51 |
Delaunay triangulations of a family of symmetric hyperbolic surfaces in practice / Triangulations de Delaunay d'une famille de surfaces hyperboliques symétriques en pratiqueIordanov, Iordan 12 March 2019 (has links)
La surface de Bolza est la surface hyperbolique orientable compacte la plus symétrique de genre 2. Pour tout genre supérieur à 2, il existe une surface orientable compacte construite de manière similaire à la surface de Bolza et ayant le même type de symétries. Nous appelons ces surfaces des surfaces hyperboliques symétriques. Cette thèse porte sur le calcul des triangulations de Delaunay (TD) de surfaces hyperboliques symétriques. Les TD de surfaces compactes peuvent être considérées comme des TD périodiques de leur revêtement universel (dans notre cas, le plan hyperbolique). Une TD est pour nous un complexe simplicial. Cependant, les ensembles de points ne définissent pas tous une décomposition simpliciale d'une surface hyperbolique symétrique. Dans la littérature, un algorithme a été proposé pour traiter ce problème avec l'utilisation de points factices : initialement une TD de la surface est construite avec un ensemble de points connu, puis des points d'entrée sont insérés avec le célèbre algorithme incrémental de Bowyer, et enfin les points factices sont supprimés, si la triangulation reste toujours un complexe simplicial. Pour la surface de Bolza, les points factices sont spécifiés. L'algorithme existant calcule une DT de la surface de Bolza comme une DT périodique du plan hyperbolique, ce qui nécessite de travailler dans un sous-ensemble approprié du plan hyperbolique. Nous étudions les propriétés des TD de la surface de Bolza définies par des ensembles de points contenants l'ensemble proposé de points factices, et nous décrivons en détail une implémentation de l'algorithme incrémentiel pour cette surface. Nous commençons par définir un représentant canonique unique qui est contenu dans un sous-ensemble borné du plan hyperbolique pour chaque face d'une TD de la surface. Nous donnons une structure de données pour représenter une TD de la surface de Bolza via les représentants canoniques de ses faces. Nous détaillons les étapes de la construction d'une telle triangulation et les opérations supplémentaires qui permettent de localiser les points et de retirer des sommets. Nous présentons également les résultats sur le degré algébrique des prédicats nécessaires pour toutes les opérations. Nous fournissons une implémentation entièrement dynamique pour la surface de Bolza, en offrant l'insertion de nouveaux points, la suppression des sommets existants, la localisation des points, et la construction d'objets duaux. Notre implémentation est basée sur la bibliothèque CGAL (Computational Geometry Algorithms Library), et est actuellement en cours de révision pour être intégrée dans la bibliothèque. L'intégration de notre code dans CGAL nécessite que tous les objets que nous introduisons soient compatibles avec le cadre existant et conformes aux standards adoptés par la bibliothèque. Nous donnons une description détaillée des classes utilisées pour représenter et traiter les triangulations hyperboliques périodiques et les objets associés. Des analyses comparatives et des tests sont effectués pour évaluer notre implémentation, et une application simple est donnée sous la forme d'une démonstration CGAL. Nous discutons une extension de notre implémentation à des surfaces hyperboliques symétriques de genre supérieur à 2. Nous proposons trois méthodes pour engendrer des ensembles de points factices pour chaque surface et présentons les avantages et les inconvénients de chaque méthode. Nous définissons un représentant canonique contenu dans un sous-ensemble borné du plan hyperbolique pour chaque face d'une TD de la surface. Nous décrivons une structure de données pour représenter une telle triangulation via les représentants canoniques de ses faces, et donnons des algorithmes pour l'initialisation de la triangulation. Enfin, nous discutons une implémentation préliminaire dans laquelle nous examinons les difficultés d'avoir des prédicats exacts efficaces pour la construction de TD de surfaces hyperboliques symétriques / The Bolza surface is the most symmetric compact orientable hyperbolic surface of genus 2. For any genus higher than 2, there exists one compact orientable surface constructed in a similar way as the Bolza surface having the same kind of symmetry. We refer to this family of surfaces as symmetric hyperbolic surfaces. This thesis deals with the computation of Delaunay triangulations of symmetric hyperbolic surfaces. Delaunay triangulations of compact surfaces can be seen as periodic Delaunay triangulations of their universal cover (in our case, the hyperbolic plane). A Delaunay triangulation is for us a simplicial complex. However, not all sets of points define a simplicial decomposition of a symmetric hyperbolic surface. In the literature, an algorithm has been proposed to deal with this issue by using so-called dummy points: initially a triangulation of the surface is constructed with a set of dummy points that defines a Delaunay triangulation of the surface, then input points are inserted with the well-known incremental algorithm by Bowyer, and finally the dummy points are removed, if the triangulation remains a simplicial complex after their removal. For the Bolza surface, the set of dummy points to initialize the triangulation is given. The existing algorithm