Spelling suggestions: "subject:"bthermal 1roperties"" "subject:"bthermal croperties""
771 |
Ionic liquids as multifuncional additives for poly(methyl methacrylate)-based materials / Liquides ioniques comme additifs multifonctionnels pour les matériaux à base de poly (méthacrylate de méthyle)Fedosse Zornio, Clarice 02 June 2017 (has links)
La vaste gamme de combinaisons possibles de cations et anions, ainsi que les excellentes propriétés intrinsèques des liquides ioniques (LIs) peuvent être considérées comme les principaux facteurs qui ont conduit au développement d’une recherche utilisant des LIs comme additifs des matériaux polymère. Ainsi, l'objectif principal de ce travail est d'explorer le rôle de la nature du cation et/ou du anion du LI sur les propriétés des matériaux basées de poly (méthacrylate de méthyle) (PMMA). Dans une première partie, des LIs de type imidazolium et ammonium ont été incorporés au PMMA et des caractérisations morphologiques et structurales ont été effectuées afin de comprendre leur impact sur les propriétés thermiques, viscoélastiques et mécaniques des matériaux résultants. Dans la section suivante, la capacité de ces LIs à base d'imidazolium et d'ammonium en tant qu’agents interfaciaux à la surface de la silice a été évaluée. Sub-micro et nanoparticules de silice, ainsi que les LIs, ont été incorporées dans une matrice de PMMA afin de préparer des composites. L'amélioration des propriétés des matériaux ont été discutées en fonction du degré auquel chaque LI influence la compatibilité entre les particules et la matrice polymère. De plus, ces composites ont été exposés au dioxyde de carbone en état supercritique (scCO2) pour utiliser celui-ci comme agent moussant et ainsi produire des matériaux expansés. Le rôle du LI et des particules de silice pour structurer les matériaux expansés a été analysé. Dans la dernière partie de cette étude, le scCO2 est utilisé comme milieu de réaction pour la modification chimique par greffage de la surface des nanoparticules de silice par des LIs de type imidazolium, contenant également des groupes hydrolysables et différentes chaînes alkyles. Le rôle de la pression et la quantité de LI ajoutées au milieu de réaction, ainsi que la longueur de la chaîne alkyle des LIs se sont avérées essentielles pour contrôler le degré de fonctionnalisation des nanoparticules. Enfin, ces nanoparticules modifiées ont été incorporées dans une matrice PMMA. Des analyses de morphologie ont été utilisées pour évaluer la dispersion des particules dans la matrice et les propriétés physico-chimiques de ces matériaux ont été également étudiées. / The large array of cation/anion combinations, and the excellent intrinsic properties of ionic liquids (ILs) open a large range of possibilities in their use as additives to polymer materials. Thus, the main objective of this work is to explore the role of both the cation and anion of a series of ILs on the properties of poly(methyl methacrylate) (PMMA)-based materials. In a first approach, low amounts of imidazolium and ammonium-based ILs were incorporated as additives to PMMA in the molten state. Morphological and structural characterizations were developed in order to understand the impact of the presence of such ILs on the thermal and mechanical properties of the resulting materials. Then, in the following section, the ability of the same imidazolium and ammonium-based ILs as physical modifiers of silica surface was evaluated. In such an approach, ILs were supposed to act as interfacial agents. Sub-micron and nanosize silica particles were used to prepare PMMA composites. Thus, the extents of each IL improve the interfacial interaction between PMMA and silica particles were discussed. In addition, supercritical carbon dioxide (scCO2) was used as foaming agent to produce foamed PMMA-based composites. In such a case, the combined effect of the presence of ILs and silica particles was analyzed regarding the morphology of the foamed structures. In the last section, scCO2 was used as reaction medium, in an environmental friendly approach, to chemically modify silica nanoparticles using a series of imidazolium IL-functionalized silanes (with different alkyl chain lengths). Thermogravimetric analysis (TGA) was used to highlight the effect of the working pressure and the content of such ILs in the reaction medium. The effect of the alkyl chain length on the grafting density of the resulting nanoparticles was also discussed. Finally, novel PMMA-based nanocomposites were prepared by the incorporation of such grafted nanoparticles. Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) analyses were used to evaluate the state of dispersion of the particles into the polymer matrix. Moreover, the thermal, rheological and mechanical properties of the materials were studied.
|
772 |
Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engineFitzpatrick, John Nathan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries.
Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.
|
773 |
Atomistic and finite element modeling of zirconia for thermal barrier coating applicationsZhang, Yi January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Zirconia (ZrO2) is an important ceramic material with a broad range of applications. Due to its high melting temperature, low thermal conductivity, and high-temperature stability, zirconia based ceramics have been widely used for thermal barrier coatings (TBCs). When TBC is exposed to thermal cycling during real applications, the TBC may fail due to several mechanisms: (1) phase transformation into yttrium-rich and yttrium-depleted regions, When the yttrium-rich region produces pure zirconia domains that transform between monoclinic and tetragonal phases upon thermal cycling; and (2) cracking of the coating due to stress induced by erosion. The mechanism of erosion involves gross plastic damage within the TBC, often leading to ceramic loss and/or cracks down to the bond coat. The damage mechanisms are related to service parameters, including TBC material properties, temperature, velocity, particle size, and impact angle.
The goal of this thesis is to understand the structural and mechanical properties of the thermal barrier coating material, thus increasing the service lifetime of gas turbine engines. To this end, it is critical to study the fundamental properties and potential failure mechanisms of zirconia. This thesis is focused on investigating the structural and mechanical properties of zirconia. There are mainly two parts studied in this paper, (1) ab initio calculations of thermodynamic properties of both monoclinic and tetragonal phase zirconia, and monoclinic-to-tetragonal phase transformation, and (2) image-based finite element simulation of the indentation process of yttria-stabilized zirconia.
In the first part of this study, the structural properties, including lattice parameter, band structure, density of state, as well as elastic constants for both monoclinic and tetragonal zirconia have been computed. The pressure-dependent phase transition between tetragonal (t-ZrO2) and cubic zirconia (c-ZrO2) has been calculated using the density function theory (DFT) method. Phase transformation is defined by the band structure and tetragonal distortion changes. The results predict a transition from a monoclinic structure to a fluorite-type cubic structure at the pressure of 37 GPa. Thermodynamic property calculations of monoclinic zirconia (m-ZrO2) were also carried out. Temperature-dependent heat capacity, entropy, free energy, Debye temperature of monoclinic zirconia, from 0 to 1000 K, were computed, and they compared well with those reported in the literature. Moreover, the atomistic simulations correctly predicted the phase transitions of m-ZrO2 under compressive pressures ranging from 0 to 70 GPa. The phase transition pressures of monoclinic to orthorhombic I (3 GPa), orthorhombic I to orthorhombic II (8 GPa), orthorhombic II to tetragonal (37 GPa), and stable tetragonal phases (37-60 GPa) are in excellent agreement with experimental data. In the second part of this study, the mechanical response of yttria-stabilized zirconia under Rockwell superficial indentation was studied. The microstructure image based finite element method was used to validate the model using a composite cermet material. Then, the finite element model of Rockwell indentation of yttria-stabilized zirconia was developed, and the result was compared with experimental hardness data.
|
774 |
THERMAL PROPERTIES OF MAGNETIC NANOPARTICLES IN EXTERNAL AC MAGNETIC FIELDLukawska, Anna Beata 30 May 2014 (has links)
No description available.
|
775 |
Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packagingMartínez Sanz, Marta 01 July 2013 (has links)
El presente trabajo tiene por objetivo estudiar las aplicaciones de los nanocristales o ¿nanowhiskers¿ extraídos mediante hidrólisis ácida de celulosa bacteriana (BCNW) para el desarrollo de materiales poliméricos y biopoliméricos con propiedades mejoradas para su uso en aplicaciones de envasado de alimentos.
En primer lugar se estudió y optimizó el proceso de extracción de BCNW. Se desarrolló un procedimiento de extracción con ácido sulfúrico, que permitió obtener nanocristales con elevada relación de aspecto y cristalinidad y al mismo tiempo, un elevado rendimiento de extracción. Este procedimiento comprende una posterior etapa de neutralización que resultó ser necesaria para garantizar la estabilidad térmica de los nanocristales.
