• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 22
  • 16
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 110
  • 34
  • 23
  • 22
  • 21
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Geometric Integrators for Schrödinger Equations

Bader, Philipp Karl-Heinz 11 July 2014 (has links)
The celebrated Schrödinger equation is the key to understanding the dynamics of quantum mechanical particles and comes in a variety of forms. Its numerical solution poses numerous challenges, some of which are addressed in this work. Arguably the most important problem in quantum mechanics is the so-called harmonic oscillator due to its good approximation properties for trapping potentials. In Chapter 2, an algebraic correspondence-technique is introduced and applied to construct efficient splitting algorithms, based solely on fast Fourier transforms, which solve quadratic potentials in any number of dimensions exactly - including the important case of rotating particles and non-autonomous trappings after averaging by Magnus expansions. The results are shown to transfer smoothly to the Gross-Pitaevskii equation in Chapter 3. Additionally, the notion of modified nonlinear potentials is introduced and it is shown how to efficiently compute them using Fourier transforms. It is shown how to apply complex coefficient splittings to this nonlinear equation and numerical results corroborate the findings. In the semiclassical limit, the evolution operator becomes highly oscillatory and standard splitting methods suffer from exponentially increasing complexity when raising the order of the method. Algorithms with only quadratic order-dependence of the computational cost are found using the Zassenhaus algorithm. In contrast to classical splittings, special commutators are allowed to appear in the exponents. By construction, they are rapidly decreasing in size with the semiclassical parameter and can be exponentiated using only a few Lanczos iterations. For completeness, an alternative technique based on Hagedorn wavepackets is revisited and interpreted in the light of Magnus expansions and minor improvements are suggested. In the presence of explicit time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algorithm requires a special initiation step. Distinguishing the case of smooth and fast frequencies, it is shown how to adapt the mechanism to obtain an efficiently computable decomposition of an effective Hamiltonian that has been obtained after Magnus expansion, without having to resolve the oscillations by taking a prohibitively small time-step. Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as an initial value problem after a Wick-rotating the Schrödinger equation to imaginary time. The elliptic nature of the evolution operator restricts standard splittings to low order, ¿ < 3, because of the unavoidable appearance of negative fractional timesteps that correspond to the ill-posed integration backwards in time. The inclusion of modified potentials lifts the order barrier up to ¿ < 5. Both restrictions can be circumvented using complex fractional time-steps with positive real part and sixthorder methods optimized for near-integrable Hamiltonians are presented. Conclusions and pointers to further research are detailed in Chapter 6, with a special focus on optimal quantum control. / Bader, PK. (2014). Geometric Integrators for Schrödinger Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/38716 / Premios Extraordinarios de tesis doctorales
82

Beyond-the-dipole effects in strong-field photoionization using short intense laser pulses

