• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 48
  • 34
  • 8
  • 7
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 235
  • 56
  • 51
  • 48
  • 44
  • 40
  • 40
  • 39
  • 37
  • 33
  • 30
  • 29
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Operation of silicon-germanium heterojunction bipolar transistors on silicon-on-insulator in extreme environments

Bellini, Marco 02 March 2009 (has links)
Recently, several SiGe HBT devices fabricated on CMOS-compatible silicon on insulator (SOI) substrates (SiGe HBTs-on-SOI) have been demonstrated, combining the well-known SiGe HBT performance with the advantages of SOI substrates. These new devices are especially interesting in the context of extreme environments - highly challenging surroundings that lie outside commercial and even military electronics specifications. However, fabricating HBTs on SOI substrates instead of traditional silicon bulk substrates requires extensive modifications to the structure of the transistors and results in significant trade-offs. The present work investigates, with measurements and TCAD simulations, the performance and reliability of SiGe heterojunction bipolar transistors fabricated on silicon on insulator substrates with respect to operation in extreme environments such as at extremely low or extremely high temperatures or in the presence of radiation (both in terms of total ionizing dose and single effect upset).
182

Developing radiation hardening by design methodologies for single event mitigation in silicon-germanium bicmos technologies

Phillips, Stanley D. 08 July 2009 (has links)
Extreme environment applications impose stringent demands on technology platforms that are incorporated in electronic systems. Space is a classic extreme environment, encompassing both large temperature fluctuations as well as intense radiation fields. Silicon-germanium technology has emerged as a competitive platform for space-based applications, owing to its excellent low-temperature performance and total ionizing dose tolerance. This technology has however been repeatedly shown to be vulnerable to single event phenomena induced by galactic cosmic rays as well as trapped particles within the earth's geomagnetic field. To improve the radiation tolerance of systems incorporating SiGe components, modifications to fabrications steps (Radiation Hardening by Process, RHBP) and/or device/circuit topologies (Radiation Hardening by Design, RHBD) may be employed. For this thesis, two methodologies are analyzed, both RHBD techniques which come at no additional power/area penalty for implementation.
183

[en] HIGH SPEED SEMICONDUCTOR AND FR-4 INTEGRATED WAVEGUIDE / [pt] INTEGRAÇÃO DE CIRCUITOS DE ALTAS VELOCIDADES POR MEIO DE GUIA DE ONDA SEMICONDUTORES E SUBSTRATOS FR-4

VANESSA PRZYBYLSKI RIBEIRO MAGRI 28 June 2013 (has links)
[pt] Este trabalho de Tese apresenta a pesquisa e desenvolvimento de conexões de ondas guiadas sobre substratos semicondutores (SiGe, GaAs). A integração de circuitos digitais através de guias S-SIWG (Semiconductor Substrate Integrated Waveguide) utilizando formato de modulação QAM é avaliada e destacada. Conexões internas aos chips e entre chips são associadas com o novo padrão Gigabit Ethernet 802.3ba operando na taxa de 100 Gbit/s estendendo-se a aplicações de 0,5 – 1,5 Terahertz. É também apresentada a pesquisa e o desenvolvimento de guias e dispositivos de microondas utilizando substratos de baixo custo e altas perdas (FR-4), substratos cerâmicos de alta constante dielétrica (Er igual a 80) e aplicações em subsistemas híbridos integrados. / [en] This work presents the research, design and development of guided waves connections in semiconductor substrates (SiGe, GaAs). The integration of digital systems using Semiconductor Wave Guides (S-SIWG) with QAM modulation formats are highlighted. Ultra-fast inter-chip and inner-chip connections are associated with the new Gigabit Ethernet IEEE 802.3ba standard at 100Gbit/s extended to (0.5-1.5) Terahertz domain. Additionally fiber glass substrates with high losses (Teflon/FR-4) and high dielectric ceramic substrates (Er equal 80) are also developed to be integrated with microwave devices, analog printed circuits boards and high Speed digital circuits and systems.
184

Modelling of transceiver propagation characteristics through an analogue SiGe BiCMOS integrated circuit

Lambrechts, Johannes Wynand January 2013 (has links)
Thesis (PhD)--University of Pretoria, 2013. / Electrical, Electronic and Computer Engineering
185

LC-ladder and capacitive shunt-shunt feedback LNA modelling for wideband HBT receivers

