161 |
Utredning av för- och nackdelar med TN-S respektive TN-C system / Investegation of the advantages and disadvantages of TN-S and TN-C systemsAlameddine, Raged, Dashtbozorg, Sajad January 2016 (has links)
I denna rapport analyseras för- och nackdelar med eldistributionssystem av typ TN-C (fyrledarsystem) respektive TN-S (femledarsystem) system. Det finns olika uppfattningar om vilket system som är lämpligast att bygga ut i distributionsnätet (lågspänningsnätet) och i fastigheternas huvudledning. Med hjälp av litteraturstudier och kontakt med olika elföretag och elbolag har olika ståndpunkter diskuterats och därefter har en sammanställning av resultatet tagits fram. Enligt analysen är TN-C det lämpligaste alternativet att använda i distributionsnätet och TN-S bör användas i fastighetens huvudledning. Detta för att kunna uppnå en god och stabil elmiljö. Detta examensarbete skall underlätta val av teknik och förhoppningsvis öka kunskapen angående ämnet. / In this report analysis the advantages and disadvantages of the TN-C (four conductor system) and TN-S (five conductor system) system. There are different opinion about which system is most appropriate to use in the distribution network and the building main lines. With the help of literature studies and contacts with various power companies and electric companies different opinion have been discussed . TN-C is the most appropriate option in the distribution network and TN-S should be used in the building main lines. This for achieving high and stable electrical environment. This thesis will facilitate the choice of technology and hopefully increase the knowledge about the subject.
|
162 |
A Monte Carlo Study of Parallel Analysis, Minimum Average Partial, Indicator Function, and Modified Average Roots for Determining the Number of Dimensions with Binary Variables in Test Data: Impact of Sample Size and Factor StructureRuengvirayudh, Pornchanok 12 July 2018 (has links)
No description available.
|
163 |
The broken circuit complex and the Orlik - Terao algebra of a hyperplane arrangementLe, Van Dinh 17 February 2016 (has links)
My thesis is mostly concerned with algebraic and combinatorial aspects of the
theory of hyperplane arrangements. More specifically, I study the Orlik-Terao algebra of a hyperplane arrangement and the broken circuit complex of a matroid. The Orlik-Terao algebra is a useful tool for studying hyperplane arrangements, especially for characterizing some non-combinatorial properties. The broken circuit complex, on the one hand, is closely related to the Orlik-Terao algebra, and on the other hand, plays a crucial role in the study of many combinatorial problem: the coefficients of the characteristic polynomial of a matroid are encoded in the f-vector of the broken circuit complex of the matroid. Among main results of the thesis are characterizations of the complete intersection and Gorenstein properties of the broken circuit complex and the Orlik-Terao algebra. I also study the h-vector of the broken circuit complex of a series-parallel network and relate certain entries of that vector to ear decompositions of the network. An application of the Orlik-Terao algebra in studying the relation space of a hyperplane arrangement is also included in the thesis.
|
164 |
KARTAL: Web Application Vulnerability Hunting Using Large Language Models : Novel method for detecting logical vulnerabilities in web applications with finetuned Large Language Models / KARTAL: Jakt på sårbarheter i webbapplikationer med hjälp av stora språkmodeller : Ny metod för att upptäcka logiska sårbarheter i webbapplikationer med hjälp av finjusterade stora språkmodellerSakaoglu, Sinan January 2023 (has links)
