131 |
Kovariantní smyčková gravitace / Covariant Loop Quantum GravityIrinkov, Pavel January 2017 (has links)
In this thesis we offer a broad introduction into loop quantum gravity against the backdrop of the quantum gravity research as a whole. We focus on both the canonical and covariant version of the theory. In the latter version we investigate the dynamics of some simple configurations in the simplified setting of Ponzano-Regge model. We ascertain that the naïve approach to define a consistent dynamics, where the path integral's partition function is computed as a sum of amplitudes corresponding to all boundary and bulk states, fails in this case, on account of an appearance of divergences. This opens up space for the utilization of some more sophisticated methods.
|
132 |
Détection du pulsar de Vela et recherche de violation d'invariance de Lorentz avec le cinquième télescope de H.E.S.S. / Detection of the Vela pulsar and search for Lorentz invariance violation with the fifth H.E.S.S. telescopeChrétien, Mathieu 02 October 2015 (has links)
Le cinquième télescope (CT5) du réseau H.E.S.S. (High Energy Stereoscopic System) a été inauguré en 2012. H.E.S.S. est destiné à l’observation du ciel austral dans le domaine des rayons γ et CT5, dont le seuil est d’environ 30 GeV, a permis la détection du pulsar de Vela après 24 heures d’observations. Certains scénarios de gravitation quantique (QG) prédisent une violation d’invariance de Lorentz (LIV). Celle-ci se manifeste par l’ajout de termes ∝(E/EQG)n aux relations de dispersion du photon, où E est l’énergie du quanta de lumière, EQG l’énergie caractéristique des processus de QG et n l’ordre de la correction. Cette dépendance en énergie peut être testée par des mesures de temps de vol entre photons reçus de sources astrophysiques variables (noyaux actifs de galaxies), transitoires (sursauts γ) ou encore périodiques (pulsars). Cette thèse présente l’analyse des données recueillies par CT5 sur le pulsar de Vela. Une méthode de maximum de vraisemblance ayant déjà montré sa robustesse sur d’autres types de sources a été adaptée au cas du pulsar de Vela. Aucune déviation des relations de dispersion standard n’est observée, par conséquent des limites sont placées sur EQG. La plus contraignante est obtenue pour une correction linéaire superluminique aux relations de dispersion EQG > 7.0×1015 GeV. / The fifth telescope (CT5) of the H.E.S.S. array (High Energy Stereoscopic System) was inaugurated in 2012. H.E.S.S. is designed to scrutinize the southern γ ray sky and CT5, whose threshold is about 30 GeV, allowed the Vela pulsar detection in 24 hours observation time. Some quantum gravity (QG) scenarios predict a violation of Lorentz invariance (LIV). This could manifest by additional terms ∝(E/EQG)n to the photon dispersion relations, where E is the light quantum energy, EQG the typical scale at which QG processes are expected to occur and n the order of the correction. This energy dependence could be tested by time of flight measurements between photons emitted from variable (active galactic nuclei), transient (gamma ray bursts) or periodical (pulsars) astrophysical sources. This thesis presents the analysis of the CT5 collected data from the Vela pulsar. A maximum likelihood method already successfully applied to other source species has been adapted here to the Vela pulsar. No deviation from standard photon dispersion relations is observed, therefore limits have been placed on EQG. The most restrictive result has been obtained for a superluminal linear correction to the dispersion relations EQG > 7.0×1015 GeV.