computes a triangulation of the Bolza surface as a periodic triangulation of the hyperbolic plane and requires to identify a suitable subset of the hyperbolic plane in which to work. We study the properties of Delaunay triangulations of the Bolza surface defined by sets of points containing the proposed set of dummy points, and we describe in detail an implementation of the incremental algorithm for it. We begin by identifying a subset of the hyperbolic plane that contains at least one representative for each face of a Delaunay triangulation of the surface, which enables us to define a unique canonical representative in the hyperbolic plane for each face on the surface. We give a data structure to represent a Delaunay triangulation of the Bolza surface via the canonical representatives of its faces in the hyperbolic plane. We detail the construction of such a triangulation and additional operations that enable the location of points and the removal of vertices. We also report results on the algebraic degree of predicates needed for all operations. We provide a fully dynamic implementation for the Bolza surface, supporting insertion of new points, removal of existing vertices, point location, and construction of dual objects. Our implementation is based on CGAL, the Computational Geometry Algorithms Library, and is currently under revision for integration in the library. To incorporate our code into CGAL, all the objects that we introduce must be compatible with the existing framework and comply with the standards adopted by the library. We give a detailed description of the classes used to represent and handle periodic hyperbolic triangulations and related objects. Benchmarks and tests are performed to evaluate our implementation, and a simple application is given in the form of a CGAL demo. We discuss an extension of our implementation to symmetric hyperbolic surfaces of genus higher than 2. We propose three methods to generate sets of dummy points for each surface and present the advantages and shortcomings of each method. We identify a suitable subset of the hyperbolic plane that contains at least one representative for each face of a Delaunay triangulation of the surface, and we define a canonical representative in the hyperbolic plane for each face on the surface. We describe a data structure to represent such a triangulation via the canonical representatives of its faces, and give algorithms for the initialization of the triangulation with dummy points. Finally, we discuss a preliminary implementation in which we examine the difficulties of having efficient exact predicates for the construction of Delaunay triangulations of symmetric hyperbolic surfaces
|
52 |
Algoritmo de refinamento de Delaunay a malhas seqüenciais, adaptativas e com processamento paralelo. / Delaunay refinement algorithm to sequential, adaptable meshes and with parallel computing.Sakamoto, Mauro Massayoshi 09 May 2007 (has links)
Este trabalho apresenta o desenvolvimento de um gerador de malha de elementos finitos baseado no Algoritmo de Refinamento de Delaunay. O pacote é versátil e pode ser aplicado às malhas seriais e adaptativas ou à decomposição de uma malha inicial grossa ou pré-refinada usando processamento paralelo. O algoritmo desenvolvido trabalha com uma entrada de dados na forma de um gráfico de linhas retas planas. A construção do algoritmo de Delaunay foi baseada na técnica de Watson para a triangulação fronteiriça e nos métodos seqüenciais de Ruppert e Shewchuk para o refinamento com paralelismo. A técnica elaborada produz malhas que mantêm as propriedades de uma triangulação de Delaunay. A metodologia apresentada foi implementada utilizando os conceitos de Programação Orientada a Objetos com o auxílio de bibliotecas de código livre. Aproveitando a flexibilidade de algumas dessas bibliotecas acopladas foi possível parametrizar a dimensão do problema, permitindo gerar malhas seqüenciais bidimensionais e tridimensionais. Os resultados das aplicações em malhas seriais, adaptativas e com programação paralela mostram a eficácia desta ferramenta. Uma versão acadêmica do algoritmo de refinamento de Delaunay bidimensional para o Ambiente Mathematica também foi desenvolvido. / This work presents the development of a finite elements mesh generation based on Delaunay Triangulation Algorithm. The package is versatile and applicable to the serial and adaptable meshes or to either the coarse or pre-refined initial mesh decomposition using parallel computing. The developed algorithm works with data input in the form of Planar Straight Line Graphics. The building of the Delaunay Algorithm was based on the Watson\'s technique for the boundary triangulation and in both Ruppert and Shewchuk sequential methods for the parallel refinement. The proposed technique produces meshes maintaining the properties of the Delaunay triangulation. The presented methodology was implemented using the Programming Object-Oriented concepts, which is supported by open source libraries. Taking advantage of the flexibility of some of those coupled libraries the parametrization of the problem dimension was possible, allowing to generate both two and three-dimensional sequential meshes. The results obtained with the applications in serial, adaptive and in parallel meshes have shown the effectiveness of this tool. An academic version of the twodimensional Delaunay refinement algorithm for the Mathematica Environment was also developed.
