de partition de l’unité polynomiale dans le cadre de la propagation acoustique convectée, pour des domaines extérieurs. La simulation acoustique dans des domaines de dimensions infinies est réalisée dans ce travail à l’aide d’un couplage entre éléments finis et éléments infinis.
La dissertation présente la formulation de la méthode pour des applications axisymétriques et tridimensionnelles et vérifie la méthode en comparant les résultats numériques obtenus avec des solutions analytiques pour des applications académiques (i.e. propagation dans un conduit, rayonnement d’un multipole, bruit émis par la vibration d’un piston rigide, etc.). Les performances de la méthode sont ensuite analysées. Des courbes de convergences illustrent à une fréquence donnée, la précision de la méthode en fonction du nombre d’inconnues. Tandis que des courbes de performances présentent le temps de calcul nécessaire pour obtenir une solution d’une précision donnée en fonction de la fréquence d’excitation. Ces études de performances montrent l’intérêt de la méthode présentée.
Le rayonnement d’un réacteur d’avion a été abordé dans le but de vérifier la méthode sur une application de type industriel. Les résultats illustrent la propagation pour une nacelle axisymétrique en tenant compte de l’écoulement et la présence de matériau absorbant dans la nacelle et compare les résultats obtenus avec la méthode proposée et ceux obtenus avec la méthode des éléments finis.
Les performances de la méthode de la partition de l’unité dans le cadre de la propagation convectée en domaines infinis sont présentées pour des applications académiques et de type industriel. Le travail effectué illustre l’intérêt d’utiliser des fonctions polynomiales d’ordre élevé ainsi que les avantages à enrichir l’approximation localement afin d’améliorer la solution sans devoir créer un maillage plus fin.
Summary:
Environmental considerations are important in the design of many
engineering systems and components. In particular, the environmental
impact of noise is important over a very broad range of engineering
applications and is increasingly perceived and regulated as an issue
of occupational safety or health, or more simply as a public
nuisance. The acoustic quality is then considered as a criterion in the product design process. Numerical prediction techniques allow to simulate vibro-acoustic responses. The use of such techniques reduces the development time and cost.
This dissertation focuses on acoustic convected radiation in outer domains such as it is the case for turbofan radiation. In the current thesis the mapped infinite partition of unity method is implemented within a coupled finite and infinite element model. This method allows to enrich the approximation with polynomial functions.
We present axisymmetric and three-dimensional formulations, verify and analyse the performance of the method. The verification compares computed results with the proposed method and analytical solutions for academic applications (i.e. duct propagation, multipole radiation, noise radiated by a vibrating rigid piston, etc.) . Performance analyses are performed with convergence curves plotting, for a given frequency, the accuracy of the computed solution with respect to the number of degrees of freedom or with performance curves, plotting the CPU time required to solve the application within a given accuracy, with respect to the excitation frequency. These performance analyses illustrate the interest of the mapped infinite partition of unity method.
We compute the radiation of an axisymmetric turbofan (convected radiation and acoustic treatments). The aim is to verify the method on an industrial application. We illustrate the radiation and compare the mapped infinite partition of unity results with finite element computations.
The dissertation presents the mapped partition of unity method as a computationally efficient method and illustrates its performances for academic as well as industrial applications. We suggest to use the method with high order polynomials and take the advantage of the method which allows to locally enrich the approximation. This last point improves the accuracy of the solution and prevent from creating a finer mesh.
|
34 |
Élaboration d'un propagateur global pour l'équation de Schrödinger & Application à la photodynamiqueLeclerc, Arnaud 14 November 2012 (has links) (PDF)
La Méthode de la Trajectoire Adiabatique Contrainte est développée dans le but de résoudre globalementl'équation de Schrödinger. Cette méthode utilise le formalisme de Floquet et une décomposition de Fourier pourdécrire les dépendances temporelles. Elle transforme ainsi un problème dynamique en un problème aux valeurspropres partiel dans un espace de Hilbert étendu au temps. Cette manipulation requiert l'application decontraintes sur les conditions initiales de l'état propre de Floquet recherché. Les contraintes sont appliquées parl'intermédiaire d'un opérateur absorbant artificiel. Cet algorithme est adapté à la description de systèmes dirigéspar des hamiltoniens dépendant explicitement du temps. Il ne souffre pas de l'accumulation d'erreurs au cours dutemps puisqu'il fournit une solution globale ; les erreurs éventuelles proviennent de la non-complétude des basesfinies utilisées pour la description moléculaire ou temporelle et de l'imperfection du potentiel absorbant dépendantdu temps nécessaire pour fixer les conditions initiales. Une forme générale de potentiel absorbant a étédéveloppée pour être en mesure d'intégrer un problème avec une condition initiale quelconque. Des argumentsrelatifs au suivi adiabatique dans le cas de Hamiltoniens non-hermitiens sont également présentés. Nous insistonssur le rôle des facteurs de phase géométrique. Les méthodes développées sont appliquées à des systèmesatomiques ou moléculaires soumis à des impulsions laser intenses, en relation avec la problématique du contrôlemoléculaire. Nous considérons plusieurs exemples : modèles d'atomes à deux ou trois niveaux, ion moléculairehydrogène et molécules froides de sodium.
