Spelling suggestions: "subject:"théorie dde représentation"" "subject:"théorie dee représentation""
31 |
Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and DeformationsButin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
|
32 |
Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformésHerlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
|
33 |
Représentations galoisiennes et phi-modules : aspects algorithmiquesLe Borgne, Jérémy 03 April 2012 (has links) (PDF)
Nous nous intéressons aux aspects algorithmiques de la théorie des représentations modulo p de groupes de Galois p-adiques. À cet effet, l'un des outils introduits par Fontaine est la théorie de ϕ-modules : un ϕ-module sur un corps K de caractéristique p est la donnée d'un espace vectoriel de dimension finie sur K muni d'un endomorphisme ϕ, semi-linéaire par rapport au morphisme de Frobenius sur K. Les représentations à coefficients dans un corps fini du groupe de Galois absolu de K forment une catégorie équivalente à la catégorie des ϕ-modules dits " étales " sur K. Le but des travaux rassemblés ici est donner des algorithmes pour décrire le plus complètement possible la représentation associée à un ϕ-module donné. Nous étudions en préambule les ϕ-modules sur les corps finis, ce qui nous permet d'obtenir de nouveaux résultats décrivant les polynômes tordus sur un corps fini, qui sont des ob jets utilisés notamment en théorie des codes correcteurs. Cela nous permet d'améliorer en partie l'algorithme dû à Giesbrecht pour la factorisation de ces polynômes. Nous nous intéressons ensuite à la catégorie des ϕ-modules sur un corps de séries formelles de caractéristique p. Nous donnons une classification des ob jets simples de cette catégorie lorsque le corps résiduel est algébrique- ment clos, et décrivons un algorithme efficace pour décomposer un ϕ-module en ϕ-modules " isoclines ". Nous donnons des applications à l'étude algorithmique des représentations de p-torsion de groupes de Galois p-adiques.
|
34 |
Schémas de Hilbert invariants et théorie classique des invariantsTerpereau, Ronan 05 November 2012 (has links) (PDF)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.
|
35 |
Métastabilité dans les systèmes avec lois de conservation / Metastability in systems with conservation lawsDutercq, Sébastien 22 June 2015 (has links)
Cette thèse comporte un résumé avec des formules mathématiques. Vous pouvez le consulter via le texte intégral du document à la dernière page. / This thesis contains an abstract with mathematical formulae. You can consult it via the complete text of the document in the back page.
|
36 |
Représentation sociale de la réussite de la mobilité internationale : le cas des jeunes diplômés marocains formés à l’étranger / Social representation of the success of international mobility : For young Moroccan graduates trained abroadYaou, Abdelkarim 14 December 2013 (has links)
L’ampleur du phénomène du retour des jeunes diplômés marocains formés à l’étranger et la rareté des contributions scientifiques restent les principaux catalyseurs de s’aventurier dans cette démarche de recherche. Dans cette perspective, nous avons opté pour une étude centrée sur la réussite de la mobilité internationale des jeunes diplômés marocains formés à l’étranger par le biais des représentations sociales. Elle a pour enjeu d’enrichir les avancées de recherches sur la mobilité internationale, et d’apporter des réponses pratiques et tangibles aux nombreuses questions qui se posent au sein du monde des entreprises et des affaires.Notre question de départ se compose de deux volets principaux. Le premier s’intéresse à la compréhension du contenu de la représentation sociale de la réussite de la mobilité internationale de notre population d’étude. Le deuxième volet propose de déterminer les variables qui expliquent cette réussite. Pour répondre à la problématique de ladite recherche, nous avons subdivisé cette étude en deux parties. La première éclaire les théories et concepts inspirés de disciplines variées. Elle traite, par la suite, de la formulation des hypothèses et la présentation du modèle de recherche. La deuxième partie met en exergue les apports empiriques au travers de deux études d’investigation. Primo, nous avons réalisé une étude qualitative menée auprès de trente-deux responsables d’entreprises et experts opérant dans le monde des affaires au Maroc. Secundo, nous avons effectué une étude quantitative destinée aux jeunes diplômés marocains formés à l’étranger. En définitive, nous avons obtenu deux cents quatre-vingt seize réponses à notre questionnaire.Les résultats de notre recherche apportent de diverses implications managériales, notamment sur le plan de la compréhension de la substance de la réussite des jeunes diplômés formés à l’étranger et la détermination des facteurs les plus significatifs expliquant cette réussite. / The magnitude of the return of young Moroccan graduates trained and scarce scientific contributions remain the main catalyst to adventurer in this research process. In this perspective, we opted for a study focusing on the success of the international mobility of young Moroccan graduates trained through social representations. Its challenge to enrich advanced research on international mobility and to provide practical and tangible answers to the many questions that arise in the business world.Our initial question consists of two main components. The first is interested in understanding the content of the social representation of the success of the international mobility of our study population. The second proposes to determine the variables that explain this success. To address the issue of such research, we divided the study into two parts. The first illuminates the theories and concepts inspired from various disciplines. It deals later, the formulation of hypotheses and the presentation of the research model. The second part highlights the empirical knowledge through two field studies. First, we conducted a qualitative study of thirty-two companies and consultants working in the business world leaders in Morocco. Second, we conducted a quantitative study for young Moroccan graduates trained. Ultimately, we got two hundred ninety-six responses to our questionnaire.The results of our research provide various managerial implications, especially in terms of understanding the essence of successful graduates trained and determination of the most significant factors behind this success.