Broken Access Control is the most serious web application security risk as published by Open Worldwide Application Security Project (OWASP). This category has highly complex vulnerabilities such as Broken Object Level Authorization (BOLA) and Exposure of Sensitive Information. Finding such critical vulnerabilities in large software systems requires intelligent and automated tools. State-of-the-art (SOTA) research including hybrid application security testing tools, algorithmic brute forcers, and artificial intelligence has shown great promise in detection. Nevertheless, there exists a gap in research for reliably identifying logical and context-dependant Broken Access Control vulnerabilities. We modeled the problem as text classification and proposed KARTAL, a novel method for web application vulnerability detection using a Large Language Model (LLM). It consists of 3 components: Fuzzer, Prompter, and Detector. The Fuzzer is responsible for methodically collecting application behavior. The Prompter processes the data from the Fuzzer and formulates a prompt. Finally, the Detector uses an LLM which we have finetuned for detecting vulnerabilities. In the study, we investigate the performance, key factors, and limitations of the proposed method. Our research reveals the need for a labeled Broken Access Control vulnerability dataset in the cybersecurity field. Thus, we custom-generate our own dataset using an auto-regressive LLM with SOTA few-shot prompting techniques. We experiment with finetuning 3 types of decoder-only pre-trained transformers for detecting 2 sophisticated vulnerabilities. Our best model attained an accuracy of 87.19%, with an F1 score of 0.82. By using hardware acceleration on a consumer-grade laptop, our fastest model can make up to 539 predictions per second. The experiments on varying the training sample size demonstrated the great learning capabilities of our model. Every 400 samples added to training resulted in an average MCC score improvement of 19.58%. Furthermore, the dynamic properties of KARTAL enable inferencetime adaption to the application domain, resulting in reduced false positives. / Brutet åtkomstkontroll är den allvarligaste säkerhetsrisken för webbapplikationer enligt Open Worldwide Application Security Project (OWASP). Denna kategori har mycket komplexa sårbarheter såsom Brutet behörighetskontroll på objektnivå (BOLA) och exponering av känslig information. Att hitta sådana kritiska sårbarheter i stora programvarusystem kräver intelligenta och automatiserade verktyg. Senaste tekniken (SOTA)-forskning, inklusive hybridverktyg för säkerhetstestning av applikationer, algoritmiska bruteforcers och artificiell intelligens, har visat stor potential för upptäckt. Trots detta finns det en lucka i forskningen när det gäller tillförlitlig identifiering av logiska och kontextberoende sårbarheter relaterade till Brutet åtkomstkontroll. Vi modellerade problemet som textklassificering och föreslog KARTAL, en ny metod för att upptäcka sårbarheter i webbapplikationer med hjälp av en stor språkmodell (LLM). Den består av 3 komponenter: Fuzzer, Prompter och Detector. Fuzzer ansvarar för att systematiskt samla in applikationsbeteende. Prompter bearbetar data från Fuzzer och formulerar en förfrågan. Slutligen använder Detector en LLM som vi har finjusterat för att upptäcka sårbarheter. I studien undersöker vi prestanda, nyckelfaktorer och begränsningar hos den föreslagna metoden. Vår forskning visar behovet av en märkt dataset för sårbarheter relaterade till Brutet åtkomstkontroll inom cybersäkerhetsområdet. Därför genererar vi anpassade dataset med hjälp av en auto-regressiv LLM med SOTA few-shot-prompting-tekniker. Vi experimenterar med att finjustera 3 typer av endast avkodare transformers som är förtränade för att upptäcka 2 sofistikerade sårbarheter. Vår bästa modell uppnådde en noggrannhet på 87.19% med en F1-poäng på 0.82. Genom att använda hårdvaruacceleration på en bärbar dator för konsumenter kan vår snabbaste modell göra upp till 539 förutsägelser per sekund. Experimenten med varierande storlek på träningsprovet visade på vår modells stora förmåga att lära sig. Varje 400 prover som lades till träningen resulterade i en genomsnittlig förbättring av MCC-poängen med 19.58%. Dessutom möjliggör de dynamiska egenskaperna hos KARTAL anpassning vid inferringstid till applikationsdomänen, vilket resulterar i färre falska positiva resultat.
|
165 |
Neighborhood Conditions, Self-Efficacy, and Future Orientation among Urban YouthSamblanet, Sarah 24 April 2014 (has links)
No description available.
|
166 |
Writing Blood and Nature: Redemption in Jim Harrison's Dalva and The Road HomeStein, Brittany S.M. 30 May 2012 (has links)
No description available.
|
167 |
Factors affecting the realisation of prior expectations amongst British migrants coming to Australia, 1978Hornsby, Peter E. January 1978 (has links) (PDF)
Includes bibliographical references.