|
35 |
Analyse mathématique et numérique de problèmes d'ondes apparaissant dans les plasmas magnétiquesImbert-Gérard, Lise-Marie 09 September 2013 (has links) (PDF)
Cette thèse étudie les aspects mathématiques et numériques de phénomènes d'ondes dans les plasmas magnétiques. La réflectométrie, une technique de sonde des plasmas de fusion, est modélisée par les équations de Maxwell. Le tenseur de permittivité présente dans ce modèle des valeurs propres ainsi que des termes diagonaux qui s'annulent. La relation de dispersion met en évidence deux phénomènes cruciaux : coupures et résonances, lorsque le nombre d'onde s'annule ou tend vers l'infini. La partie I rassemble les résultats numériques. La grande nouveauté réside dans la définition d'une solution résonante. En effet, à cause des coefficients s'annulant continument en changeant de signe, la solution peut être singulière, i.e. avoir une composante non intégrable. Cependant, grâce au principe d'absorption limite, une solution résonante est explicitement définie comme la limite de solutions intégrables du problème régularisé. L'expression théorique de la singularité est validée par des tests numériques du passage à la limite. La partie II concerne l'approximation numérique. Elle comprend la mise en place d'une nouvelle méthode numérique adaptée aux coefficients réguliers. Celle-ci est basée sur la formulation variationnelle Ultra Faible mais nécessite des fonctions de base spécifiques, construites comme approximations locales du problème adjoint. L'analyse de convergence est effectuée en dimension un, en dimension deux la construction des fonctions de base et leur propriété d'interpolation sont détaillées. La méthode d'ordre élevé obtenue permet de simuler le phénomène de coupure tandis que simuler le phénomène de résonance en dimension deux reste un défi.
|
36 |
Multi-scale modeling and simulation on buckling and wrinkling phenomena / Modélisation et simulation multi-échelles sur les phénomènes de flambage et de plissementHuang, Qun 18 January 2018 (has links)
L'objectif de cette thèse est de développer des techniques de modélisation et de simulation multi-échelle avancées et efficaces pour étudier les phénomènes d'instabilité dans trois structures d'ingénierie courantes: membrane, film/substrat et structures sandwich, en combinant la technique des coefficients de Fourier lentement variables (TSVFC) et la méthode numérique asymptotique (ANM). À cette fin, basée sur les équations de la plaque de Von Karman, la TSVFC été utilisée pour développer un modèle de Fourier à bidimensionnel (2D) qui a également été implémenté dans ABAQUS via sa sous-routine UEL. Ensuite, un 2D modèle de Fourier est construit pour le film/substrat. En outre, en utilisant leurs caractéristiques de déformation, un 1D modèle de Fourier est développé en utilisant à la fois le TSVFC et le CUF. Par la suite, sur la base d'une cinématique Zig-Zag d'ordre supérieur, un 2D modèle de Fourier est déduit pour une plaque sandwich. Les équations directrices pour les modèles ci-dessus sont discrétisées par la méthode des éléments finis, et les systèmes non linéaires résultants sont résolus par le solveur non linéaire efficace et robuste ANM. Ces modèles sont ensuite adoptés pour étudier les instabilités dans ces structures. Les résultats montrent que les modèles établis peuvent simuler avec précision et efficacité divers phénomènes d'instabilité. En outre, on constate que l'instabilité membranaire est sensible aux conditions aux limites et qu'il existe un paramètre sans dimension presque constant près du point de bifurcation pour différents cas de charge et paramètres géométriques, ce qui peut être utile pour prédire rapidement l'apparition des rides / The main aim of this thesis is to develop advanced and efficient multi-scale modeling and simulation techniques to study instability phenomena in three common engineering structures, i.e., membrane, film/substrate and sandwich structures, by combining the Technique of Slowly Variable Fourier Coefficients (TSVFC) and the Asymptotic Numerical Method (ANM). Towards this end, based on the Von Karman plate equations, the TSVFC has been firstly used to develop a two-dimensional (2D) Fourier double-scale model for membrane, which has also been implemented into ABAQUS via its subroutine UEL. Then a 2D Fourier model is constructed for film/substrate. Further, making use of deformation features of the film/substrate, a 1D Fourier model is developed by using both the TSVFC and the Carrera’s Unified Formulation (CUF). Subsequently, based on high-order kinematics belonging to Zig-Zag theory, a 2D Fourier model is deduced for sandwich plate. The governing equations for the above models are discretized by the Finite Element Method, and the resulting nonlinear systems are solved by the efficient and robust nonlinear solver ANM. These models are then adopted to study instabilities in these structures. Results show that the established models could accurately and efficiently simulate various instability phenomena. Besides, it’s found that the membrane instability is very sensitive to boundary conditions, and there exists a dimensionless parameter that is almost constant near bifurcation point for various loading cases and geometric parameters, which may be helpful for fast predicting the occurrence of wrinkles
|
37 |
Étude des discrétisations superconsistantes et application à la résolution numérique d’équations d’advection-diffusionDe l'Isle, François 12 1900 (has links)
No description available.