|
133 |
Intégrabilité du chaos multiplicatif gaussien et théorie conforme des champs de Liouville / Integrability of Gaussian multiplicative chaos and Liouville conformal field theoryRemy, Guillaume 03 July 2018 (has links)
Cette thèse de doctorat porte sur l’étude de deux objets probabilistes, les mesures de chaos multiplicatif gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane en 1985 et il s’agit aujourd’hui d’un objet extrêmement important en théorie des probabilités et en physique mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, “Quantum geometry of bosonic strings”. Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme des champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Ceci est précisément ce que nous développerons pour le GMC sur le cercle unité. Nous écrirons les équations BPZ qui fournissent des relations non triviales sur le GMC. Le résultat final est la densité de probabilité pour la masse totale de la mesure de GMC sur cercle unité ce qui résout une conjecture établie par Fyodorov et Bouchaud en 2008. Par ailleurs, il s'avère que des techniques similaires permettent également de traiter un autre cas, celui du GMC sur le segment unité, et nous obtiendrons de même des formules qui avaient été conjecturées indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. La dernière partie de cette thèse consiste en la construction de la LCFT sur un domaine possédant la topologie d’une couronne. Nous suivrons les méthodes introduites par David- Kupiainen-Rhodes-Vargas même si de nouvelles techniques seront requises car la couronne possède deux bords et un espace des modules non trivial. Nous donnerons également des preuves plus concises de certains résultats connus. / Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC) measures and Liouville conformal field theory (LCFT). GMC measures were first introduced by Kahane in 1985 and have grown into an extremely important field of probability theory and mathematical physics. Very recently GMC has been used to give a probabilistic definition of the correlation functions of LCFT, a theory that first appeared in Polyakov’s 1981 seminal work, “Quantum geometry of bosonic strings”. Once the connection between GMC and LCFT is established, one can hope to translate the techniques of conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. This is precisely what we develop for GMC on the unit circle. We write down the BPZ equations which lead to non-trivial relations on the GMC. Our final result is an exact probability density for the total mass of the GMC measure on the unit circle. This proves a conjecture of Fyodorov and Bouchaud stated in 2008. Furthermore, it turns out that the same techniques also work on a more difficult model, the GMC on the unit interval, and thus we also prove conjectures put forward independently by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in 2009. The last part of this thesis deals with the construction of LCFT on a domain with the topology of an annulus. We follow the techniques introduced by David-Kupiainen- Rhodes-Vargas although novel ingredients are required as the annulus possesses two boundaries and a non-trivial moduli space. We also provide more direct proofs of known results.
|
134 |
De la renormalisation perturbative à la renormalisation non-perturbative dans les théories de champ sur groupe à interactions tensorielles / From perturbative to non-perturbative renormalization in Tensorial Group Field TheoriesLahoche, Vincent 10 October 2016 (has links)
Cette thèse présente un certain nombre d'outils permettant d'approfondir notre compréhension de la physique sous-jacente de théories des champs appelées GFTs (Group Field Theories). Ces théories trouvent leur origines dans différentes voies de recherches en gravité quantique, en particulier les mousses de spin et les tenseurs aléatoires, et on une interprétation de modèles d'espace-temps quantique, ou "pré-géométrique", les amplitudes de Feynman étant indexées par des triangulations. La compréhension du passage entre cette vision "discrète" et notre espace-temps continue reste le grand défi de ces théories, défi pour lequel la renormalisation, la construction de théories effectives, la recherche de point fixes et de transitions de phases s'avère primordiale, et c'est dans le but de comprendre les outils nécessaires à cette description que cette thèse a vu le jour. Nous nous attacherons dans un premier temps à donner une description concise de la renormalisation perturbative, et à l'établissement d'un système d'équations fermées décrivant exactement l'ordre dominant de la théorie. Dans un second temps, nous détaillerons la mise en application de méthodes non-perturbative. Le groupe de renormalisation fonctionnel en premier lieu, permettra de donner une première description non-perturbative de ces théories, et de voir apparaître certain points fixes non-triviaux. Une approche constructive enfin, discutée sur deux modèles, ouvre la voie vers un programme visant à donner une définition rigoureuse de ces théories dans un régime non-perturbatif. / This thesis presents a number of tools to deepen our understanding of the underlying physics theories called fields GFTs (Group Field Theories). These theories found their origins in different approaches of quantum gravity, in particular spin foams and random tensors, and are interpreted as quantum space-time or "pre-geometric" models, the amplitudes of Feynman being indexed by triangulations. The understanding of the passage between this "discrete" vision to our continuous space-time remains the great challenge of these theories, for which renormalization, effective theories, research of fixed points and phase transitions proves paramount, and it is the aim of this thesis to understand the tools required for this description. In a first time, we will focus to give a concise description of the perturbative renormalization, and the establishment of a closed system of equations describing exactly the leading order of the theory. Secondly, we will detail the implementation of nonperturbative methods. The functional renormalization group in the first place, providing a first non-perturbative description of these theories, and some nontrivial fixed points. Finally, a constructive approach discussed on two models open the way to a rigorous definition of these theories beyond the perturbative level.