|
37 |
Règles de fusion pour certains modules remarquables de l’algèbre quantique Uqsl2Robitaille-Grou, Philippe 08 1900 (has links)
Ce mémoire porte sur la théorie des représentations de l’algèbre quantique Uqsl2 en q une racine de l’unité. Il étudie plus précisément certains modules de l’algèbre LUqsl2, l’extension de Lusztig de Uqsl2, lorsque q² est une p-racine primitive de l’unité pour p un entier supérieur ou égal à 2. Quatre familles de LUqsl2-modules de dimension finie, qualifiés de modules remarquables, sont identifiées : les modules simples et projectifs ainsi que les modules et comodules de Weyl. L’algèbre Uqsl2 possède une structure d’algèbre de Hopf ; cette dernière peut être étendue sur LUqsl2. L’antipode découlant de cette structure permet de définir la notion de dualité de LUqsl2-modules, à partir de laquelle sont construits les comodules de Weyl, tandis que le coproduit permet de définir le produit tensoriel de LUqsl2-modules, aussi appelé la fusion de modules. Le mémoire détermine les règles de fusion des modules remarquables : le produit tensoriel de toute paire de modules remarquables est exprimé comme une somme directe de modules indécomposables. Quoique les règles de fusion entre modules simples et projectifs aient été obtenues par Bushlanov, Feigin, Gainutdinov et Tipunin (cf. [7]), celles impliquant au moins un module ou comodule de Weyl sont nouvelles. / This thesis is devoted to the representation theory of the quantum algebra Uqsl2 for q a root of unity. More precisely it studies some modules of the algebra LUqsl2, the Lusztig extension of Uqsl2, when q² is a primitive p-root of unity for p an integer greater than or equal to 2. Four families of finite dimensional LUqsl2-modules, called remarkable modules, are identified: simple and projective modules as well as Weyl modules and comodules. The algebra Uqsl2 has a Hopf algebra structure; the latter can be extended to LUqsl2. The antipode of this structure is used to define a duality of LUqsl2-modules, from which the Weyl comodules are built, while the coproduct is used to define a tensor product of LUqsl2-modules, also called fusion of modules. This thesis determines the fusion rules of remarkable modules: the tensor product of any pair of remarkable modules is expressed as a direct sum of indecomposable modules. Although the fusion rules between simple and projective modules were obtained by Bushlanov, Feigin, Gainutdinov and Tipunin (cf. [7]), those involving at least one Weyl module or comodule are new.