|
53 |
Reconstrução de superfícies a partir de nuvens de pontos / Surface Reconstruction from Unorganized PointsGois, João Paulo 11 March 2004 (has links)
Representações computacionais de formas podem ser criadas em ferramentas CAD ou geradas a partir de um objeto físico já existente. Esta última abordagem oferece como vantagens rapidez e fidelidade ao objeto original, que são os aspectos fundamentais em muitas aplicações, como Simulações Numéricas de Equações Diferenciais Parciais e Imagens Médicas. A reconstrução (ou geração de malhas superficiais) a partir de pontos amostrados de uma superfície de um objeto é um problema clássico de representação de formas. Nesta dissertação apresentamos um vasto levantamento bibliográfico deste tipo de reconstrução, classificando e descrevendo os principais trabalhos presentes na literatura. A partir do levantamento bibliográfico, selecionamos um conjunto de algoritmos sobre os quais foram realizadas comparações teóricas e empíricas cujos resultados são apresentados. Para finalizar, apresentamos aplicações de nossas implementações em Simulação Numérica de Equações Diferenciais Parciais e processamento de Imagens / Computational representations of shapes can be developed using CAD applications or created from data acquired from a real physical object. This latter is advantageous with respect to time and fidelity to the original object which are essential to several applications, such as Numerical Simulation of Partial Differential Equations and Medical Imaging. A classical shape representation problem is that of reconstruction (or superficial mesh generation) from points sampled over the surface of an object. In this Master\'s thesis we describe a broad survey of these reconstruction methods. We focus in the classification and characterization of the main algorithms proposed in the literature. From this survey, we selected some algorithms and conducted some theoretical and practical comparisons. We conclude this work describing applications of the algorithms implemented in Numerical Simulations of Differential Partial Equations and Image Processing
|
54 |
Uma caracterização das superfícies de delaunayBezerra, Geziel Damasceno 31 December 2012 (has links)
Made available in DSpace on 2015-04-22T22:16:06Z (GMT). No. of bitstreams: 1
Geziel Damasceno.pdf: 743020 bytes, checksum: 0001ac62bcb357c87e266dd4d0de7a3b (MD5)
Previous issue date: 2012-12-31 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Admits that in a complete surface, connected and oriented immersed in R3 with non-zero constant mean curvature, there is a geodesic triangle whose interior angles satisfy a relationship involving the integral mean curvature and the angle formed by unit vector parallel to a coordinate axis of either R3 and the unit vector normal to the surface, and in such cases shows that the immersion is a surface of revolution, ie, a surface Delaunay. Then give a characterization of the sphere is changing some hypotheses on the previous result. / Admite-se que, numa superfície completa, conexa e orientada imersa no espaço euclidiano tri-dimensional com curvatura média constante não nula, existe um triângulo geodésico cujos ângulos internos satisfazem uma relação integral envolvendo a curvatura média e o ângulo formado pelo vetor unitário paralelo a um eixo coordenado qualquer do espaço ambiente e o vetor unitário
normal a superfície, e sob tais hipóteses mostra-se que a imersão é uma superfície de revolução, ou seja, uma superfície de Delaunay. Em seguida darse uma caracterização da esfera alterando-se algumas hipóteses no resultado anterior.