|
135 |
Gravité quantique à boucles et géométrie discrète / Loop Quantum Gravity and Discrete GeometryZhang, Mingyi 21 July 2014 (has links)
Dans ce travail de thèse , je présente comment extraire les géométries discrètes de l'espace-temps de la formulation covariante de la gravitaté quantique à boucles, qui est appelé le formalisme de la mousse de spin. LQG est une théorie quantique de la gravité qui non-perturbativement quantifie la relativité générale indépendante d'un fond fixe. Il prédit que la géométrie de l'espace est quantifiée, dans lequel l'aire et le volume ne peuvent prendre que la valeur discrète. L'espace de Hilbert cinématique est engendré par les fonctions du réseau de spin. L'excitation de la géométrie peut être parfaitement visualisée comme des polyèdres floue qui collées à travers leurs facettes. La mousse de spin définit la dynamique de la LQG par une amplitude de la mousse de spin sur un complexe cellulaire avec un état du réseau de spin comme la frontiére. Cette thèse présente deux résultats principaux. Premièrement, la limite semi-classique de l'amplitude de la mousse de spin sur un complexe simplicial arbitraire avec une frontière est complètement étudiée. La géométrie discrète classique de l'espace-temps est reconstruite et classée par les configurations critiques de l'amplitude de la mousse de spin. Deuxièmement, la fonction de trois-point de LQG est calculé. Il coïncide avec le résultat de la gravité discrète. Troisièmement, la description des géométries discrètes de hypersurfaces nulles est explorée dans le cadre de la LQG. En particulier, la géométrie nulle est décrit par une structure singulière euclidienne sur la surface de type espace à deux dimensions définie par un feuilletage de l'espace-temps par hypersurfaces nulles. / In this thesis, I will present how to extract discrete geometries of space-time fromthe covariant formulation of loop quantum gravity (LQG), which is called the spinfoam formalism. LQG is a quantum theory of gravity that non-perturbative quantizesgeneral relativity independent from a fix background. It predicts that the geometryof space is quantized, in which area and volume can only take discrete value. Thekinematical Hilbert space is spanned by Penrose's spin network functions. The excita-tion of geometry can be neatly visualized as fuzzy polyhedra that glued through theirfacets. The spin foam defines the dynamics of LQG by a spin foam amplitude on acellular complex, bounded by the spin network states. There are three main results inthis thesis. First, the semiclassical limit of the spin foam amplitude on an arbitrarysimplicial cellular complex with boundary is studied completely. The classical discretegeometry of space-time is reconstructed and classified by the critical configurations ofthe spin foam amplitude. Second, the three-point function from LQG is calculated.It coincides with the results from discrete gravity. Third, the description of discretegeometries of null hypersurfaces is explored in the context of LQG. In particular, thenull geometry is described by a Euclidean singular structure on the two-dimensionalspacelike surface defined by a foliation of space-time by null hypersurfaces. Its quan-tization is U(1) spin network states which are embedded nontrivially in the unitaryirreducible representations of the Lorentz group.