El siguiente paso consistió en la formulación de materiales nanocompuestos con propiedades mejoradas incorporando BCNW en diferentes matrices plásticas, en concreto copolímeros de etileno-alcohol vinílico (EVOH), ácido poliláctico (PLA) y polihidroxialcanoatos (PHAs). Mediante las técnicas de electroestirado y estirado por soplado se generaron fibras híbridas de EVOH y PLA con BCNW. La incorporación de BCNW en las disoluciones empleadas para producir fibras modificó significativamente sus propiedades (viscosidad, tensión superficial y conductividad) y por tanto, la morfología de las fibras se vio afectada. Además, se generaron fibras con propiedades antimicrobianas mediante la incorporación de aditivos, maximizando el efecto antimicrobiano con la adición de sustancias de carácter hidrofílico. Seguidamente, se produjeron nanocompuestos por mezclado en fundido y se desarrollaron técnicas de pre-incorporación de BCNW para evitar la aglomeración de los mismos no sólo en matrices hidrofílicas como el EVOH, sino también en matrices hidrofóbicas como el PLA. La dispersión óptima de BCNW resultó en una mejora de las propiedades mecánicas y de barrera de los nanocompuestos. También se estudió la modificación de la superficie de los nanocristales mediante copolimerización con poli(glicidil metacrilato) para mejorar la compatibilidad de BCNW con una matriz hidrofóbica como el PLA. Se incluyen además los primeros resultados obtenidos en cuanto a la producción de nanobiocompuestos sintetizados por microorganismos, que consisten en PHAs con diferentes contenidos de hidroxivalerato reforzados con BCNW.
Por último, se desarrollaron películas con propiedades de alta barrera basadas en películas de BCNW recubiertas con capas hidrofóbicas. El recubrimiento mediante la deposición de fibras por electrospinning seguido de homogeneización por calentamiento garantizó una buena adhesión entre las diferentes capas, protegiendo así las películas de BCNW del efecto negativo de la humedad. / Martínez Sanz, M. (2013). Bacterial cellulose nanowhiskers to enhance the properties of plastics and bioplastics of interest in food packaging [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30312 / Premios Extraordinarios de tesis doctorales
|
776 |
Organization of Glucan Chains in Starch Granules as Revealed by Hydrothermal TreatmentVamadevan, Varatharajan 07 June 2013 (has links)
Regular starches contain two principal types of glucan polymers: amylopectin and amylose. The structure of amylopectin is characterized according to the unit chain length profile and the nature of the branching pattern, which determine the alignment of glucan chains during biosynthesis. The organization of glucan chains in amylopectin and their impact on the structure of starch are still open to debate. The location of amylose and its exact contribution to the assembly of crystalline lamellae in regular and high-amylose starch granules also remain unknown. The primary focus of this thesis is the organization and flexibility of glucan chains in crystalline lamellae.
The organization and flexibility of glucan chains in native, annealed (ANN), and heat-moisture treated (HMT) normal, waxy, hylon V, hylon VII, and hylon VIII corn starches were examined. This study has shown for the first time that increased amounts of apparent amylose in B-type starches hinder the polymorphic transition (from B to A+B) during HMT. The research has also demonstrated that an iodine-glucan complex transformed the B-type polymorphic pattern of hylon starches into a V-type pattern. The differential scanning calorimetry (DSC) results showed that ANN- and HMT-induced changes were most pronounced in hylon starches. These findings suggest that the glucan tie chains influences the assembly of crystalline lamellae in high-amylose starches.