|
55 |
Trimačiai objektai: atvaizdavimo ir deformacijos algoritmai / Three dimensional objects: visualization and deformation algorithmsŽukas, Andrius 11 August 2008 (has links)
Magistro baigiamajam darbui pasirinkta tema yra Trimačiai objektai: atvaizdavimo ir deformacijos algoritmai. Ši tema nagrinėja paviršiaus rekonstrukciją iš taškų debesies ir galimybes pritaikyti paviršiaus deformacijos algoritmus. Analizės etapo metu išsiaiškinta, kad pagrindinė paviršiaus atstatymo iš taškų debesies problema yra lėtas algoritmų veikimas. Šiame darbe siūlomas atvirkštinės inžinerijos metodas, veikiantis 2D Delaunay trianguliacijos pagrindu. Pateikiami algoritmai padalina taškų debesį į kelias dalis, tada iš trimatės erdvės taškų debesies dalys yra transformuojamos į dvimatę erdvę, suskaičiuojama 2D Delaunay trianguliacija ir gautas trikampių tinklelis vėl transformuojamas į trimatę erdvę. Taip pat pateikiamos teorinės galimybės gautą paviršių transformuoti jau žinomu algoritmu. Po algoritmų praktinio įgyvendinimo buvo nustatyta, kad jie veikia taip kaip tikėtasi, rezultatas gaunamas greičiau nei naudojant kitus žinomus algoritmus. Taip pat buvo pastebėta, kad 2D Delaunay trianguliaciją geriau naudoti kai taškų skaičius taškų debesyje yra labai didelis, o kai taškų skaičius neviršija 2000 geriau naudoti 3D Delaunay trianguliaciją. / The chosen theme of the Master of Science degree paper is “Three dimensional objects: visualization and deformation algorithms“. This subject considers surface reconstruction from point clouds and the possibilities to apply surface deformation algorithms. During the analysis phase we found that the main problem of the algorithms of surface reconstruction from scanned point clouds is the lack of speed. So in this paper a method, based on 2D Delaunay triangulation, for reverse engineering is proposed. This method divides point clouds into several parts, and then maps all the points of those point cloud parts to the plane. Then a 2D Delaunay triangulation is computed and the mesh is mapped back to the point cloud. We also give theoretical possibilities to apply a known algorithm for surface deformation. During the implementation phase we found that our algorithms work as expected, but quicker than the other methods proposed earlier. We also noticed that it’s better to use 2D Delaunay triangulation for bigger point clouds and 3D Delaunay triangulation for point clouds, which contains no more than approximately 2000 points.
|
56 |
Algoritmo de refinamento de Delaunay a malhas seqüenciais, adaptativas e com processamento paralelo. / Delaunay refinement algorithm to sequential, adaptable meshes and with parallel computing.Mauro Massayoshi Sakamoto 09 May 2007 (has links)
Este trabalho apresenta o desenvolvimento de um gerador de malha de elementos finitos baseado no Algoritmo de Refinamento de Delaunay. O pacote é versátil e pode ser aplicado às malhas seriais e adaptativas ou à decomposição de uma malha inicial grossa ou pré-refinada usando processamento paralelo. O algoritmo desenvolvido trabalha com uma entrada de dados na forma de um gráfico de linhas retas planas. A construção do algoritmo de Delaunay foi baseada na técnica de Watson para a triangulação fronteiriça e nos métodos seqüenciais de Ruppert e Shewchuk para o refinamento com paralelismo. A técnica elaborada produz malhas que mantêm as propriedades de uma triangulação de Delaunay. A metodologia apresentada foi implementada utilizando os conceitos de Programação Orientada a Objetos com o auxílio de bibliotecas de código livre. Aproveitando a flexibilidade de algumas dessas bibliotecas acopladas foi possível parametrizar a dimensão do problema, permitindo gerar malhas seqüenciais bidimensionais e tridimensionais. Os resultados das aplicações em malhas seriais, adaptativas e com programação paralela mostram a eficácia desta ferramenta. Uma versão acadêmica do algoritmo de refinamento de Delaunay bidimensional para o Ambiente Mathematica também foi desenvolvido. / This work presents the development of a finite elements mesh generation based on Delaunay Triangulation Algorithm. The package is versatile and applicable to the serial and adaptable meshes or to either the coarse or pre-refined initial mesh decomposition using parallel computing. The developed algorithm works with data input in the form of Planar Straight Line Graphics. The building of the Delaunay Algorithm was based on the Watson\'s technique for the boundary triangulation and in both Ruppert and Shewchuk sequential methods for the parallel refinement. The proposed technique produces meshes maintaining the properties of the Delaunay triangulation. The presented methodology was implemented using the Programming Object-Oriented concepts, which is supported by open source libraries. Taking advantage of the flexibility of some of those coupled libraries the parametrization of the problem dimension was possible, allowing to generate both two and three-dimensional sequential meshes. The results obtained with the applications in serial, adaptive and in parallel meshes have shown the effectiveness of this tool. An academic version of the twodimensional Delaunay refinement algorithm for the Mathematica Environment was also developed.
