Spelling suggestions: "subject:"problema dde DIRICHLET"" "subject:"problema dee DIRICHLET""
41 |
Alguns teoremas de existência de gráficos mínimos em domínios não convexos do planoBuriol, Celene January 1995 (has links)
Este trabalho tem como objetivo provar a existência de gráficos mínimos em domínios do plano Será garantido através do Método de Perron a existência de um gráfico mínimo num dommio limitado do plano. Será também estudado o comportamento dessa solução na fronteira do seu domínio através do conceito de função barreira Serão provados três teoremas que garantem a existcncia de soluções do problema de Dirichlct para as mínimas em don11nios não corwe:xos c não compactos do plano com condições especiais de fronteira, sendo estes discutidn no trabalho de J Ripoll and F. Tomi [RT]. / This work has as objective to prove some existence thcorems Jor minimal graphs over planar domains lt will be guaranteed employ the Perron method one existence of one minimars graph in arbitrarv bounded domain. lt will be too studied this solution at the boundary through the concept o f barrier fi.mction We obtain three cxistcncc theorems to Dirichlct 's problem for non convex and non compacts domains having special boundary data being that results are containcd in the J. Ripoll's and F. Tomi 's works [RT].
|
42 |
O problema de Dirichlet assintótico para a equação das superfícies mínimas em uma variedade Cartan-Hadamard rotacionalmente simétricaPereira, Fabiano January 2015 (has links)
Neste trabalho estudamos o problema de Dirichlet assintótico para a equação das superfícies mínimas em uma superfície de Cartan-Hadamard rotacionalmente simétrica e mostramos que o problema e unicamente solúvel para qualquer dado contínuo em seu bordo assintótico. / In this work we study the asymptotic Dirichlet problem for the minimal surface equation on rotationally symmetric Cartan-Hadamard surfaces. We prove that the problem is uniquely solvave for any continuous asymptotic boundary data.
|
43 |
Alguns teoremas de existência de gráficos mínimos em domínios não convexos do planoBuriol, Celene January 1995 (has links)
Este trabalho tem como objetivo provar a existência de gráficos mínimos em domínios do plano Será garantido através do Método de Perron a existência de um gráfico mínimo num dommio limitado do plano. Será também estudado o comportamento dessa solução na fronteira do seu domínio através do conceito de função barreira Serão provados três teoremas que garantem a existcncia de soluções do problema de Dirichlct para as mínimas em don11nios não corwe:xos c não compactos do plano com condições especiais de fronteira, sendo estes discutidn no trabalho de J Ripoll and F. Tomi [RT]. / This work has as objective to prove some existence thcorems Jor minimal graphs over planar domains lt will be guaranteed employ the Perron method one existence of one minimars graph in arbitrarv bounded domain. lt will be too studied this solution at the boundary through the concept o f barrier fi.mction We obtain three cxistcncc theorems to Dirichlct 's problem for non convex and non compacts domains having special boundary data being that results are containcd in the J. Ripoll's and F. Tomi 's works [RT].
|
44 |
O problema de Dirichlet para a equação de hipersuperfície mínima em M x R com bordo assintótico prescritoTelichevesky, Miriam January 2010 (has links)
O objetivo central deste trabalho consiste em demonstrar a existência de gráficos mínimos C2,x com fronteira assintótica prescrita na variedade produto M R, onde M e completa, simplesmente conexa, com curvatura seccional KM satisfazendo KM ≤ -k2 < 0 e tal que, para algum p Є M, o subgrupo de isotropia de Iso(M) em p age de modo 2-pontos homogêneo nas esferas geodésicas centradas em p. / The main purpose of this work consists on proving the existence of minimal C2,x graphics with prescribed asymptotic boundary in the product manifold M R, where M is a complete, simply connected manifold with sectional curvature KM satisfying KM ≤ -k2 < 0 and such that, for some p 2 M, the isotropy subgroup of Iso(M) in p acts in a 2-points homogeneous way in the geodesic spheres centered in p.