Weststrate, Marnus 24 July 2011 (has links)
Although the majority of wireless receiver subsystems have moved to digital signal processing over the last decade, the low noise amplifier (LNA) remains a crucial analogue subsystem in any design being the dominant subsystem in determining the noise figure (NF) and dynamic range of the receiver as a whole. In this research a novel LNA configuration, namely the LC-ladder and capacitive shunt-shunt feedback topology, was proposed for use in the implementation of very wideband LNAs. This was done after a thorough theoretical investigation of LNA configurations available in the body of knowledge from which it became apparent that for the most part narrowband LNA configurations are applied to wideband applications with suboptimal results, and also that the wideband configurations that exist have certain shortcomings. A mathematical model was derived to describe the new configuration and consists of equations for the input impedance, input return loss, gain and NF, as well as an approximation of the worst case IIP3. Compact design equations were also derived from this model and a design strategy was given which allows for electronic design automation of a LNA using this configuration. A process for simultaneously optimizing the circuit for minimum NF and maximum gain was deduced from this model and different means of improving the linearity of the LNA were given. This proposed design process was used successfully throughout this research. The accuracy of the mathematical model has been verified using simulations. Two versions of the LNA were also fabricated and the measured results compared well with these simulations. The good correlation found between the calculated, simulated and measured results prove the accuracy of the model, and some comments on how the accuracy of the model could be improved even further are provided as well. The simulated results of a LNA designed for the 1 GHz to 18 GHz band in the IBM 8HP process show a gain of 21.4 dB and a minimum NF of only 1.7 dB, increasing to 3.3 dB at the upper corner frequency while maintaining an input return loss below -10 dB. After steps were taken to improve the linearity, the IIP3 of the LNA is -14.5 dBm with only a small degradation in NF now 2.15 dB at the minimum. The power consumption of the respective LNAs are 12.75 mW and 23.25 mW and each LNA occupies a chip area of only 0.43 mm2. Measured results of the LNA fabricated in the IBM 7WL process had a gain of 10 dB compared to an expected simulated gain of 20 dB, however significant path loss was introduced by the IC package and PCB parasitics. The S11 tracked the simulated response very well and remained below -10 dB over the feasible frequency range. Reliable noise figure measurements could not be obtained. The measured P1dB compression point is -22 dBm. A 60 GHz LNA was also designed using this topology in a SiGe process with ƒT of 200 GHz. A simulated NF of 5.2 dB was achieved for a gain of 14.2 dB and an input return loss below -15 dB using three amplifier stages. The IIP3 of the LNA is -8.4 dBm and the power consumption 25.5 mW. Although these are acceptable results in the mm-wave range it was however found that the wideband nature of this configuration is redundant in the unlicensed 60 GHz band and results are often inconsistent with the design theory due to second order effects. The wideband results however prove that the LC-ladder and capacitive shunt-shunt feedback topology is a viable means for especially implementing LNAs that require a very wide operating frequency range and also very low NF over that range. / Thesis (PhD(Eng))--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
186

Reducing jitter utilising adaptive pre-emphasis FIR filter for high speed serial links

Goosen, Marius Eugene 14 February 2011 (has links)
Jitter requirements have become more stringent with higher speed serial communication links. Reducing jitter, with the main focus on reducing data dependant jitter (DDJ), is presented by employing adaptive finite impulse response (FIR) filter pre-emphasis. The adaptive FIR pre-emphasis is implemented in the IBM 7WL 0.18 µm SiGe BiCMOS process. SiGe heterojunction bipolar transistors (HBTs) provide high bandwidth, low noise devices which could reduce the total system jitter. The trade-offs between utilising metal oxide semiconductor (MOS) current mode logic (CML) and SiGe bipolar CML are also discussed in comparison with a very high fT (IBM 8HP process with fT = 200 GHz) process. A reduction in total system jitter can be achieved by keeping the sub-components of the system jitter constant while optimising the DDJ. High speed CML circuits have been employed to allow data rates in excess of 5 Gb/s to be transmitted whilst still maintaining an internal voltage swing of at least 300 mV. This allows the final FIR filter adaptation scheme to minimise the DDJ within 12.5 % of a unit interval, at a data rate of 5 Gb/s implementing 6 FIR pre-emphasis filter taps, for a worst case copper backplane channel (30" FR-4 channel). The implemented integrated circuit (IC) designed as part of the verification process takes up less than 1 mm2 of silicon real estate. In this dissertation, SPICE simulation results are presented, as well as the novel IC implementation of the proposed FIR filter adaptation technique as part of the hypothesis verification procedure. The implemented transmitter and receiver were tested for functionality, and showed the successful functional behaviour of all the implemented CML gates associated with the first filter tap. However, due to the slow charge and discharge rate of the pulse generation circuit in both the transmitter and receiver, only the main operational state of the transmitter could be experimentally validated. As a result of the adaptation scheme implemented, the contribution in this research lies in that a designer utilising such an IC can optimise the DDJ, reducing the total system jitter, and hence increasing the data fidelity with minimal effort. / Dissertation (MEng)--University of Pretoria, 2011. / Electrical, Electronic and Computer Engineering / unrestricted
187