Jobunga, Eric Ouma 23 November 2016 (has links)
Die Entwicklung Freier-Elektronen-Laser und einer neuen Generation von Strahlungsquellen erlaubt die Realisierung hoher Intensitäten und kurzer Pulsdauern. Im Regime niedriger Laserintensitäten war bisher die Dipolnäherung recht erfolgreich bei der Beschreibung der durch die Licht-Materie-Wechselwirkung erzeugten Dynamik, wodurch viele experimentell beobachtete Resultate reproduziert werden konnten. Bei den durch die neuen Strahlungsqullen erzeugten bisher unerreichten Intensitäten und Rönten-Wellenlängen kann die Dipolnäherung allerdings zusammenbrechen. Höhere Multipol-Wechselwirkungen, die mit dem Strahlungsdruck assoziiert werden, sollten dann erwartungsgemäß wichtig zur genauen Beschreibung der Wechselwirkungsdynamiken werden. In dieser Arbeit wird eine Methode zur Lösung der nichtrelativistischen zeitabhängigen Schrödingergleichung zur Beschreibung von Systemen mit einem einzelnen aktiven Elektron, das mit einem Laserfeld wechselwirkt, über die Dipolnäherung hinausgehend erweitert. Dabei wird sowohl die Taylor- als auch die Rayleight-Multipolentwicklung des Retardierungsterms ebener Wellen verwendet. Es wird erwartet, dass die Berücksichtigung höherer Ordnungen der Multipolwechselwirkung zu einer erhöhten Genauigkeit und Richtigkeit der Resultate führen. Weiterhin wird gezeigt, dass die Rayleigh-Multipolentwicklung für gleiche Laserparameter genauer ist und schneller zur Konvergenz der numerischen Rechnung führt. Die nicht-Dipoleffekte spiegeln is sowohl in den differentiellen als auch den totalen Ionisierungswahrscheinlichkeiten in Form von erhöhten Ionisierungsausbeuten, verzerrten ATI Strukturen und einer Asymmetrie in der Photoelektronenwinkelverteilung in der Polarisations und Propagationsrichtung wider. Es wird beobachtet, dass die nicht-Dipoleffekte mit der Intensität, Wellenlänge und Pulsdauer zunehmen. Es werden Ergebnisse sowohl für das Wasserstoffatom als auch das Heliumatom gezeigt. / The development of free-electron lasers and new generation light sources is enabling the realisation of high intensities and short pulse durations. In the weak-field intensity regime, the electric dipole approximation has been quite successful in describing the light-matter interaction dynamics reproducing many of the experimentally observed features. But at the unprecedented intensities and x-ray wavelengths produced by the new light sources, the electric dipole approximation is likely to break down. The role of higher multipole-order terms in the interaction Hamiltonian, associated with the radiation pressure, is then expected to become important in the accurate description of the interaction dynamics. This study extends the solution of the non-relativistic time dependent Schrödinger equation for a single active electron system interacting with short intense laser pulses beyond the standard dipole approximation. This is realized using both the Taylor and the Rayleigh plane-wave multipole expansion series of the spatial retardation term. The inclusion of higher multipole-order terms of the interaction is expected to increase the validity and accuracy of the calculated observables relative to the experimental measurements. In addition, it is shown that for equivalent laser parameters the Rayleigh multipole expansion series is more accurate and efficient in numerical convergence. The investigated non-dipole effects manifest in both differential and total ionization probabilities in form of the increased ion yields, the distorted above-threshold-ionization structure, and asymmetry of the photoelectron angular distribution in both polarization and propagation directions. The non-dipole effects are seen to increase with intensity, wavelength, and pulse duration. The results for hydrogen as well as helium atom are presented in this study.
83

Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation / Analysis and simulation of deterministic and stochastic Schrödinger equations. Applications to rotating Bose-Einstein condensates

Duboscq, Romain 28 November 2013 (has links)
Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées / The aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
84

Couplage entre auto-focalisation et diffusion Brillouin stimulée pour une impulsion laser nanoseconde dans la silice / Coupling between self-focusing and stimulated Brillouin scattering for nanosecond laser pulses in silica

Mauger, Sarah 29 September 2011 (has links)
Dans le cadre des études sur l’endommagement laser liées au projet Mégajoule, nous analysons le couplage entre l’auto-focalisation induite par effet Kerr et la rétrodiffusion Brillouin stimulée pour des impulsions de durée nanoseconde se propageant dans des échantillons de silice. L’influence de la puissance d’entrée, des modulations de phase ou d’amplitude ainsi que la forme spatiale du faisceau sur la dynamique de filamentation est discutée. Nous montrons qu’une modulation d’amplitude appropriée divisant l’impulsion incidente en train d’impulsions de l’ordre de la dizaine de picosecondes supprime l’effet Brillouin pour toute puissance incidente mais réduit notablement la puissance laser disponible. A l’inverse, des impulsions modulées en phase avec une largeur spectrale comparable peuvent subir de la filamentation multiple et une auto-focalisation à distance plus courte causées par des instabilités modulationnelles. Nous démontrons cependant l’existence d’une largeur spectrale critique à partir de laquelle la rétrodiffusion peut être radicalement inhibée par une modulation de phase, même pour des fortes puissances. Cette observation reste valide pour des faisceaux de forme carrée avec des profils spatiaux plus larges, qui s’auto-focalisent beaucoup plus rapidement et se brisent en filaments multiples sur de courtes distances. L’inclusion de la génération de plasma pour limiter la croissance des ondes pompe et Stokes est finalement abordée. / As part of the studies on laser damage linked to the Megajoule project, we analyze the coupling between the Kerr induce self-focusing and the stimulated Brillouin backscattering pour nanosecond optical pulses propagating in silica samples. The influence of the incident power, phase or amplitude modulations as well as the spatial profile of the pulse of the filamentation dynamic is discussed. We show that an appropriate amplitude modulation dividing the incident pulse in pulse trains of picosecond durations suppresses the Brillouin effect for any incident power but noticeably reduces the available average laser power. On the contrary, phase modulated pulses with a comparable spectral width can undergo multiple filamentation and self-focusing at a shorter distance, caused by modulational instabilities. We demonstrate however the existence of a critical spectral bandwidth from which the backscattering can be radically inhibited by a phase modulation, even for high powers. This conclusion remains valid for spatially broader squared pulses, which self-focus earlier and break into multiple filaments at shorter distances. The inclusion of plasma generation to limit the growth of pump and Stokes waves is finally addressed.
85

Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators

Johansson, Karoline January 2010 (has links)
<p>In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations.  They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators.</p><p>In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators.</p><p>The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation.</p><p>Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985).</p><p>In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take <em>B</em> as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x<sub>0</sub>, ξ<sub>0</sub>) such that no localization of the distribution at x<sub>0</sub>, belongs to <em>FB</em> in the direction ξ<sub>0</sub>. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols.</p> / <p>I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer.</p><p>I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna.</p><p>Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen.</p><p>Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se  Hörmander (1985).</p><p>I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter <em>B</em> vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x<sub>0</sub>, ξ<sub>0</sub>) så att ingen lokalisering av distributionen kring x<sub>0</sub>, tillhör <em>FB</em> i riktningen ξ<sub>0</sub>. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.</p>
86

Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators

Johansson, Karoline January 2010 (has links)
In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations.  They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators. In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators. The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation. Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985). In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take B as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x0, ξ0) such that no localization of the distribution at x0, belongs to FB in the direction ξ0. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols. / I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer. I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna. Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen. Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se  Hörmander (1985). I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter B vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x0, ξ0) så att ingen lokalisering av distributionen kring x0, tillhör FB i riktningen ξ0. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.
87

Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρία

Βλάχου, Αναστασία 09 October 2014 (has links)
Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος, όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνια (solitons) και β) Την γεωμετρία των ομαλών καμπυλών και επιφανειών του Ευκλείδειου χώρου). Ακολουθεί, το δεύτερο και κύριο μέρος, στο οποίο μελετάμε την σχέση τριών χαρακτηριστικών μη-γραμμικών εξισώσεων εξέλιξης, της εξίσωσης sine-Gordon, της τροποποιημένης εξίσωσης Korteweg de Vries (mKdV) και της μη γραμμικής εξίσωσης Schrödinger (NLS), με την θεωρία καμπυλών και επιφανειών. Αναλυτικότερα, στο πρώτο μέρος και πιο συγκεκριμένα στο πρώτο κεφάλαιο παρουσιάζουμε μια ιστορική αναδρομή στην έννοια του σολιτονίου. Στην συνέχεια αναζητούμε κυματικές-σολιτονικές λύσεις για τις εξισώσεις KdV και NLS. Κλείνουμε παραθέτοντας τις προϋποθέσεις κάτω από τις οποίες μια μη γραμμική εξίσωση είναι ολοκληρώσιμη. Επιλέγουμε να αναλύσουμε δύο από αυτές τις προϋποθέσεις, χρησιμοποιώντας συγκεκριμένα παραδείγματα, ενώ, για τις άλλες δύο, περιοριζόμαστε σε μια συνοπτική περιγραφή . Στο δεύτερο κεφάλαιο του εισαγωγικού μέρους γίνεται μια