|
136 |
Géométrie quantique dans les mousses de Spins : de la théorie topologique BF vers la relativité générale / Quantum geometry in Spin foams : from the topological BF theory towards general relativityBonzom, Valentin 23 September 2010 (has links)
La gravité quantique à boucles a fourni un cadre d’étude particulièrement bien adapté aux théories de jauge définies sans métrique fixe et invariante sous difféomorphismes. Les excitations fondamentales de cette quantification sont appelées réseaux de spins, et dans le contexte de la relativité générale donnent un sens à la géométrie quantique au niveau canonique. Les mousses de spins constituent une sorte d’intégrale de chemins adaptée aux réseaux de spins, et donc destinée à permettre le calcul des amplitudes de transition entre ces états. Cette quantification est particulièrement efficace pour les théories des champs topologiques, comme Yang-Mills 2d, la gravité 3d ou les théories BF, et des modèles ont aussi été proposés pour la gravité quantique en dimension 4.Nous discutons dans cette thèse différentes méthodes pour l’étude des modèles de mousses de spins.Nous présentons en particulier des relations de récurrence sur les amplitudes de mousses de spins. De manière générique, elles codent des symétries classiques au niveau quantique, et sont susceptible de permettre de faire le lien avec les contraintes hamiltoniennes. De telles relations s’interprètent naturellement en termes de déformations élémentaires sur des structures géométriques discrètes, telles que simplicielles. Une autre méthode intéressante consiste à explorer la façon dont on peut réécrire les modèles de mousses de spins comme des intégrales de chemins pour des systèmes de géométries sur réseau, en s’inspirant à la fois des modèles topologiques et du calcul de Regge. Cela aboutit à une vision très géométrique des modèles, et fournit des actions classiques sur réseau dont on étudie les points stationnaires. / Loop quantum gravity has provided us with a canonical framework especially devised for back-ground independent and diffeomorphism invariant gauge field theories. In this quantization the funda-mental excitations are called spin network states, and in the context of general relativity, they give ameaning to quantum geometry. Spin foams are a sort of path integral for spin network states, supposed to enable the computations of transition amplitudes between these states. The spin foam quantization has proved very efficient for topological field theories, like 2d Yang-Mills, 3d gravity or BF theories. Different models have also been proposed for 4-dimensional quantum gravity.In this PhD manuscript, I discuss several methods to study spin foam models. In particular, I present some recurrence relations on spin foam amplitudes, which generically encode classical symme-tries at the quantum level, and are likely to help fill the gap with the Hamiltonian constraints. These relations can be naturally interpreted in terms of elementary deformations of discrete geometric struc-tures, like simplicial geometries. Another interesting method consists in exploring the way spin foam models can be written as path integrals for systems of geometries on a lattice, taking inspiration from topological models and Regge calculus. This leads to a very geometric view on spin foams, and gives classical action principles which are studied in details.
|
137 |
Divergence des mousses de spins : Comptage de puissances et resommation dans le modèle platSmerlak, Matteo 07 December 2011 (has links)
L’objet de cette thèse est l’étude du modèle plat, l’ingrédient principal du programme de quantification de la gravité par les mousses de spins, avec un accent particulier sur ses divergences. Outre une introduction personnelle au problème de la gravité quantique, le manuscrit se compose de deux parties. Dans la première, nous obtenons une formule exacte pour le comptage de puissances des divergences de bulles dans le modèle plat, notamment grâce à des outils de théorie de jauge discrète et de cohomologie tordue. Dans la seconde partie, nous considérons le problème de la limite continue des mousses de spins, tant du point de vue des théories de jauge sur réseau que du point de vue de la group field theory. Nous avançons en particulier une nouvelle preuve de la sommabilité de Borel du modèle de Boulatov-Freidel-Louapre, permettant un contrôle accru du comportement d’échelle dans la limite de grands spins. Nous concluons par une discussion prospective du programme de renormalisation pour les mousses de spins. / In this thesis we study the flat model, the main buidling block for the spinfoam ap- proach to quantum gravity, with an emphasis on its divergences. Besides a personal introduction to the problem of quantum gravity, the manuscript consists in two part. In the first one, we establish an exact powercounting formula for the bubble divergences of the flat model, using tools from discrete gauge theory and twisted cohomology. In the second one, we address the issue of spinfoam continuum limit, both from the lattice field theory and the group field theory perspectives. In particular, we put forward a new proof of the Borel summability of the Boulatov-Freidel-Louapre model, with an improved control over the large-spin scaling behaviour. We conclude with an outlook of the renormalization program in spinfoam quantum gravity.