The relationship between the internal unit chain composition of amylopectin, and the thermal properties and annealing of starches from four different structural types of amylopectin was investigated by DSC. The onset gelatinization temperature (To) correlated negatively with the number of building blocks in clusters (NBbl) and positively with the inter-block chain length (IB-CL). The enthalpy of gelatinization (∆H) correlated positively with the external chain length of amylopectin. Annealing results showed that starches with a short IB-CL were most susceptible to ANN, as evidenced by a greater increase in the To and Tm. The increase in enthalpy was greater in starches with long external chains and IB-CLs. These data suggest that the internal organization of glucan chains in amylopectin determines the alignment of chains within the crystalline lamellae and thereby the thermal properties and annealing of the starch granules.
|
777 |
Posouzení vlivu provedení zateplení rodinného domu na Zlínsku na výdaje spojené s provozem této nemovitosti / Assessment of the Impact of Thermal Insulation Performance of a Detached House in the Zlín Disctrict on Running Expenses of this PropertyVelísková, Eva January 2013 (has links)
Master´s thesis deals with an assessment of investment return in saving precurations. The issue is used on an ordinary detached family house. The assessment is done in more variants to reach an objective comparison of the most advantageous investments. In the first part there is a comprehensive theory explaining the connections of the procedures and the algorithms of the calculations. The second part is calculation, especially from the thermal engineering, energy rating of buildings and the economic return on investment. The third part is an evaluation which, on the basis of the experiences and the results from the thesis, offers a proces show to think in case of intended reconstruction and how to evaluate the efficiency of the investments in the saving precurations.
|
778 |
Nanolithography on thin films using heated atomic force microscope cantileversSaxena, Shubham 01 November 2006 (has links)
Nanotechnology is expected to play a major role in many technology areas including electronics, materials, and defense. One of the most popular tools for nanoscale surface analysis is the atomic force microscope (AFM). AFM can be used for surface manipulation along with surface imaging.
The primary motivation for this research is to demonstrate AFM-based lithography on thin films using cantilevers with integrated heaters. These thermal cantilevers can control the temperature at the end of the tip, and hence they can be used for local in-situ thermal analysis. This research directly addresses applications like nanoscale electrical circuit fabrication/repair and thermal analysis of thin-films. In this study, an investigation was performed on two thin-film materials. One of them is co-polycarbonate, a variant of a polymer named polycarbonate, and the other is an energetic material called pentaerythritol tetranitrate (PETN).
Experimental methods involved in the lithography process are discussed, and the results of lithographic experiments performed on co-polycarbonate and PETN are reported. Effects of dominant parameters during lithography experiments like time, temperature, and force are investigated. Results of simulation of the interface temperature between thermal cantilever tip and thin film surface, at the beginning of the lithography process, are also reported.
|
779 |
Use of wool reinforcements for biodegradable materials / Uso de refuerzo de la lana para materiales biodegradablesPawlak, Franciszek Józef 24 February 2025 (has links)
[ES] La tesis doctoral explora la aplicación potencial de fibras de lana de oveja, un subproducto sostenible de la industria láctea, como refuerzo en materiales poliméricos biodegradables, con un enfoque en los compuestos de ácido poliláctico (PLA). El objetivo principal es desarrollar y optimizar sistemas de polímeros reforzados con fibras (FRP) mediante el análisis de los efectos de las modificaciones en la superficie de las fibras y la variación en la composición de los compuestos en las propiedades mecánicas y térmicas. El estudio se divide en enfoques experimentales y computacionales, involucrando cuatro estudios experimentales principales y dos proyectos suplementarios de modelado basado en aprendizaje automático. Los estudios experimentales se centraron en la preparación y caracterización de mezclas de PLA y aceite de linaza maleinizado reforzadas con fibras de lana de oveja. Se aplicaron sistemáticamente tratamientos de superficie utilizando agentes acoplantes de silano y alcoxido para mejorar las interacciones entre las fibras y el polímero. En particular, el tratamiento con isopropóxido de titanio (IV) (triethanolamina) mejoró significativamente la resistencia a la tracción, mientras que el tratamiento con trimetoxi (2-(7-oxabiciclo[4.1.0]hept-3-il)etil)silano mostró la mayor resistencia al impacto entre los agentes probados. El