εκτενής αναφορά σε θεμελιώδεις έννοιες της διαφορικής γεωμετρίας. Πιο συγκεκριμένα, οι έννοιες αυτές σχετίζονται με την θεωρία καμπυλών και επιφανειών και για ορισμένες από αυτές παρουσιάζουμε κάποια αντιπροσωπευτικά παραδείγματα. Ακολουθεί το κύριο μέρος και ειδικότερα το πρώτο κεφάλαιο, στο οποίο, μελετώντας υπερβολικές επιφάνειες, καταλήγουμε σε ένα κλασικό μη γραμμικό σύστημα εξισώσεων. Είναι αυτό που οφείλουμε στον Bianchi και το οποίο ενσωματώνει τις εξισώσεις Gauss-Mainardi-Codazzi. Στην συνέχεια, περιοριζόμαστε στις ψευδοσφαιρικές επιφάνειες και έτσι καταλήγουμε στην εξίσωση sine-Gordon. Ακολουθεί η ενότητα 1.2, στην οποία βρίσκουμε τον μετασχηματισμό auto-Bäcklund για την εξίσωση sine-Gordon και περιγράφουμε την γεωμετρική διαδικασία για την κατασκευή ψευδοσφαιρικών επιφανειών. Στην ενότητα 1.3, χρησιμοποιώντας τον παραπάνω μετασχηματισμό Bäcklund, καταλήγουμε στο Θεώρημα Αντιμεταθετικότητας του Bianchi. Συνεχίζουμε με την ενότητα 1.4, στην οποία παρουσιάζουμε ψευδοσφαιρικές επιφάνειες, οι οποίες αντιστοιχούν σε σολιτονικές λύσεις της εξίσωσης sine-Gordon. Πιο αναλυτικά, στην υποενότητα 1.4.1 κατασκευάζουμε την ψευδόσφαιρα του Beltrami, η οποία αντιστοιχεί στην στάσιμη μονο-σολιτονική λύση. Στην υποενότητα 1.4.2 μελετάμε το ελικοειδές που δημιουργείται από την έλκουσα καμπύλη, δηλαδή την επιφάνεια Dini, την οποία και κατασκευάζουμε. Ακολουθεί η υποενότητα 1.4.3, όπου, χρησιμοποιώντας το θεώρημα μεταθετικότητας, καταλήγουμε στην λύση δύο-σολιτονίων για την εξίσωση sine-Gordon και συνεχίζουμε με την υποενότητα 1.4.4, όπου κατασκευάζουμε περιοδικές λύσεις των δύο-σολιτονίων γνωστές ως breathers. Στο δεύτερο κεφάλαιο μελετάμε την κίνηση συγκεκριμένων καμπυλών και επιφανειών, οι οποίες οδηγούν σε σολιτονικές εξισώσεις. Ειδικότερα, στην ενότητα 2.1 καταλήγουμε στην εξίσωση sine-Gordon μέσω της κίνησης μιας μη-εκτατής καμπύλης σταθερής καμπυλότητας ή στρέψης. Ακολουθεί η ενότητα 2.2, όπου η εξίσωση sine- Gordon προκύπτει ως η συνθήκη συμβατότητας για το 2 2 γραμμικό σύστημα AKNS. Στην συνέχεια, στην ενότητα 2.3 ασχολούμαστε με την κίνηση ψευδοσφαιρικών επιφανειών. Πιο συγκεκριμένα, στην υποενότητα 2.3.1 συνδέουμε την κίνηση μιας ψευδοσφαιρικής επιφάνειας με ένα μη αρμονικό μοντέλο πλέγματος, το οποίο ενσωματώνει την εξίσωση mKdV. Επιπλέον, στην υποενότητα 2.3.2 δείχνουμε ότι η καθαρά κάθετη κίνηση μιας ψευδοσφαιρικής επιφάνειας, παράγει το κλασικό σύστημα Weingarten. Ολοκληρώνουμε την ενότητα 2.3 με την κατασκευή των μετασχηματισμών Bäcklund τόσο για το μοντέλο πλέγματος, όσο και για το σύστημα Weingarten. Το κεφάλαιο κλείνει με την ενότητα 2.4, όπου μέσω της κίνησης μιας μη εκτατής καμπύλης μηδενικής στρέψης, καταλήγουμε στην εξίσωση mKdV. Στην συνέχεια μελετάμε την κίνηση των επιφανειών Dini και τελικά κατασκευάζουμε επιφάνειες που αντιστοιχούν στο τριπλά ορθογώνιο σύστημα Weingarten. Στο τρίτο και τελευταίο κεφάλαιο επικεντρωνόμαστε στην εξίσωση NLS. Πιο συγκεκριμένα, στην ενότητα 3.1 καταλήγουμε στην εξίσωση NLS μ’ έναν καθαρά γεωμετρικό τρόπο. Επιπλέον, κατασκευάζουμε επιφάνειες, οι οποίες αντιστοιχούν στην μονο-σολιτονική λύση της εξίσωσης NLS και παρουσιάζουμε γι’ αυτές κάποιες γενικές γεωμετρικές ιδιότητες. Το κεφάλαιο 3 ολοκληρώνεται με την ενότητα 3.3 όπου αρχικά λαμβάνουμε ακόμη μια φορά την εξίσωση NLS, χρησιμοποιώντας την μελέτη στην κινηματική των Marris και Passman. Κλείνουμε και αυτό το κεφάλαιο με τον auto- Bäcklund μετασχηματισμό για την εξίσωση NLS και επιπλέον παρουσιάζουμε χωρικά περιοδικές λύσεις της, γνωστές ως smoke-ring (δαχτυλίδι-καπνού). / The aim of this diploma thesis is to find a connection between modern soliton theory and classical differential geometry. More particularly, we begin with an introductory section, where we present the