|
138 |
Short scale study of 4-simplex assembly with curvature, in euclidean Loop Quantum Gravity / Émergence de la géométrie classique, de la gravité quantique à boucle et corrections quantiquesCollet, François 29 November 2016 (has links)
Une étude d'un assemblage symétrique de trois 4-simplex en géométrie classique, de Regge et quantique. Nous étudions les propriétés géométriques et surtout la présence de courbure. Nous montrons que les géométries classique et de Regge de l'assemblage ont une courbure qui évolue en fonction de ses paramètres de bordure. Pour la géométrie quantique, une version euclidienne du modèle EPRL est utilisé avec une valeur pratique du paramètre Barbero-Immirzi pour définir l'amplitude de transition de l'ensemble et de ses composants. Un code C ++ est conçu pour calculer les amplitudes et étudier numériquement la géométrie quantique. Nous montrons qu'une géométrie classique, avec une courbure, émerge déjà à bas spin. Nous reconnaissons également l'apparition de configurations dégénérées et de leurs effets sur la géométrie attendue. / A study of symmetrical assembly of three euclidean 4-simplices in classical, Regge and quantum geometry. We study the geometric properties and especially the presence of curvature. We show that classical and Regge geometry of the assembly have curvature which evolves in function of its boundary parameters. For the quantum geometry, a euclidean version of EPRL model is used with a convenient value of the Barbero-Immirzi parameter to define the transition amplitude of the assembly and its components. A C++ code is design for compute the amplitudes and study numerically the quantum geometry. We show that a classical geometry, with curvature, emerges already at low spin. We also recognize the appearance of the degenerate configurations and their effects on the expected geometry.
|
139 |
Semiclassical analysis of loop quantum gravityConrady, Florian 12 September 2006 (has links)
In dieser Dissertation untersuchen und entwickeln wir neue Methoden, die dabei helfen sollen eine effektive semiklassische Beschreibung der kanonischen Loop-Quantengravitation und der Spinfoam-Gravitation zu bestimmen. Einer kurzen Einführung in die Loop-Quantengravitation folgen drei Forschungsartikel, die die Resultate der Doktorarbeit präsentieren. Im ersten Artikel behandeln wir das Problem der Zeit und einen neuen Vorschlag zur Implementierung von Eigenzeit durch Randbedingungen an Pfadintegrale: wir untersuchen eine konkrete Realisierung dieses Formalismus für die freie Skalarfeldtheorie. Im zweiten Artikel übersetzen wir semiklassische Zustände der linearisierten Gravitation in Zustände der Loop-Quantengravitation. Deren Eigenschaften deuten an, wie sich Semiklassizität im Loop-Formalismus manifestiert, and wie man dies benützen könnte, um semiklassische Entwicklungen herzuleiten. Im dritten Teil schlagen wir eine neue Formulierung von Spinfoam-Modellen vor, die vollständig Triangulierungs- und Hintergrund-unabhängig ist: mit Hilfe einer Symmetrie-Bedingung identifizieren wir Spinfoam-Modelle, deren Triangulierungs-Abhängigkeit auf natürliche Weise entfernt werden kann. / In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed.
