• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 19
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.
12

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.
13

Um sistema hiperbólico e o custo de controlabilidade para o sistema de Stokes via método da transmutação

Sousa Neto, Jose Ribeiro de 24 April 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T15:56:45Z No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:58:15Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Made available in DSpace on 2017-09-01T15:58:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) Previous issue date: 2017-04-24 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we studied the controllability cost for the Stokes system. Using the transmutation method, we show that the cost of driving the Stokes system to equilibrium at time T, is of order eC/T as T → 0+, which is of the same order of controllability of heat equation. For this, we have proved a exact controllability for the hyperbolic system with resistence term, by considering a geometric hypothesis on the control region. / Neste trabalho nos dedicamos a estudar o custo de controlabilidade para o sistema de Stokes. Usando o m´etodo da transmuta¸c˜ao, mostraremos que o custo de dirigir o sistema de Stokes ao equil´ıbrio no tempo T ´e de ordem eC/T , quando T → 0+, isto ´e, da mesma ordem de controlabilidade da equa¸c˜ao do calor. Para tornar isso poss´ıvel, provaremos um resultado de controlabilidade exata para o sistema hiperb´olico com termo de resistˆencia, o que ser´a feito com base em hip´oteses sobre a regi˜ao de controle.
14

Resultados teÃricos de controlabilidade para algumas EDPs nÃo-lineares da fÃsica / Theoretical controllability results for some nonlinear PDEs from physics

Ivaldo Tributino de Sousa 07 December 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Esta tese trata do controle nulo local de um problema de fronteira-livre para a equaÃÃo do calor semilinear 1D com controles distribuÃdos (apoiado localmente no espaÃo) ou controles de fronteira (atuando em x = 0). provamos que, se o tempo final T à fixado e o estado inicial à suficientemente pequeno, existe controles que dirigem o estado exatamente para descansar no tempo t = T. AlÃm disso, analisamos a controlabilidade nulo de um sistema nÃo-linear 1D que modela a interaÃÃo de um fluido e sua fronteira. O fluido à governado pela equaÃÃo de Burgers viscosa e os controles distribuÃdos. Por Ãltimo, vamos lidar com o sistema de Navier-Stokes e Boussinesq 3D, definido em um cubo. Neste contexto, provamos um resultado sobre a sua controlabilidade aproximada global por meio de controles de fronteira que atuam em alguma parte da faces do cubo. / This Thesis deals with the local null control of a free-boundary problem for the 1D semilinear heat equation with distributed controls (locally supported in space) or boundary controls (acting at x = 0). we prove that, if the final time T is fixed and the initial state is sufficiently small, there exists controls that drive the state exactly to rest at time t = T. Furthermore, we analyze the null controllability of a 1D nonlinear system which models the interaction of a fluid and its boundary. The fluid is governed by the viscous Burgers equation and the distributed controls. Lastly, we deal with the 3D Navier-Stokes and Boussinesq system, posed in a cube. In this context, we prove a result concerning its global approximate controllability by means of boundary controls which act in some part of cube faces.
15

Soluções particulares para as equações de Navier-Stokes tridimensionais transientes