análisis térmico reveló que estas modificaciones de superficie aumentaron las temperaturas de cristalización en frío y redujeron el grado general de cristalinidad, aunque los tratamientos con alcoxido afectaron desfavorablemente la estabilidad térmica al disminuir la temperatura de pérdida de masa del 5%. Investigaciones experimentales adicionales exploraron los efectos de mayores concentraciones de fibras de lana y mayores niveles de agentes de tratamiento superficial. Un contenido elevado de fibras generalmente resultó en una disminución de las propiedades de tracción debido a una unión insuficiente entre el polímero y las fibras; sin embargo, los tratamientos con silano compensaron parcialmente estos efectos negativos al mejorar el módulo de Young y la elongación a la rotura. Además, se empleó un pretratamiento con plasma en las fibras de lana para eliminar lípidos superficiales, lo que mejoró la elongación a la rotura, a pesar de una ligera reducción en la resistencia a la tracción. Los estudios de envejecimiento físico a largo plazo demostraron cambios significativos en la estructura cristalina y las transiciones térmicas de los compuestos de PLA, afectando su rendimiento mecánico y destacando la importancia de la estabilidad de los materiales en aplicaciones de biopolímeros. Siguiendo los esfuerzos experimentales, los estudios computacionales emplearon algoritmos de aprendizaje automático para predecir propiedades de los materiales basándose en los resultados de caracterización. Estos modelos predijeron eficazmente la resistencia a la tracción, la degradación térmica y otras propiedades de los materiales en diversas formulaciones, permitiendo así una exploración eficiente de un rango más amplio de composiciones con un costo experimental reducido. Los resultados de esta tesis confirman la viabilidad de utilizar fibras de lana de oveja como refuerzos efectivos y ecológicos para polímeros biodegradables basados en PLA. Las propiedades mecánicas y térmicas mejoradas a través de las modificaciones de la superficie de las fibras, combinadas con los modelos de aprendizaje automático, contribuyen al desarrollo de FRP sostenibles adecuados para aplicaciones diversas en los sectores automotriz, aeroespacial, agrícola y de productos de consumo. Esta investigación propone un enfoque para la utilización de materiales derivados de fuentes biológicas y promueve el uso de subproductos de la industria láctea, ofreciendo importantes beneficios ambientales e industriales. Además, el uso de modelado computacional proporciona un enfoque novedoso para la optimización de formulaciones de materiales. / [CA] La tesi doctoral explora l'aplicació potencial de fibres de llana d'ovella, un subproduct sostenible de la indústria làctia, com a reforç en materials polimèrics biodegradables, amb un enfocament específic en els compostos d'àcid polilàctic (PLA). L'objectiu principal és desenvolupar i optimitzar sistemes de polímers reforçats amb fibres (FRP) mitjançant l'anàlisi dels efectes de les modificacions en la superfície de les fibres i la variació en la composició dels compostos sobre les propietats mecàniques i tèrmiques. L'estudi es divideix en enfocaments experimentals i computacionals, amb quatre estudis experimentals principals i dos projectes suplementaris de modelatge basat en aprenentatge automàtic. Els estudis experimentals es van centrar en la preparació i caracterització de mescles de PLA i oli de lli maleïnitzat reforçades amb fibres de llana d'ovella. Es van aplicar sistemàticament tractaments de superfície utilitzant agents d'acoblament de silà i alcoxid per millorar les interaccions entre les fibres i el polímer. En particular, el tractament amb isopropòxid de titani (IV) (trietanolamina) va millorar significativament la resistència a la tracció, mentre que el tractament amb trimetoxisilà (2-(7-oxabiciclo[4.1.0]hept-3-il)etil) va mostrar la major resistència a l'impacte entre els agents provats. L'anàlisi tèrmica va revelar que aquestes modificacions de superfície van augmentar les temperatures de cristal·lització en fred i van reduir el grau general de cristallinitat, encara que els tractaments amb alcoxid van afectar desfavorablement l'estabilitat tèrmica en reduir la temperatura de pèrdua de massa del 5%. Investigacions experimentals addicionals van explorar els efectes de majors concentracions de fibres de llana i de nivells més alts d'agents de tractament superficial. Un alt contingut de fibres generalment va resultar en una disminució de les propietats de tracció a causa d'una unió insuficient entre el polímer i les fibres; tanmateix, els tractaments amb silà van compensar parcialment aquests efectes negatius en millorar el mòdul de Young i l'elongació en la ruptura. A més, es va utilitzar un pretractament amb plasma en les fibres de llana per eliminar els lípids superficials, fet que va millorar l'elongació en la ruptura, malgrat una lleugera reducció en la resistència a la tracció. Els estudis d'envelliment físic a llarg termini van demostrar canvis significatius en