|
45 |
[en] A PRIORI GRADIENT ESTIMATES, EXISTENCE AND NON-EXISTENCE FOR A MEAN CURVATURE EQUATION IN HYPERBOLIC SPACE / [pt] ESTIMATIVAS A PRIORI DO GRADIENTE, EXISTÊNCIA E NÃO-EXISTÊNCIA, PARA UMA EQUAÇÃO DA CURVATURA MÉDIA NO ESPAÇO HIPERBÓLICOELIAS MARION GUIO 07 August 2003 (has links)
[pt] Um resultado clássico no âmbito de equações diferenciais
parciais e de geometria diferencial é o seguinte: Dada uma
constante a existe uma condição da fronteira do domínio
(Omega) de maneira que o problema de Dirichlet para a
equação da curvatura média a no espaço Euclidiano é sempre
solúvel. Este é um teorema devido a Serrin (1969). Além
disso, se a condição de Serrin não for satisfeita, há um
resultado de não-existência. A partir disso foi perguntado
se um resultado similar valeria no espaço Hiperbólico. A
finalidade desta tese é dar uma resposta afirmativa a esta
pergunta, exibindo uma condição tipo Serrin. De maneira que
obtém-se existência de superfícies cujo gráfico tenha
curvatura média hiperbólica pré-determinada H(x) no espaço
hiperbólico. O resultado é sharp no sentido que se tal
condição for negada então não-existência pode ser
estabelecida. O ponto central é uma estimativa a priori do
gradiente de uma tal solução. / [en] A classical result in Partial Differential Equations and
Differential Geometrydue to Serrin (1969) is the following:
Given a constant (alfa) there exists a condition on the
boundary of the domain (omega)such that the Dirichlet
problem for the mean equation (alfa)is solvable. Besides,
if Serrin's condition fails there is a non-existence
result. Taking into account this classical result one may
ask if a similar theorem holds in hyperbolic space. The
goal of this thesis is to give a positive answer to this
question establishing a certain Serrin type condition. Thus
we obtain existence of surfaces whose graphs has prescribed
mean curvature H(x) in hyperbolic space. This result is
sharp because if the condition is not satisfied then a non-
existence result can be inferred. The main point of the
argument is some a priori gradient estimate and degree
theory.
|
46 |
Caracterización diferenciable y holomorfa de superficies topológicamente planasLlanos Valencia, Héctor Aquiles 16 January 2020 (has links)
Las superficies (2 - variedad conexa) homeomorfas a un abierto de la esfera S2, son llamadas superficies topológicamente planas. En esta tesis, caracterizamos a estas superficies y estudiamos la conexión entre estas características.
Es claro que el plano y la esfera son planas. Notemos que una característica que presentan estas dos superficies, es que ambas satisfacen el famoso Teorema de la Curva de Jordan, i.e., el complemento de cualquier curva cerrada simple en el plano o la esfera, tiene exactamente dos componentes conexas. Otra cualidad que se exhibe en estas dos superficies, es que toda 1-forma diferencial de clase C1 cerrada con soporte compacto necesariamente es exacta.
Finalmente, describimos la relación que mantienen estas características, además, obtenemos un resultado de rigidez. A saber, una superficie de Riemann homeomorfa a un abierto de S2 es biholomorfa a una abierto de la esfera de Riemann. / Tesis
|
47 |
Um caso particular da desigualdade de Heintze e KarcherMota, Andrea Martins da 15 September 2014 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-06-17T20:37:08Z
No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T14:12:03Z (GMT) No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T14:14:29Z (GMT) No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5) / Made available in DSpace on 2015-06-19T14:14:29Z (GMT). No. of bitstreams: 1
Dissertação-Andrea M da Mota.pdf: 827395 bytes, checksum: 3b513795b0e557b49dc4814527d37611 (MD5)
Previous issue date: 2014-09-15 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this notes is to prove in detail a theorem, due to Ernst
Heintze and Hermann Karcher, establishing an upper bound for the volume of
compact domains in a connected closed hypersurface immersed in Euclidean
space E. As application we will give an alternative proof of the Alexandrov’s
theorem, which states that the Euclidean spheres are the only embedded
closed hypersurfaces of constant mean curvature in E. / O objetivo deste trabalho é demonstrar em detalhes um teorema devido
a Ernst Heintze e Hermann Karcher que estabelece uma cota superior para
o volume de domínios compactos em uma hipersuperfície conexa, fechada e
mergulhada no espaço euclidiano E. Como aplicação será dada uma prova
alternativa do Teorema de Alexandrov, que caracteriza as esferas euclidianas
como as únicas hipersuperfícies conexas, fechadas e mergulhadas de curvatura
média constante em E.
|
48 |
O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano. / The method of sub and supersolutions for a (p, q) -Laplaciano type system.SILVA, José de Brito. 08 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-08T20:06:07Z
No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) / Made available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1
JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5)
Previous issue date: 2013-10 / Capes / Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema
do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado
e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente
asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de
Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema
em questão admite solução fraca positiva, via o método das sub-super-soluções / In this work we discuss the existence of weak positive solutions for a system (p, q)-
Laplacian with change of sign in the weight functions with bounded domain and smooth
boundary. To ensure the existence of weak positive solutions first will ensure a positive
solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the
"linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use
the existence of these solutions to ensure that the problem in question admits a weak
positive solution via the method of sub-super-solutions.
