Spelling suggestions: "subject:"métododos variaciones"" "subject:"métododos variacional""
21 |
Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / Existence of multiple positive solutions for a class of quaselinear elliptic problems.MENESES, João Paulo Formiga de. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T18:38:15Z
No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) / Made available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1
JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5)
Previous issue date: 2016-11-25 / Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / In this work, using sub and supersolutions and variational methods on
Orlicz-Sobolev spaces, we study the existence of multiple positive solutions
for a class of quasilinear elliptic problems.
|
22 |
Existência e multiplicidade de soluções para uma classe de equações de Schrödinger com expoente supercríticoMoreira Neto, Sandra Imaculada 30 June 2014 (has links)
Made available in DSpace on 2016-06-02T20:27:41Z (GMT). No. of bitstreams: 1
5967.pdf: 689681 bytes, checksum: a9967726690acb5b17c1cb1b10fddbfe (MD5)
Previous issue date: 2014-06-30 / Neste trabalho, estabelecemos a existência e multiplicidade de soluções para uma classe de equações de Schrodinger quase lineares com não linearidades subcrítica ou supercrítica. A fim de utilizarmos métodos variacionais, aplicamos uma mudança de variável para reduzirmos as equações quase lineares a equações semilineares, cujos funcionais associados estão bem definidos em um espaço de Banach reflexivo, e em alguns casos, eles estão bem definidos em espaços de Sobolev clássicos. Nosso principal foco e tratar não linearidades supercríticas, e nossa principal dificuldade e a perda das imersães de Sobolev tanto contínuas quanto compactas. Para contornar isso, no primeiro problema, inspirados por [4], impomos condições de integrabilidade que relacionam as não linearidades, as quais podem mudar de sinal e necessitamos também, nesse caso, de provar a existência do primeiro autovalor para o operador Lu = Au A(u2)u, usando para isso os métodos de bifurcação e sub e supersolução. No outro problema, nos baseamos num argumento de truncamento, introduzido por del Pino e Felmer em [27], assim o problema fica reduzido a um problema subcrítico. E seguimos com a prova dos resultados usando métodos variacionais combinados com a iteração de Moser. Estabelecemos também a existência de solução para um problema ressonante, cuja prova faremos usando uma variação do Teorema de Operadores Monítonos, encontrado em [29].
|
23 |
Existência e multiplicidade de solução para uma classe de equações elípticas via teoria de Morse. / Existence and multiplicity of solution for a class of elliptic equations via Morse theory.PEREIRA, Denilson da Silva. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T17:05:28Z
No. of bitstreams: 1
DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5) / Made available in DSpace on 2018-07-25T17:05:28Z (GMT). No. of bitstreams: 1
DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5)
Previous issue date: 2010-12 / Neste trabalho estudamos a existência e multiplicidade de soluções para uma certa classe de problemas elípticos. Utilizaremos métodos variacionais juntamente com a teoria de Morse em dimensão infinita. / In this work, we study the existence and multiplicity of solution for a large class of Elliptic problems. The main tools used are variational methods together with the infinite dimensional Morse Theory.
|
24 |
Existência e Multiplicidade de Soluções Autossimilares para uma Equação do CalorCarvalho, Gilson Mamede de 13 April 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:10Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 705090 bytes, checksum: 6259c1312a92c4f8f051446d8ad30afc (MD5)
Previous issue date: 2012-04-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we obtain existence, nonexistence and multiplicity of solutions for the
elliptic partial differential equation
u 1 2 (x:ru) + "jujp1u = u; x 2 RN;
where N 3, " = 1, > 0 and 1 < p (N + 2)=(N 2). Such equation is obtained
when we look for self-similar solutions for certain nonlinear heat equations. To obtain
the main results, we use variational methods, more precisely, minimization arguments,
Lagrange multipliers theorem and elliptic regularity results. / Neste trabalho, obtemos resultados de existência, não existência e multiplicidade de
soluções para a equação diferencial parcial elíptica
u
1/2(x:ru) + "jujp1u = u; x 2 RN;
em que N 3, " =1, > 0 e 1 < p (N + 2)=(N 2). Tal equação é obtida quando
procuramos soluções autossimilares para certas equações do calor não-lineares. Para
a obtenção dos resultados principais, usamos métodos variacionais, mais precisamente,
argumentos de minimização, Teorema dos Multiplicadores de Lagrange e resultados de
regularidade elíptica.
|
25 |
Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growthYony Raúl Santaria Leuyacc 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.
|
26 |
Multiplicidade de soluções para problemas elípticos singulares envolvendo crescimento críticoXavier de Souza, Manassés 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:28:40Z (GMT). No. of bitstreams: 2
arquivo637_1.pdf: 901737 bytes, checksum: 0ab7823a865239707eb0c5143fe95131 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Usando métodos variacionais e o método de sub e super soluções, neste trabalho estudamos
existência e multiplicidade de soluções para algumas classes de problemas elípticos singulares
envolvendo crescimento crítico do tipo Trudinger-Moser.