Beck, Daniel January 2009 (has links)
Este Trabalho apresenta novas soluções exatas para as equações de Navier – Stokes transientes tridimensionais para escoamentos viscosos incompressíveis. Estas soluções são obtidas por meio de Split e Transformações Auto-Bäcklund. O procedimento de Split desacopla as equações de Navier – Stokes em dois sistemas de equações diferenciais parciais, um linear e outro não-linear, ambos não-homogêneos. O sistema linear, que contém somente termos viscosos e derivadas temporais, é resolvido via Transformações Auto-Bäcklund induzidas por relações de comutação, fornecendo o campo de velocidades. Os componentes do vetor velocidade são então substituídos no sistema não-linear a fim de obter o correspondente campo de pressões. A resolução do sistema não-linear para a pressão pode ser obtida tanto numericamente (via integração direta) quanto analiticamente, empregando a equação de Helmholtz. O objetivo do presente trabalho é encontrar expressões analíticas para o campo de velocidades e obter resultados numéricos para o campo de pressão associado. O caráter híbrido das soluções proporciona uma redução significativa do tempo de processamento requerido para a simulação de escoamentos viscosos, o qual praticamente se reduz ao tempo demandado para a tarefa de pós-processamento. Com esse objetivo em mente, foi desenvolvida uma formulação tridimensional escalar para a função corrente, a fim de reduzir o tempo requerido na tarefa mais dispendiosa de pós-processamento, a saber, o traçado das linhas de corrente em torno de corpos submersos de formato arbitrário. Neste estágio de desenvolvimento, esta formulação é empregada para produzir mapas de linhas de corrente para escoamentos viscosos em torno de uma esfera para números de Reynolds elevados. / This work presents new exact solutions to the unsteady three dimensional Navier-Stokes equations for incompressible viscous flows. These solutions are obtained by means of split and auto-Bäcklund transformations. The splitting procedure decouples the Navier-Stokes equations into a linear and a nonlinear inhomogeneous system of partial differential equations. The linear system, which contains only viscous terms and time derivatives, is solved via auto-Bäcklund transformations induced by commutation relations, furnishing the velocity field. The components of the velocity vector are then replaced into the nonlinear system to obtain the corresponding pressure field. The solution of the nonlinear system for the pressure variable can be carried out either numerically (by direct integration) or analytically, using the Helmholtz equation . The aim of the proposed work is to find analytical expressions for the velocity field and to obtain numerical results to the associated pressure field. The hybrid character of the solutions provides a significant reduction on the time processing required to simulate viscous flows, which virtually reduces to the time demanded to execute post-processing tasks. Taking this fact in mind, a three dimensional scalar formulation for the streamfunction was developed in order to simplify the most time-consuming post-processing task required, e.g., plotting the streamlines around arbitrary shaped bodies. At this stage of development, this formulation is employed to produce streamline maps for viscous flows around a sphere for high Reynolds numbers.
16

Analyse mathématique de l'équation de Kuznetsov : problème de Cauchy, questions d'approximations et problèmes aux bords fractals. / Mathematical analysis of the Kuznetsov equation : Cauchy problem, approximation questions and problems with fractals boundaries.

Dekkers, Adrien 22 March 2019 (has links)
Dans le contexte de l’acoustique on a systématisé la dérivation de modèles nonlinéaires(l’équation de Kuznetsov, l’équation KZK et la NPE). On a estimé le temps pourlequel des solutions régulières de ces modèles restent proches des solutions des systèmes deNavier-Stokes/Euler compressibles isentropiques (en précisant leur plus faible régularité) etétabli les résultats analogues entre les solutions des équations de KZK, NPE et Westerveltpar rapport à la solution de l’équation de Kuznetsov. Pour ce faire, on a étudié l’équationde Kuznetsov en commençant par le problème de Cauchy dans les cas visqueux (stabilité,unicité et existence globale des solutions régulières) et non-visqueux (caractère bien poséavec les estimations optimales du temps d’existence maximale des solutions régulières) etégalement dans un demi espace avec des conditions au limites périodiques en temps oudans un espace périodique dans une direction. On a aussi obtenu l’existence et l’unicité dessolutions faibles pour l’équation des ondes fortement amortie et l’équation deWestervelt surla plus large classe de domaines aux bords irréguliers, ainsi que la convergence asymptotiquedes solutions de l’équation de Westervelt avec conditions de Robin sur les bords préfractalsapproximant un bord fractal de type mixture de Koch. / In the framework of acoustic we systematize the derivation of nonlinear models(the Kuznetsov equation, the KZK equation and the NPE). We estimate the time for whichthe regular solutions of these models stay close of the solutions of the compressible isentropicNavier-Stokes/Euler systems (pointing out their weakest regularity) and establish similarresults between the solutions of the KZK, NPE and Westervelt equations with respectto the solutions of the Kuznetsov equation. To do so, we study the Kuznetsov equationbeginning by the Cauchy problem in the viscous case (stability, gobal well posedness ofregular solutions) and inviscid case (well posedness with optimal estimations of the maximalexistence time for regular solutions) and also in the half space with time periodic boundaryconditions or in a periodic in one direction space. We also obtain the existence and unicityof weak solutions for the strongly damped wave equation and the Westervelt equation in thelargest class of domains with irregular boundaries, along with the asymptotic convergenceof the solutions of the Westervelt equation with Robin boundary conditions on prefractalboundaries approximating a Koch mixture as fractal boundary.
17

Quelques résultats mathématiques sur les gaz à faible nombre de Mach / Some mathematical results on gases with small Mach number