|
38 |
Algèbres de Hecke cyclotomiques : représentations, fusion et limite classique.Poulain d andecy, Loic 03 July 2012 (has links)
Une approche inductive est développée pour la théorie des représentations de la chaîne des algèbres de Hecke cyclotomiques de type G(m,1,n). Cette approche repose sur l'étude du spectre d'une famille commutative maximale, formée par les analogues des éléments de Jucys--Murphy.Les représentations irréductibles, paramétrées par les multi-partitions, sont construites avec l'aide d'une nouvelle algèbre associative, dont l'espace vectoriel sous-jacent est le produit tensoriel de l'algèbre de Hecke cyclotomique avec l'algèbre associative libre engendrée par les multi-tableaux standards.L'analogue de cette approche est présentée pour la limite classique, c'est-à-dire la chaîne des groupes de réflexions complexes de type G(m,1,n).Dans une seconde partie, une base des algèbres de Hecke cyclotomiques est donnée et la platitude de la déformation est montrée sans utiliser la théorie des représentations. Ces résultats sont généralisés aux algèbres de Hecke affines de type A.Ensuite, une procédure de fusion est présentée pour les groupes de réflexions complexes et les algèbres de Hecke cyclotomiques de type G(m,1,n). Dans les deux cas, un ensemble complet d'idempotents primitifs orthogonaux est obtenu par évaluation consécutive d'une fonction rationnelle.Dans une troisième partie, une nouvelle présentation est obtenue pour les sous-groupes alternés de tous les groupes de Coxeter. Les générateurs sont reliés aux arêtes orientées du graphe de Coxeter. Cette présentation est ensuite étendue, pour tous les types, aux extensions spinorielles des groupes alternés, aux algèbres de Hecke alternées et aux sous-groupes alternés des groupes de tresses. / An inductive approach to the representation theory of the chain of the cyclotomic Hecke algebras of type G(m,1,n) is developed. This approach relies on the study of the spectrum of a maximal commutative family formed by the analogues of the Jucys--Murphy elements.The irreducible representations, labelled by the multi-partitions, are constructed with the help of a new associative algebra, whose underlying vector space is the tensor product of the cyclotomic Hecke algebra with the free associative algebra generated by the standard multi-tableaux.The analogue of this approach is presented for the classical limit, that is for the chain of complex reflection groups of type G(m,1,n).In a second part, a basis of the cyclotomic Hecke algebras is given and the flatness of the deformation is proved without using the representation theory. These results are extended to the affine Hecke algebras of type A.Then a fusion procedure is presented for the complex reflection groups and the cyclotomic Hecke algebras of type G(m,1,n). In both cases, a complete set of primitive orthogonal idempotents is obtained by successive evaluations of a rational fonction.In a third part, a new presentation is obtained for the alternating subgroups of all Coxeter groups. The generators are related to oriented edges of the Coxeter graph. This presentation is then extended, for all types, to the spinor extensions of the alternating groups, the alternating Hecke algebras and the alternating subgroups of braid groups.
|
39 |
Matrices de décomposition des algèbres d'Ariki-Koike et isomorphismes de cristaux dans les espaces de FockGerber, Thomas 01 July 2014 (has links) (PDF)
Cette thèse est consacrée à l'étude des représentations modulaires des algèbres d'Ariki-Koike, et des liens avec la théorie des cristaux et des bases canoniques de Kashiwara via le théorème de catégorification d'Ariki. Dans un premier temps, on étudie, grâce à des outils combinatoires, les matrices de décomposition de ces algèbres en généralisant les travaux de Geck et Jacon. On classifie entièrement les cas d'existence et de non-existence d'ensembles basiques, en construisant explicitement ces ensembles lorsqu'ils existent. On explicite ensuite les isomorphismes de cristaux pour les représentations de Fock de l'algèbre affine quantique de type A affine. On construit alors un isomorphisme particulier, dit canonique, qui permet entre autres une caractérisation non-récursive de n'importe quelle composante connexe du cristal. On souligne également les liens avec la combinatoire des mots sous-jacente à la structure cristalline des espaces de Fock, en décrivant notamment un analogue de la correspondance de Robinson-Schensted-Knuth pour le type A affine.
|
40 |
Méthodes effectives en théorie de Galois différentielle et applications à l'intégrabilité de systèmes dynamiquesWeil, Jacques-Arthur 09 December 2013 (has links) (PDF)
Mes recherches portent essentiellement sur l''elaboration de m'ethodes de calcul formel pour l''etude constructive des 'equations diff'erentielles lin'eaires, plus particuli'erement autour de la th'eorie de Galois diff'erentielle. Celles-ci vont du d'eveloppement de la th'eorie sous-jacente aux algorithmes, en incluant leur implantation en Maple. Ces travaux ont en commun une approche exp'erimentale des math'ematiques o'u l'on met l'accent sur l'examen d'exemples les plus pertinents possibles. L''etude d'etaill'ee de cas provenant de la m'ecanique rationnelle ou de la physique th'eorique nourrit en retour le d'eveloppement de th'eories math'ematiques idoines. Mes travaux s'articulent suivant trois grands th'emes interd'ependants : la th'eorie de Galois diff'erentielle effective, ses applications 'a l'int'egrabilit'e de syst'emes hamiltoniens et des applications en physique th'eorique.
|
Page generated in 0.1499 seconds