Tratamos também de uma generalização para desigualdade de Trudinger-Moser e a
existência de uma função extremal. A prova deste resultado é baseada na análise de blow-up
|
27 |
Positive solutions for Schrödinger-Poisson type systems / Soluções positivas para sistemas do tipo Schrödinger-PoissonRodriguez, Edwin Gonzalo Murcia 09 June 2017 (has links)
In this thesis we study Schrödinger-Poisson systems and we look for positive solutions. Our work consists in three chapters. Chapter 1 includes some basic facts on critical point theory. In Chapter 2 we consider a fractional Schrödinger-Poisson system in the whole space R^N in presence of a positive potential and depending on a small positive parameter . We show that, for suitably small (i.e. in the \"semiclassical limit\") the number of positive solutions is estimated below by the Ljusternick-Schnirelmann category of the set of minima of the potential. Finally, in Chapter 3, we analyze a Schrödinger-Poisson system in R^3 under an asymptotically cubic nonlinearity. We prove the existence of positive, radial solutions inside a ball and in an exterior domain. / Nesta tese nós estudamos sistemas de Schrödinger-Poisson e procuramos soluções positivas. Nosso trabalho consiste em três capítulos. O Capítulo 1 contém alguns fatos básicos sobre a teoria de pontos críticos. No Capítulo 2 nós consideramos um sistema fracionário de Schrödinger-Poisson em todo o espaço R^N em presença de um potencial positivo e que depende de um pequeno parâmetro positivo . Nós mostramos que, para suficentemente pequeno (i.e. no limite semiclássico) o número de soluções positivas é estimado por abaixo pela categoria de Ljusternick-Schnirelmann dos conjuntos onde o potencial é mínimo. Finalmente, no Capítulo 3 nós analisamos um sistema Schrödinger-Poisson em R^3 sob a não linearidade assintoticamente cúbica. Mostramos a existência de soluções radiais positivas dentro de uma bola e em um domínio exterior.
|
28 |
Solução numérica de equações diferenciais para precificação de opçõesThomaz, Julio Cezar Alves 22 December 2005 (has links)
Made available in DSpace on 2015-03-04T18:50:52Z (GMT). No. of bitstreams: 1
dissertacao.pdf: 1038066 bytes, checksum: 0c944d0201d676758ed46389266e18f6 (MD5)
Previous issue date: 2005-12-22 / A formulação do problema de precificação de opções, envolve uma parte significantiva da teoria de processos estocásticos (incluindo equações diferenciais estocásticas). O objetivo desse trabalho é a análise numérica do modelo de Black e Scholes para precificação de opções Européias e Americanas. São apresentadas formulações de equações e inequações variacionais parabólicas associadas a esta modelagem. Após uma breve introdução de alguns conceitos sobre a teoria financeira, base econômica e estatística, apresenta-se o modelo de Black e Scholes para o prêmio de opções Européias e sua generalização para os contratos de opções Americanas. Também são modelados contratos de opções Européias e Americanas onde o investidor tem o direito de negociar dois ativos subjacentes, resultando em modelos bidimensionais também aproximados por métodos de elementos finitos. Por fim apresentam-se resultados numéricos de simulações para opções Européias e Americanas, em uma e duas dimensões.
|
29 |
On Hamiltonian elliptic systems with exponential growth in dimension two / Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão doisLeuyacc, Yony Raúl Santaria 23 June 2017 (has links)
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. / Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.
|
30 |
Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio / Multiplicity results for nonlinear Schrödinger equations with magnetic field via Morse theory and domain topologyNemer, Rodrigo Cohen Mota 02 December 2013 (has links)
Neste trabalho, estudamos a existência de soluções não triviais para uma classe de equações de Schrödinger não lineares envolvendo um campo magnético com condição de Dirichlet ou condição de fronteira mista Dirichlet-Neumann. Nos dois primeiros capítulos, damos uma estimativa para o número de soluções não triviais para o problema de Dirichlet em termos da topologia do domínio. Nos dois capítulos restantes, consideramos o problema de fronteira mista e estimamos o número de soluções não triviais em termos da topologia da porção da fronteira onde é prescrita a condição de Neumann. Em ambos os casos, usamos a teoria de categoria de Ljusternik-Schnirelmann e a teoria de Morse / We study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
|
Page generated in 0.1014 seconds