basic concepts regarding soliton equations and the geometry of smooth curves ans surfaces. This is followed by the main body of the thesis, which focuses on three partial differential equations, namely, the sine-Gordon equation, the modified Korteweg de Vries equation (mKdV) and the nonlinear Scrödinger equation (NLS), and their connection to the theory of curves and surfaces. The first introductory chapter is a historical overview of the notion of solitons. We then seek travelling wave solutions for the KdV and NLS equations. Closing, we quote the conditions under which a nonlinear equation is integrable. We choose to analyze in detail two of these conditions while we settle for a brief description of the other two. The second chapter is an extensive report on fundamental concepts of differential geometry, namely, those associated with the theory of curves and surfaces in Euclidean three-dimensional space, and we present some representative examples. Chapter 1 of the main part, opens with the derivation of a classical nonlinear system which we owe to Bianchi and embodies the Gauss-Mainardi-Codazzi equations. We then specialise to pseudospherical surfaces and produce the sine-Gordon equation. Section 1.2 includes the derivation of the auto-Bäcklund transformation for the sine-Gordon equation along with the geometric procedure for the construction of pseudospherical surfaces. In section 1.3, we use the above transformation to conclude to Bianchi’s Permutability Theorem. We continue to section 1.4, where we present certain pseudospherical surfaces. These surfaces correspond to solitonic solutions of the sine- Gordon equation, i.e. in subsection 1.4.1 we construct the pseudosphere which corresponds to the stationary single soliton solution. Also, in subsection 1.4.2 we examine the helicoid that is created by the tractrix, namely, the Dini surface. In section 1.4.3, by use of Bianchi’s Permutability Theorem, we end up in the two-soliton solution for the sine-Gordon equation and continue in the next subsection, where we present periodic two-soliton solutions, known as breathers. In Chapter 2, we show how certain motions of curves and surfaces can lead to solitonic equations. More precisely, in section 2.1, we arrive at the sine-Gordon equation, through the motion of an inextensible curve of constant curvature or torsion. Then, section 2.2 displays how the sine-Gordon equation arises as the compatibility condition for the linear 2 2 AKNS system. In section 2.3 we study the movement of pseudospherical surfaces. In particular, we connect, in subsection 2.3.1, the motion of a pseudospherical surface to a continuum version of an unharmonic lattice model, which encorporates the mKdV equation. Moreover, in subsection 2.3.2, we show that a purely normal motion of a pseudospherical surface produces the classical Weingarten system. We conclude section 2.3 by constructing the Bäcklund transformation both for the lattice model and the Weingarten system. The chapter ends with section 2.4, where through the motion of an inextensible curve of zero torsion, we produce the mKdV equation. Furthermore, we investigate the motion of Dini surfaces and, finally, construct surfaces corresponding to the triply orthogonal Weingarten system. The third and final chapter focuses on the NLS equation. In section 3.1 we produce the NLS equation through a purely geometric manner. We then construct surfaces, that correspond to the single-soliton solution of this equation, and also present certain general geometric properties of them. We conclude the final chapter with the auto-Bäcklund transformation for the NLS equation and the presentation of spatially periodic solutions, known as smoke-ring.
88