|
168 |
The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore DepositsRobinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
|
169 |
The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore DepositsRobinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
|
170 |
The Spatial and Temporal Distribution of the Metal Mineralisation in Eastern Australia and the Relationship of the Observed Patterns to Giant Ore DepositsRobinson, Larry J. Unknown Date (has links)
The introduced mineral deposit model (MDM) is the product of a trans-disciplinary study, based on Complexity and General Systems Theory. Both investigate the abstract organization of phenomena, independent of their substance, type, or spatial or temporal scale of existence. The focus of the research has been on giant, hydrothermal mineral deposits. They constitute <0.001% of the total number of deposits yet contain 70-85% of the world's metal resources. Giants are the definitive exploration targets. They are more profitable to exploit and less susceptible to fluctuations of the market. Consensus has it that the same processes that generate small deposits also form giants but those processes are simply longer, vaster, and larger. Heat is the dominant factor in the genesis of giant mineral deposits. A paleothermal map shows where the vast heat required to generate a giant has been concentrated in a large space, and even allows us to deduce the duration of the process. To generate a paleothermal map acceptable to the scientific community requires reproducibility. Experimentation with various approaches to pattern recognition of geochemical data showed that the AUTOCLUST algorithm not only gave reproducibility but also gave the most consistent, most meaningful results. It automatically extracts boundaries based on Voronoi and Delaunay tessellations. The user does not specify parameters; however, the modeller does have tools to explore the data. This approach is near ideal in that it removes much of the human-generated bias. This algorithm reveals the radial, spatial distribution, of gold deposits in the Lachlan Fold Belt of southeastern Australia at two distinct scales – repeating patterns every ~80 km and ~230 km. Both scales of patterning are reflected in the geology. The ~80 km patterns are nested within the ~230 km patterns revealing a self-similar, geometrical relationship. It is proposed that these patterns originate from Rayleigh-Bénard convection in the mantle. At the Rayleigh Number appropriate for the mantle, the stable planform is the spoke pattern, where hot mantle material is moving upward near the centre of the pattern and outward along the radial arms. Discontinuities in the mantle, Rayleigh-Bénard convection in the mantle, and the spatial distribution of giant mineral deposits, are correlative. The discontinuities in the Earth are acting as platforms from which Rayleigh-Bénard convection can originate. Shallow discontinuities give rise to plumelets, which manifest at the crust as repeating patterns ranging, from ~100 to ~1,000 km in diameter. Deeper discontinuities give rise to plumes, which become apparent at the crust as repeating patterns ranging from >1,000 to ~4,000 km in diameter. The deepest discontinuities give rise to the superplumes, which become detectable at the crust as repeating patterns ranging from >4,000 to >10,000 km in diameter. Rayleigh-Bénard convection concentrates the reservoir of heat in the mantle into specific locations in the crust; thereby providing the vast heat requirements for the processes that generate giant, hydrothermal mineral deposits. The radial spatial distribution patterns observed for gold deposits are also present for base metal deposits. At the supergiant Broken Hill deposit in far western New South Wales, Australia, the higher temperature Broken Hill-type deposits occur in a radial pattern while the lower temperature deposits occur in concentric patterns. The supergiant Broken Hill deposit occurs at the very centre of the pattern. If the supergiant Broken Hill Deposit was buried beneath alluvium, water or younger rocks, it would now be possible to predict its location with accuracy measured in tens of square kilometres. This predictive accuracy is desired by every exploration manager of every exploration company. The giant deposits at Broken Hill, Olympic Dam, and Mount Isa all occur on the edge of an annulus. There are at least two ways of creating an annulus on the Earth's surface. One is through Rayleigh-Bénard convection and the other is through meteor impact. It is likely that only 'large' meteors (those >10 km in diameter) would have any permanent impact on the mantle. Lesser meteors would leave only a superficial scar that would be eroded away. The permanent scars in the mantle act as ‘accidental templates’ consisting of concentric and possibly radial fractures that impose those structures on any rocks that were subsequently laid down or emplaced over the mantle. In southeastern Australia, the proposed Deniliquin Impact structure has been an 'accidental template' providing a 'line-of-least-resistance' for the ascent of the ~2,000 km diameter, offshore, Cape Howe Plume. The western and northwestern radial arms of this plume have created the very geometry of the Lachlan Fold Belt, as well as giving rise to the spatial distribution of the granitic rocks in that belt and ultimately to the gold deposits. The interplay between the templating of the mantle by meteor impacts and the ascent of plumelets, plumes or superplumes from various discontinuities in the mantle is quite possibly the reason that mineral deposits occur where they do.
|
Page generated in 0.0491 seconds