|
49 |
Regularidade no infinito de variedades de Hadamard e alguns problemas de Dirichlet assintóticosTelichevesky, Miriam January 2012 (has links)
Sejam M uma variedade de Hadamard com curvatura seccional KM ≤ −k2 < 0 e ∂ M sua fronteira assintótica. Dizemos que M satisfaz a condição de convexidade estrita se, dados x ∈ ∂∞M e W ⊂ ∂∞M aberto relativo contendo x, existe um aberto Ω ⊂ M de classe C2 tais que x ∈ Int (∂ Ω) ⊂ W e M \ Ω ´e convexo. Provamos que a condição de convexidade estrita implica que M éregular no infinito com relação ao operador Q[u] := div a(|∇u|) \ |∇u| ∇u definido no espa¸co de Sobolev W 1,p(M ), onde a ∈ C1([0, +∞)) satisfaz a(0) = 0, at(s) > 0 para todo s > 0, a(s) ≤ C (sp−1 + 1), ∀s ≥ 0, onde C > 0 é uma constante, e a(s) ≥ sq para algum q > 0 e para s ≈ 0 e supomos que é possível resolver problemas de Dirichlet em bolas (compactas) de M com dados contínuos no bordo. Segue disto que sob a condição de convexidade estrita, os problemas de Dirichlet para equação de hipersuperfície mínima e para o p-laplaciano, p > 1, são solúveis para qualquer dado contínuo prescrito no bordo assintótico. Também provamos que se M é rotacionalmente simétrica ou se inf BR+1 KM ≥ −e 2kR /R2+2 , R ≥ R∗, para certos R∗ e E > 0, então M satisfaz a condição de convexidade estrita. / Let M be Hadamard manifold with sectional curvature KM ≤ −k2, k > 0 and ∂∞M its asymptotic boundary. We say that M satisfies the strict convexity condition if, given x ∈ ∂∞M and a relatively open subset W ⊂ 2 ∂∞M containing x, there exists a C open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W and M \ Ω is convex. We prove that the strict convexity condition implies that M is regular at infinity relative to the operator Q [u] := div a(|∇u|) \ |∇u| ∇u , defined on the Sobolev space W 1,p(M ), where a ∈ C 1 ([0, ∞)) satisfies a(0) = 0, at(s) > 0 for all s > 0, a(s) ≤ C (s p−1 + 1), ∀s ≥ 0, where C > 0 is a constant, and a(s) ≥ sq , for some q > 0 and for s ≈ 0 and we suppose that it is possible to solve Dirichlet problems on (compact) balls of M with continuous boundary data. It follows that under the strict convexity condition, the Dirichlet problems for the minimal hypersurface and the p-Laplacian, p > 1, equations are solvable for any prescribed continuous asymptotic boundary data. We also prove that if M is rotationally symmetric or if inf BR+1 KM ≥ −e2kR/R2+2 , R ≥ R∗, for some R∗ and E > 0, then M satisfies the SC condition.
|
50 |
Condições do tipo Ambrosetti-Rabinowitz. / Ambrosetti-Rabinowitz type conditions.FERREIRA, Luciano dos Santos. 10 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-10T16:31:37Z
No. of bitstreams: 1
LUCIANO DOS SANTOS FERREIRA - DISSERTAÇÃO PPGMAT 2006..pdf: 536780 bytes, checksum: 06d259307302cbc1065d7863b2b8a96b (MD5) / Made available in DSpace on 2018-07-10T16:31:37Z (GMT). No. of bitstreams: 1
LUCIANO DOS SANTOS FERREIRA - DISSERTAÇÃO PPGMAT 2006..pdf: 536780 bytes, checksum: 06d259307302cbc1065d7863b2b8a96b (MD5)
Previous issue date: 2006-04 / CNPq / Neste trabalho, mostramos a existência de solução para o problema conhecido como um problema de Dirichlet não-linear. As principais ferramentas são os Teoremas de Deformação, Passo da Montanha e os Métodos de Mínimização. / n this work, we show the existence of solutions for the problem known how the nonlinear Dirichlet of problem. The main tools used are the Deformation, Mountain Pass Theorems and the Minimization of Methods.
|
Page generated in 0.0459 seconds