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

Schlesinger, Martin 06 February 2012 (has links) (PDF)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
89

Um estudo sobre a boa colocação local da equação não linear de Schrödinger cúbica unidimensional em espaços de Sobolev periódicos / A study about the locally well posed of cubic nonlinear Schrödinger equation in periodic Sobolev spaces

Romão, Darliton Cezario 25 March 2009 (has links)
In this work we study, in details, the Cauchy problem of the nonlinear Schrödinger equation, with initial datas in periodic Sobolev spaces. Specifically, we prove that this problem is locally well posed for datas in Hsper, with s &#8805; 0. Particularly, for initial datas in L2 the problem is globally well posed, due to the conservation law of the equation in this space. Moreover, we prove the this result is the best one, seeing we expose examples that show that the equation flow is not locally uniformly continuous for initial datas with regularity less than L2. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, fazemos um estudo detalhado do problema de Cauchy para a equação não-linear cúbica de Schrödinger, com dados iniciais em espaços de Sobolev no toro. Especificamente, provaremos que este modelo é localmente bem posto para dados em Hsper, com s &#8805; 0. Em particular, para dados iniciais em L2 o modelo é globalmente bem posto, devido à lei de conservação da equação neste espaço. Além disso, provaremos que os resultados obtidos são os melhores possíveis, visto que exibiremos exemplos que mostram que o fluxo da equação não é localmente uniformemente contínuo para dados iniciais com regularidade menor que L2.
90

Soluções nodais para problemas elípticos semilineares com crescimento crítico exponencial

Pereira, Denilson da Silva 05 December 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1236830 bytes, checksum: ba028274cff1ac1fffc16c7d6e148a98 (MD5) Previous issue date: 2014-12-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study existence, non-existence and multiplicity results of nodal solutions for the nonlinear Schrödinger equation (P) -u + V (x)u = f(u) in ; where is a smooth domain in R2 which is not necessarily bounded, f is a continuous function which has exponential critical growth and V is a continuous and nonnegative potential. In the first part, we prove the existence of least energy nodal solution in both cases, bounded and unbounded domain. Moreover, we also prove a nonexistence result of least energy nodal solution for the autonomous case in whole R2. In the second part, we establish multiplicity of multi-bump type nodal solutions. Finally, for V - 0, we prove a result of infinitely many nodal solutions on a ball. The main tools used are Variational methods, Lions's Lemma, Penalization methods and a process of anti-symmetric continuation. / Neste trabalho, estudamos resultados de existência, não existência e multiplicidade de soluções nodais para a equação de Schrödinger não-linear (P) -u + V (x)u = f(u) em ;onde é um domínio suave em R2 não necessariamente limitado, f é uma função que possui crescimento crítico exponencial e V é um potencial contínuo e não-negativo. Na primeira parte, mostramos a existência de soluções nodais de energia mínima em ambos os casos, domínio limitado e ilimitado. Mostramos ainda um resultado de não existência de solução nodal de energia mínima para o caso autônomo em todo o R2. Na segunda parte, estabelecemos a multiplicidade de soluções do tipo multi-bump nodal. Finalmente, para V - 0, mostramos um resultado de existência de infinitas soluções nodais em uma bola. As principais ferramentas utilizadas são Métodos Variacionais, Lema de Deformação, Lema de Lions, Método de penalização e um processo de continuação anti-simétrica.

Page generated in 0.1207 seconds