|
38 |
Development of a reference method based on the fast multipole boundary element method for sound propagation problems in urban environments : formalism, improvements & applications / Développement d’une méthode de référence basée sur la méthode par éléments de frontières multipolaires pour la propagation sonore en environnement urbain : formalisme, optimisations & applicationsVuylsteke, Xavier 10 December 2014 (has links)
Décrit comme l'un des algorithmes les plus prometteurs du 20ème siècle, le formalisme multipolaire appliqué à la méthode des éléments de frontière, permet de nos jours de traiter de larges problèmes encore inconcevables il y a quelques années. La motivation de ce travail de thèse est d'évaluer la capacité, ainsi que les avantages concernant les ressources numériques, de ce formalisme pour apporter une solution de référence aux problèmes de propagation sonore tri-dimensionnels en environnement urbain, dans l'objectif d'améliorer les algorithmes plus rapides déjà existants. Nous présentons la théorie nécessaire à l'obtention de l'équation intégrale de frontière pour la résolution de problèmes non bornés. Nous discutons également de l'équation intégrale de frontière conventionnelle et hyper-singulière pour traiter les artefacts numériques liés aux fréquences fictives, lorsque l'on résout des problèmes extérieurs. Nous présentons par la suite un bref aperçu historique et technique du formalisme multipolaire rapide et des outils mathématiques requis pour représenter la solution élémentaire de l'équation de Helmholtz. Nous décrivons les principales étapes, d'un point de vue numérique, du calcul multipolaire. Un problème de propagation sonore dans un quartier, composé de 5 bâtiments, nous a permis de mettre en évidence des problèmes d'instabilités dans le calcul par récursion des matrices de translations, se traduisant par des discontinuités sur le champs de pression de surface et une non convergence du solveur. Ceci nous a conduits à considérer le travail très récent de Gumerov et Duraiswamy en lien avec un processus récursif stable pour le calcul des coefficients des matrices de rotation. Cette version améliorée a ensuite été testée avec succès sur un cas de multi diffraction jusqu'à une taille dimensionnelle de problème de 207 longueur d'ondes. Nous effectuons finalement une comparaison entre un algorithme d'élément de frontière, Micado3D, un algorithme multipolaire et un algorithme basé sur le tir de rayons, Icare, pour le calcul de niveaux de pression moyennés dans une cour ouverte et fermée. L'algorithme multipolaire permet de valider les résultats obtenus par tir de rayons dans la cour ouverte jusqu'à 300 Hz (i.e. 100 longueur d'ondes), tandis que concernant la cour fermée, zone très sensible par l'absence de contribution directes ou réfléchies, des études complémentaires sur le préconditionnement de la matrice semblent requises afin de s'assurer de la pertinence des résultats obtenus à l'aide de solveurs itératifs / Described as one of the best ten algorithms of the 20th century, the fast multipole formalism applied to the boundary element method allows to handle large problems which were inconceivable only a few years ago. Thus, the motivation of the present work is to assess the ability, as well as the benefits in term of computational resources provided by the application of this formalism to the boundary element method, for solving sound propagation problems and providing reference solutions, in three dimensional dense urban environments, in the aim of assessing or improving fast engineering tools. We first introduce the mathematical background required for the derivation of the boundary integral equation, for solving sound propagation problems in unbounded domains. We discuss the conventional and hyper-singular boundary integral equation to overcome the numerical artifact of fictitious eigen-frequencies, when solving exterior problems. We then make a brief historical and technical overview of the fast multipole principle and introduce the mathematical tools required to expand the elementary solution of the Helmholtz equation and describe the main steps, from a numerical viewpoint, of fast multipole calculations. A sound propagation problem in a city block made of 5 buildings allows us to highlight instabilities in the recursive computation of translation matrices, resulting in discontinuities of the surface pressure and a no convergence of the iterative solver. This observation leads us to consider the very recent work of Gumerov & Duraiswamy, related to a ``stable'' recursive computation of rotation matrices coefficients in the RCR decomposition. This new improved algorithm has been subsequently assessed successfully on a multi scattering problem up to a dimensionless domain size equal to 207 wavelengths. We finally performed comparisons between a BEM algorithm, extit{Micado3D}, the FMBEM algorithm and a ray tracing algorithm, Icare, for the calculation of averaged pressure levels in an opened and closed court yards. The fast multipole algorithm allowed to validate the results computed with Icare in the opened court yard up to 300 Hz corresponding, (i.e. 100 wavelengths), while in the closed court yard, a very sensitive area without direct or reflective fields, further investigations related to the preconditioning seem required to ensure reliable solutions provided by iterative solver based algorithms