l'estructura cristal·lina i les transicions tèrmiques dels compostos de PLA, afectant el seu rendiment mecànic i ressaltant la importància de l'estabilitat dels materials en aplicacions de biopolímers. Seguint els esforços experimentals, els estudis computacionals van emprar algorismes d'aprenentatge automàtic per predir propietats dels materials basant-se en els resultats de caracterització. Aquests models van predir eficaçment la resistència a la tracció, la degradació tèrmica i altres propietats dels materials en diverses formulacions, permetent així una exploració eficient d'un rang més ampli de composicions amb un cost experimental reduït. Els resultats d'aquesta tesi confirmen la viabilitat d'utilitzar fibres de llana d'ovella com a reforços efectius i ecològics per a polímers biodegradables basats en PLA. Les propietats mecàniques i tèrmiques millorades mitjançant les modificacions de la superfície de les fibres, combinades amb els models d'aprenentatge automàtic, contribueixen al desenvolupament de FRP sostenibles adequats per a aplicacions diverses en els sectors de l'automoció, l'aeroespacial, l'agrícola i els productes de consum. Aquesta investigació proposa un enfocament per a la utilització de materials derivats de fonts biològiques i promou l'ús de subproductes de la indústria làctia, oferint importants beneficis ambientals i industrials. A més, l'ús de modelatge computacional proporciona un enfocament novedós per a l'optimització de formulacions de materials. / [EN] The doctoral thesis explores the potential application of sheep wool fibers, a sustainable by-product from the dairy industry, as reinforcement in biodegradable polymeric materials, specifically focusing on polylactic acid (PLA) composites. The primary objective is to develop and optimize fiber-reinforced polymer (FRP) systems by examining the effects of fiber surface modifications and varying composite compositions on mechanical and thermal properties. The study is divided into experimental and computational approaches, involving four main experimental studies and two supplementary machine learning modeling projects. Experimental studies focused on the preparation and characterization of PLA/maleinized linseed oil blends reinforced with sheep wool fibers. Surface treatments using silane and alkoxide coupling agents were systematically applied to enhance fiber-polymer interactions. Notably, treatment with titanium (IV) (triethanolaminate)isopropoxide significantly improved tensile strength, while trimethoxy (2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl)silane treatment yielded the highest impact strength among the tested agents. Thermal analysis revealed that these surface modifications increased cold crystallization temperatures and reduced the overall degree of crystallinity, although alkoxide treatments unfavorably affected thermal stability by lowering the temperature of 5% mass loss. Further experimental work explored the effects of increased wool fiber concentrations and higher levels of surface treatment agents. High fiber content generally resulted in reduced tensile properties due to insufficient polymer-fiber bonding; however, silane treatments partially compensated for these negative effects by enhancing Young's modulus and elongation at break. Additionally, plasma pretreatment of wool fibers was employed to remove surface lipids, which improved elongation at break despite a slight reduction in tensile strength. Long-term physical aging studies demonstrated significant changes in the crystalline structure and thermal transitions of PLA composites, impacting their mechanical performance and highlighting the importance of material stability in biopolymer applications. Following the experimental efforts, computational studies utilized machine learning algorithms to predict material properties based on the characterization results. These models effectively forecast tensile strength, thermal degradation, and other material properties across various formulations, thereby enabling the efficient exploration of a broader range of material compositions with reduced experimental cost. The results of this thesis confirm the possibility of using sheep wool fibers as effective, eco-friendly reinforcements for PLA-based biodegradable polymers. The enhanced mechanical and thermal properties achieved through fiber surface modifications, combined with the machine learning models, contribute to the development of sustainable FRPs suitable for diverse applications in automotive, aerospace, agricultural, and consumer product sectors. This research shows an approach for the utilization of bio-derived materials and promotes the usage of dairy industry by-products, offering significant environmental and industrial benefits. Furthermore, the use of computational modeling provides a novel approach for optimizing material formulations. / Pawlak, FJ. (2025). Use of wool reinforcements for biodegradable materials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/214791
|
Page generated in 0.0798 seconds