Liao, Xian 24 April 2013 (has links)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En particulier, nous prenons en compte les effets de conductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe. Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel / This thesis is devoted to the study of the dynamics of the gases with small Mach number. The model comes from the complete Navier-Stokes equations when the Mach number goes to zero, and we aim at showing that it is well-posed. The viscous and inviscid cases are both considered. The physical coefficients may depend on the unknown density (or on the unknown temperature).In particular, we consider the effects of the thermal conductivity and hence large variations of entropy are allowed. Recall that if there is no thermal diffusion, then the low Mach number limit just implies the incompressibility condition. In the framework considered here, by introducing a new solenoidal velocity field, the system becomes a nonlinear coupling between a quasi-parabolic equation for the density and an evolutionary Stokes (or Euler) system for the velocity and the pressure. For the case with viscosity, we establish classical results, namely the strong solutions exist locally (resp. globally) in time for big (resp. small) initial data. We consider the Cauchy problem in the critical Besov spaces with the lowest regularity. Under a special relationship between the two physical coefficients, the system recasts in a simpler form and one may prove that there exist weak solutions with finite energy. In dimension two, this implies that strong solutions with finite energy exist for all positive times. In the inviscid case, we first prove the well-posedness result in endpoint Besov spaces, which can be embedded into the set of Lipschitzian functions. Continuation criterions and estimates for the lifespan are both established.If we suppose the initial data to be in the borderline Besov spaces with infinite Lebesgue exponent and to be of finite energy, we also have a local existence result. In dimension two, the lifespan goes to infinity when the density tends to a positive constant. Estimates for products and commutators, together with a priori estimates for the parabolic equations and the Stokes (or Euler) system with variable coefficients, are postponed in the appendix. These estimates are based on the Littlewood-Paley theory and the paradifferential calculus
18

Diffuse-Interface Simulations of Capillary Phenomena

Villanueva, Walter January 2007 (has links)
Fluid flows mainly driven by capillary forces are presented in this thesis. By means of modeling and simulations, interesting dynamics in capillary-driven flows are revealed such as coalescences, breakups, precursor films, flow instabilities, rapid spreading, rigid body motions, and reactive wetting. Diffuse-interface methods model a fluid interface as having a finite thickness endowed with physical properties such as surface tension. Two diffuse-interface models that are based on the free energy of the system are presented. The binary model, more specifically the coupled Navier-Stokes/Cahn-Hilliard equations, was used to study different two-phase flows including problems related to microfluidics. Numerical issues using this model have been addressed such as the need for mesh adaptivity and time-step restrictions. Moreover, the flexibility of this model to simulate 2D, axisymmetric, and 3D flows has been demonstrated. The factors affecting reproducibility of microdroplet depositions performed under a liquid medium are investigated. In the deposition procedure, sample solution is dispensed from the end of a capillary by the aid of a pressure pulse onto a substrate with pillar-shaped sample anchors. In both the experimental and numerical study it was shown that the deposited volume mainly depends on the capillary-substrate distance and anchor surface wettability. Furthermore, a critical equilibrium contact angle has been identified below which reproducible depositions are facilitated. The ternary model is developed for more complicated flows such as liquid phase sintering. With the introduction of a Gibbs energy functional, the governing equations are derived, consisting of convective concentration and phase-field equations which are coupled to the Navier-Stokes equations with surface tension forces. Arbitrary phase diagrams, surface energies, and typical dimensionless numbers are some input parameters into the model. Detailed analysis of the important capillary phenomena in liquid phase sintering such as reactive and nonreactive wetting and motion of two particles connected by a liquid bridge are presented. The dynamics of the wetting is found to match with a known hydrodynamic theory for spreading liquids. Factors affecting the equilibrium configuration of the particles such as equilibrium contact angles and volume ratios are also investigated. / QC 20100823
19

Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. / Controllability of some nonlinear PDEs and density and spectrum of minimal submanifolds in space forms