|
57 |
L'orphisme. Naissance, évolution et héritage d’une avant-garde oubliée / Orphism. Birth, evolution and heritage of a forgotten avant-gardeSawczuk, Magdalena 22 June 2018 (has links)
La notion d’orphisme est née à la veille de la Première Guerre mondiale. Forgée par Guillaume Apollinaire, elle lui sert à désigner l’art nouveau et audacieux de ses amis-peintres, notamment ceux réunis autour de Robert Delaunay. Cependant, dès cette époque, le terme, utilisé de manière imprécise par le poète, pose problème. Depuis, les controverses se multiplient et durant le siècle qui nous sépare de l’invention de ce nom tout ce qui touche à l’orphisme a été remis en cause, jusqu’à son existence même. Prenant position contre cette attitude, nous proposons dans cette thèse d’envisager la production et les conceptions artistiques de l’époque sous un angle nouveau. En nous défaisant des étiquettes traditionnelles de nombreux « -ismes », nous prenons – selon la suggestion d’Apollinaire – le mythe d’Orphée comme un outil permettant de réanalyser l’art du début du XXème siècle. Cette relecture (des parcours des artistes, de leurs sources d’inspiration, des rapports entre différents centres artistiques et acteurs de la scène artistique), ainsi qu’une analyse comparative des œuvres ont pour but de démontrer que ce que nous appelons l’« orphisme » ne fut pas un concept artificiel, appliqué de manière parfaitement arbitraire à la somme des trajectoires – quelques peu accidentelles et indépendantes les unes des autres – de différents artistes, mais plutôt une évolution logique et cohérente, dont l’ampleur et l’impact sur la postérité ne furent jamais appréciés à leur juste valeur. En utilisant le mythe d’Orphée comme fil conducteur structurant notre analyse, nous mettons donc en évidence les grandes lignes de l’évolution du phénomène auquel Apollinaire a donné le nom d’orphisme : les origines et l’interprétation du terme et de la conception mêmes, le contexte historique et artistique de l’apparition et de l’évolution du mouvement, les rapports entre ses différents acteurs, les sources d’inspiration des artistes et enfin une évolution stylistico-chronologique de cette tendance. / The notion of Orphism was born on the eve of the World War II. Forged by Guillaume Apollinaire, it served him to describe a new and bold art of his friends, especially those concentrated around Robert Delaunay. However, the notion was already troublesome back then: ill-defined and unclear, it was used by the poet in a vague way. Since then, the controversies continue to mount and in a century that elapsed since the invention of the notion, everything concerning Orphism is questioned, even its very existence. Contesting this negationist approach, we propose in this thesis to analyze the artistic production and conceptions of this period under a new light. We are distancing ourselves from the traditional labels of “-isms” and we are using the Orpheus myth – as suggested by Apollinaire – as a tool which allows us to reanalyze the art from the beginning of the 20th century. This new analysis – of artists’ career paths, their fascinations, relationships between different artistic centers and between people involved in this avant-garde – and the comparative analysis of artworks serves to prove that what we call Orphism is not an artificial concept, applied in an arbitrary manner to the somewhat accidental and independent career paths of different artists. On the contrary, Orphism is a logical and consistent evolution, whose true importance and impact was never fully appreciated. By using the Orpheus myth as a guiding thread, we are bringing to light the main lines of the evolution of Orphism: the origins and interpretation of the notion and the conception, the historical and artistic context in which the movement was born and was evolving, the relationships between its actors, artists’ inspirations and, last but not least, the stylistic evolution of Orphism over the time.