|
39 |
Élaboration d’un propagateur global pour l’équation de Schrödinger & Application à la photodynamique / Development of a global propagator for the Schrödinger equation & application to phtodynamicsLeclerc, Arnaud 14 November 2012 (has links)
La Méthode de la Trajectoire Adiabatique Contrainte est développée dans le but de résoudre globalementl’équation de Schrödinger. Cette méthode utilise le formalisme de Floquet et une décomposition de Fourier pourdécrire les dépendances temporelles. Elle transforme ainsi un problème dynamique en un problème aux valeurspropres partiel dans un espace de Hilbert étendu au temps. Cette manipulation requiert l’application decontraintes sur les conditions initiales de l’état propre de Floquet recherché. Les contraintes sont appliquées parl’intermédiaire d’un opérateur absorbant artificiel. Cet algorithme est adapté à la description de systèmes dirigéspar des hamiltoniens dépendant explicitement du temps. Il ne souffre pas de l’accumulation d’erreurs au cours dutemps puisqu’il fournit une solution globale ; les erreurs éventuelles proviennent de la non-complétude des basesfinies utilisées pour la description moléculaire ou temporelle et de l’imperfection du potentiel absorbant dépendantdu temps nécessaire pour fixer les conditions initiales. Une forme générale de potentiel absorbant a étédéveloppée pour être en mesure d’intégrer un problème avec une condition initiale quelconque. Des argumentsrelatifs au suivi adiabatique dans le cas de Hamiltoniens non-hermitiens sont également présentés. Nous insistonssur le rôle des facteurs de phase géométrique. Les méthodes développées sont appliquées à des systèmesatomiques ou moléculaires soumis à des impulsions laser intenses, en relation avec la problématique du contrôlemoléculaire. Nous considérons plusieurs exemples : modèles d’atomes à deux ou trois niveaux, ion moléculairehydrogène et molécules froides de sodium. / The Constrained Adiabatic Trajectory Method (CATM) allows us to compute global solutions of the time-dependent Schrödinger equation using the Floquet formalism and Fourier decomposition. The dynamical problem is thustransformed into a “static” problem, in the sense that the time will be included in an extended Hilbert space. Thisapproach requires that suitable constraints are applied to the initial conditions for the relevant Floquet eigenstate.The CATM is well suited to the description of systems driven by Hamiltonians with explicit and complicated timevariations. This method does not have cumulative errors and the only error sources are the non-completeness ofthe finite molecular and temporal basis sets used, and the imperfection of the time-dependent absorbing potentialwhich is essential to impose the correct initial conditions. A general form is derived for the absorbing potential,which can reproduce any dispersed boundary conditions. Arguments on adiabatic tracking in the case of nonhermitianHamiltonians are also presented. We insist on the role of geometric phase factors. The methods areapplied to atomic and molecular systems illuminated by intense laser pulses, in connection with molecular controlproblems. We study several examples : two or three-level atomic models, hydrogen molecular ion, cold sodiummolecules.
|
40 |
Réduction de modèles thermiques par amalgame modalOulefki, Abdelhakim 09 February 1993 (has links) (PDF)
On présente la méthode d'amalgame modal. Il s'agit d'une approche pour réduire un modèle d'état modal quelconque. La méthode est ici appliquée dans le cadre de la thermique. Le principe repose sur une partition judicieuse de l'espace d'état modal en quelques sous espaces disjoints. La dynamique de chaque sous espace est ensuite approchée au mieux par un pseudo-élément propre. L'optimalité de la démarche est prouvée au sens d'un critère d'écart quadratique de qualité. Le modèle obtenu conserve des liens formels avec le modèle d'origine. Du point de vue algorithmique, la méthode est automatique : on peut chercher le meilleur modèle réduit respectant une contrainte de précision et/ou de taille. La méthode est performante en temps de calcul. La réduction par amalgame modal est comparée à celles d'autres méthodes. Des exemples de réduction de modèles modaux 1D, 2D et 3D sont donnés.
|
Page generated in 0.0686 seconds