|
140 |
Approaches to quantum gravityFlori, Cecilia 16 June 2011 (has links)
In dieser Arbeit beschäftigen wir uns mit zwei Ansätzen zur Quantengravitation (QG), die einander konträr gegenüberstehen: - Erstens mit der Loop Quantum Gravity (LQG), einem eher konservativen Ansatz zur QG, dessen Startpunkt eine Hamiltonsche Formulierung der klassischen Allgemeinen Relativitätstheorie (ART) ist, - zweitens mit der sogenannten Topos-Theorie, angewandt auf die Allgemeine Relativitätstheorie, die die mathematischen Konzepte der Quantentheorie (und möglicherweise auch der ART) radikal umformuliert, was eine immense Redefinition von Konzepten wie Raum, Zeit und Raumzeit zur Folge hätte. Der Grund für die Wahl zweier so verschiedener Ansätzen als Gegenstand dieser Arbeit liegt in der Hoffnung begründet, dass sich diese beiden Ansätze auf einen gemeinsamen Ursprung zurückführen lassen können und somit gegenseitig ergänzen können. Im ersten Teil dieser Arbeit führen wir den allgemeinen Formalismus der LQG ein und gehen dabei insbesondere auf den semiklassischen Sektor der Theorie ein; insbesondere untersuchen wir die semiklassischen Eigenschaften des Volumenoperators. Dieser Operator spielt in der Quantendynamik der LQG eine tragende Rolle, da alle bekannten dynamischen Operatoren auf den Volumenoperator zurückgeführt werden können. Aus diesem Grund ist es auerordentlich wichtig zu überprüfen, dass der klassische Limes des Volumenoperators wirklich mit dem klassischen Volumen übereinstimmt. Anschließend beschäftigen wir uns mit sogenannten Spin Foam Modellen (SFM), welche als ein kovarianter oder Pfadintegralzugang zur kanonischen LQG angesehen werden können. Diese Spin Foam Modelle beruhen auf einer Langrange-Formulierung der LQG mittels einer kovarianten sum-over-histories Beschreibung. Die Entwicklung eines Lagrange-Zuganges zur LQG wurde motiviert durch die Tatsache, dass es in der kanonischen Formulierung der LQG überaus schwierig ist, Übergangsamplituden auszurechnen. Allerdings weichen die Spin Foam Modelle, die wir in dieser Arbeit behandeln in einem entscheidenden Punkt von den bisher in der Literatur diskutierten ab, da wir die Holst-Wirkung Holst [1996] und nicht die Palatini-Wirkung als Ausgangspunkt nehmen. Dies ermöglicht es uns, explizit gewisse Zwangsbedingungen zu lösen, was in den gegenwärtig diskutierten SFM problematisch scheint. Im zweiten Teil dieser Arbeit führen wir in die Topos-Theorie ein und rekapitulieren, wie diese Theorie benutzt werden kann, um die Quantentheorie derart umzuformulieren, dass eine konsistente Quanten-Logik definiert werden kann. Darüber hinaus definieren wir auch eine Topos-Beschreibung der Quantentheorie in der sum-over-histories Formulierung. Unser Ansatz entscheidet sich vom gegenwärtigen consistent-histories Ansatz vor allem dadurch, dass das Konzept der konsistenten Menge (eine Menge von Historien, die nicht mit sich selbst interferieren) keine zentrale Rolle spielt, während es in letzterem grundlegend ist. Diese Tatsache bietet einen interessanten Ausgangspunkt, da eine der Hauptschwierigkeiten im consistent-histories Ansatz darin besteht, die richtige konsistente Menge der Propositionen von Historien zu finden: Im allgemeinen gibt es viele solcher Mengen, und die meisten davon sind nicht miteinander kompatibel. Wir zeigen, dass in unserer Topos-Beschreibung der sum-over-histories Quantentheorie jeder Proposition von Historien Wahrheitswerte zugeteilt werden können; daher ist das Konzept einer konsistenten Menge von Propositionen redundant. Dies bedeutet, dass es im Rahmen einer Quantengravitationstheorie möglich sein könnte, jeder Proposition von vierdimensionalen Metriken (welche als allgemein relativistisches Analogon einer Historie angesehen werden können) einen Wahrheitswert zuzuweisen. / One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of `space'' and `time''. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other.
|
Page generated in 0.0409 seconds