Vieira, Franciane de Brito 24 May 2017 (has links)
VIEIRA, F. B. Controlabilidade de algumas EDPs não lineares, e, densidade e espectro de subvariedades mínimas em espaço forma. 2017. 89 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T13:15:27Z No. of bitstreams: 1 2016_tese_fbvieira.pdf: 681898 bytes, checksum: d123b89ff8ddaa52a643807b847421b5 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Para o aluno. Alterar a data e incluir a conclusão, tanto no sumário como no final do texto. Conclusão é capítulo portanto numerado. Rocilda on 2017-04-19T14:54:37Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-04-19T16:23:39Z No. of bitstreams: 1 2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-24T11:15:25Z (GMT) No. of bitstreams: 1 2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) / Made available in DSpace on 2017-04-24T11:15:25Z (GMT). No. of bitstreams: 1 2016_tese_fbvieira.pdf: 683722 bytes, checksum: 8e8575ca8d8e8496b31047d5bc8c68c0 (MD5) Previous issue date: 2017-05-24 / In the first part of this thesis we deal with the 3D Navier-Stokes and Boussinesq systems in a cube. We prove some results concerning the global approximate controllability by means of boundary controls which act in some part of the boundary. They are generalizations and variants of some previous results by Guerrero, Imanuvilov and Puel. Still in the first part of this Thesis, we prove the internal and boundary local null controllability of a 1D parabolic PDE with nonlinear diffusion. Here, the main tools are Liusternik’s inverse function Theorem and appropriate Carleman estimates. In the second part of this Thesis, we consider M m minimal properly immersed submanifolds in a complete ambient space N n suitably close to a space form N n k of curvature −k ≤ 0. We are interested in the relation between the density function Θ(r) of M m and the spectrum of the Laplace-Beltrami operator. In particular, we prove that if Θ(r) has subexponential growth (when k < 0) or sub-polynomial growth (k = 0) along a sequence, then the spectrum of M m is the same as that of the space form N m k . Notably, the result applies to Anderson’s (smooth) solutions of Plateau’s roblem at infinity on the hyperbolic space H n , independently of their boundary regularity. We also give a simple condition on the second fundamental form that ensures M to have finite density. In particular, we show that minimal submanifolds of H n with finite total curvature have finite density. / Na primeira parte desta tese tratamos dos sistemas 3D de Navier-Stokes e Boussinesq em um cubo. Nós provamos alguns resultados sobre a controlabilidade aproximada global por meio de controles de bordo que agem em uma parte da fronteira. Estes reultados são generalizações e variações de alguns resultados anteriores de Guerrero, Imanuvilov e Puel. Ainda na primeira parte da tese, nós provamos a controlabilidade nula local interna e de bordo de uma EDP parabólica 1D com difusão não linear. Aqui, as ferramentas principais são o teorema da função inversa de Liusternik e desigualdades de Carleman adequadas. Na segunda parte desta tese, consideramos M m subvariedades mínimas propriamente imersas em um espaço ambiente completo N n adequadamente próximo a um espaço forma N n k de curvatura −k ≤ 0. Estamos interessados na relação entre a função densidade Θ(r) de M m e o espectro do operador Laplace-Beltrami. Em particular, provamos que se Θ(r) temum crescimento subexponencial (quando k < 0) ou bubpolinomial (k = 0) ao longo de uma sequência, então o espectro de M m é o mesmo do espaço forma N m k . Notavelmente, o resultado se aplica a soluções Anderson (suaves) do problema de Plateau no infinito sobre o espaço hiperbólico H n , independentemente da regularidade dos seus bordos. Nós também fornecemos uma condição simples sobre a segunda forma fundamental que garante que M tem densidade finita. Em particular, mostramos que subvariedades mínimas de H n com curvatura total finita te densidade finita.
20

Existência de atrator global para equações de Navier-Stokes sobre alguns domínios ilimitados em R2.

Silva, Jarbas Dantas da 18 June 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:19Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 903709 bytes, checksum: 4a8dba984b00ee5480eecf90097b2745 (MD5) Previous issue date: 2014-06-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the Navier-Stokes flow in R2 8> >>>>>><> >>>>>>: @u @t − ⌫!u + (u ·r)u + rp = f em ⌦ ⇥ [0,+1) , divu = r· u = 0 em ⌦⇥ [0,+1) , u = 0 sobre @⌦ ⇥ [0,+1) , u(·, 0) = u0 em ⌦, in an unbounded domain such that the Poincar´e s inequality is holds, i.e., there is a constant #1 > 0 such that we have the following inequality Z⌦ $2dx  1 #1 Z⌦ |r$|2dx, for all $ 2 H1 0 (⌦). We show the existence of global attractor in the natural phases spaces for this system exploring the energy equation of the problem / Neste trabalho, estudamos o sistema de equa¸c oes de Navier-Stokes em R2 8> >>>>>><> >>>>>>: @u @t − ⌫!u + (u ·r)u + rp = f em ⌦ ⇥ [0,+1) , divu = r· u = 0 em ⌦⇥ [0,+1) , u = 0 sobre @⌦ ⇥ [0,+1) , u(·, 0) = u0 em ⌦, em dom´ınios ilimitados sob os quais vale a desigualdade de Poincar´e, isto ´e, existe uma constante #1 > 0 tal que Z⌦ $2dx  1 #1 Z⌦ |r$|2dx, para todo $ 2 H1 0 (⌦). Provamos a exist encia de atrator global no espa¸co de fases natural para este sistema explorando a equa¸c ao de energia do problema.

Page generated in 0.0296 seconds