ADVANCED CMOS AND QUANTUM TUNNELING DIODES: MATERIALS, EXPERIMENT AND MODELING

Fakhimi, Parastou 28 August 2019 (has links)
No description available.
188

III-V semiconductors on SiGe substrates for multi-junction photovoltaics

Andre, Carrie L. 19 November 2004 (has links)
No description available.
189

SiGe BiCMOS RF ICs and Components for High Speed Wireless Data Networks

Svitek, Richard M. 28 April 2005 (has links)
The advent of high-fT silicon CMOS/BiCMOS technologies has led to a dramatic upsurge in the research and development of radio and microwave frequency integrated circuits (ICs) in silicon. The integration of silicon-germanium heterojunction bipolar transistors (SiGe HBTs) into established "digital" CMOS processes has provided analog performance in silicon that is not only competitive with III-V compound-semiconductor technologies, but is also potentially lower in cost. Combined with improvements in silicon on-chip passives, such as high-Q metal-insulator-metal (MIM) capacitors and monolithic spiral inductors, these advanced RF CMOS and SiGe BiCMOS technologies have enabled complete silicon-based RF integrated circuit (RFIC) solutions for emerging wireless communication standards; indeed, both the analog and digital functionalities of an entire wireless system can now be combined in a single IC, also known as a wireless "system-on-a-chip" (SoC). This approach offers a number of potential benefits over multi-chip solutions, such as reductions of parasitics, size, power consumption, and bill-of-materials; however, a number of critical challenges must be considered in the integration of such SoC solutions. The focus of this research is the application of SiGe BiCMOS technology to on-going challenges in the development of receiver components for high speed wireless data networks. The research seeks to drive SoC integration by investigating circuit topologies that eliminate the need for off-chip components and are amenable to complete on-chip integration. The first part of this dissertation presents the design, fabrication, and measurement of a 5--6GHz sub-harmonic direct-conversion-receiver (DCR) front-end, implemented in the IBM 0.5um 5HP SiGe BiCMOS process. The design consists of a fully-differential low-noise amplifier (LNA), a set of quadrature (I and Q)x~2 sub-harmonic mixers, and an LO conditioning chain. The front-end design provides a means to address performance limitations of the DCR architecture (such as DC-offsets, second-order distortion, and quadrature phase and amplitude imbalances) while enabling the investigation of high-frequency IC design complications, such as package parasitics and limited on-chip isolation. The receiver front-end has a measured conversion gain of ~18dB, an input second-order intercept point of +17.5dBm, and a noise figure of 7.2dB. The quadrature phase balance at the sub-harmonic mixer IF outputs was measured in the presence of digital switching noise; 90<degree> balance was achieved, over a specific range of LO power levels, with a square wave noise signal injected onto the mixer DC supply rails. The susceptibility of receiver I/Q balance to mixed-signal effects in a SoC environment motivates the second part of this dissertation --- the design of a phase and amplitude tunable, quadrature voltage-controlled oscillator (QVCO) for the on-chip synthesis of quadrature signals. The QVCO design, implemented in the Freescale (formerly Motorola) 0.18um SiGe:C RFBiCMOS process, uses two identical, differential LC-tank VCOs connected such that the two oscillator outputs lock in quadrature to the same frequency. The QVCO designs proposed in this work provide the additional feature of phase-tunability, i.e. the relative phase balance between the quadrature outputs can be adjusted dynamically, offering a simulated tuning range of ~90<degree>+/-10â ¹degree> in addition, a variable-gain buffer/amplifier circuit that provides amplitude tunability is introduced. One potential application of the QVCO is in a self-correcting RF receiver architecture, which, using the phase and amplitude tunability of the QVCO, could dynamically adjust the IF output quadrature phase and amplitude balance, in near real-time, in the analog-domain. The need for high-quality inductors in both the DCR and QVCO designs motivates the third aspect of this dissertation --- the characterization and modeling of on-chip spiral inductors with patterned ground shields, which are placed between the inductor coil and the underlying substrate in order to improve the inductor quality factor (Q). The shield prevents the coupling of energy away from the inductor spiral to the typically lossy Si substrate, while the patterning disrupts the flow of induced image currents within the shield. The experimental effort includes the fabrication and testing of a range of inductors with different values, and different types of patterned ground shields in different materials. Two-port measurements show a ~50% improvement in peak-Q and a ~20% degradation in self-resonant frequency for inductors with shields. From the measured results, a scalable lumped element model is developed for the rapid simulation of spiral inductors with and without patterned ground shields. The knowledge gained from this work can be combined and applied to a range of future RF/wireless SoC applications. The designs developed in this dissertation can be ported to other technologies (e.g. RF CMOS) and scaled to other frequency ranges (e.g. 24GHz ISM band) to provide solutions for emerging applications that require low-cost, low-power RF/microwave circuit implementations. / Ph. D.
190

Millimeter-Wave Harmonically-Tuned Silicon Power Amplifiers for High Efficiency

Mortazavi, Seyed Yahya 09 September 2016 (has links)
This works demonstrates the feasibility of the inverse-Class-F harmonic tuning approach for mm-wave silicon PAs. This research addresses the challenges and limitations of the high efficiency inverse-Class-F PAs for mm-wave silicon technology. This work proposes different load networks to mitigate the challenges which are verified with implementations at different mm-wave frequencies with the highest power efficiency performances reported so far: PAE= 50% @ 24 GHz, PAE = 43% @ 41 GHz, and PAE = 23% @ 94 GHz. The design methodology and detailed analysis of the proposed load networks presented and verified with implementation and measured results. / Ph. D.

Page generated in 0.0176 seconds