|
58 |
Reconstrução de superfícies a partir de nuvens de pontos / Surface Reconstruction from Unorganized PointsJoão Paulo Gois 11 March 2004 (has links)
Representações computacionais de formas podem ser criadas em ferramentas CAD ou geradas a partir de um objeto físico já existente. Esta última abordagem oferece como vantagens rapidez e fidelidade ao objeto original, que são os aspectos fundamentais em muitas aplicações, como Simulações Numéricas de Equações Diferenciais Parciais e Imagens Médicas. A reconstrução (ou geração de malhas superficiais) a partir de pontos amostrados de uma superfície de um objeto é um problema clássico de representação de formas. Nesta dissertação apresentamos um vasto levantamento bibliográfico deste tipo de reconstrução, classificando e descrevendo os principais trabalhos presentes na literatura. A partir do levantamento bibliográfico, selecionamos um conjunto de algoritmos sobre os quais foram realizadas comparações teóricas e empíricas cujos resultados são apresentados. Para finalizar, apresentamos aplicações de nossas implementações em Simulação Numérica de Equações Diferenciais Parciais e processamento de Imagens / Computational representations of shapes can be developed using CAD applications or created from data acquired from a real physical object. This latter is advantageous with respect to time and fidelity to the original object which are essential to several applications, such as Numerical Simulation of Partial Differential Equations and Medical Imaging. A classical shape representation problem is that of reconstruction (or superficial mesh generation) from points sampled over the surface of an object. In this Master\'s thesis we describe a broad survey of these reconstruction methods. We focus in the classification and characterization of the main algorithms proposed in the literature. From this survey, we selected some algorithms and conducted some theoretical and practical comparisons. We conclude this work describing applications of the algorithms implemented in Numerical Simulations of Differential Partial Equations and Image Processing
|
59 |
Génération de maillages anisotropes / Anisotropic mesh generationRouxel-Labbé, Mael 16 December 2016 (has links)
Nous étudions dans cette thèse la génération de maillages anisotropes basée sur la triangulation de Delaunay et le diagramme de Voronoi. Nous considérons tout d'abord les maillages anisotropes localement uniformes, développés par Boissonnat, Wormser et Yvinec. Bien que l'aspect théorique de cette approche soit connu, son utilité pratique n'a été que peu explorée. Une étude empirique exhaustive est présentée et révèle les avantages, mais aussi les inconvénients majeurs de cette méthode. Dans un second temps, nous étudions les diagrammes de Voronoi anisotropes définis par Labelle et Shewchuk. Nous donnons des conditions suffisantes sur un ensemble de points pour que le dual du diagramme soit une triangulation plongée en toute dimension ; un algorithme générant de tels ensembles est conçu. Ce diagramme est utilisé pour concevoir un algorithme qui génère efficacement un maillage anisotrope pour des domaines de dimension intrinsèque faible plongés dans des espaces de dimension large. Notre algorithme est prouvable, mais les résultats sont décevants. Enfin, nous présentons le diagramme de Voronoi Riemannien discret, qui utilise des avancées récentes dans l'estimation de distances géodésiques et dont le calcul est grandement accéléré par l'utilisation d'un graphe anisotrope. Nous donnons des conditions suffisantes pour que notre structure soit combinatoirement équivalente au diagramme de Voronoi Riemannien et que son dual utilisant des simplexes droits mais aussi courbes est une triangulation plongée en toute dimension. Nous obtenons de bien meilleurs résultats que pour nos autres techniques, mais dont l'utilité reste limitée / In this thesis, we study the generation of anisotropic meshes using the concepts of Delaunay triangulations and Voronoi diagrams. We first consider the framework of locally uniform anisotropic meshes introduced by Boissonnat, Wormser and Yvinec. Despite known theoretical guarantees, the practicality of this approach has only been hardly studied. An exhaustive empirical study is presented and reveals the strengths but also the overall impracticality of the method. In a second part, we investigate the anisotropic Voronoi diagram introduced by Labelle and Shewchuk and give conditions on a set of seeds such that the corresponding diagram has a dual that is an embedded triangulation in any dimension; an algorithm to generate such sets is devised. Using the same diagram, we propose an algorithm to generate efficiently anisotropic triangulations of low-dimensional manifolds embedded in high-dimensional spaces. Our algorithm is provable, but produces disappointing results. Finally, we study Riemannian Voronoi diagrams and introduce discrete Riemannian Voronoi diagrams, which employ recent developments in the numerical computation of geodesic distances and whose computation is accelerated through the use of an underlying anisotropic graph structure. We give conditions that guarantee that our discrete structure is combinatorially equivalent to the Riemannian Voronoi diagram and that its dual is an embedded triangulation, using both straight and curved simplices. We obtain significantly better results than with our other methods, but the overall utility of
|
60 |
Triangulations de Delaunay dans des espaces de courbure constante négative / Delaunay triangulations of spaces of constant negative curvatureBogdanov, Mikhail 09 December 2013 (has links)
Nous étudions les triangulations dans des espaces de courbure négative constante, en théorie et en pratique. Ce travail est motivé par des applications dans des domaines variés. Nous considérons les complexes de Delaunay et les diagrammes de Voronoï dans la boule de Poincaré, modèle conforme de l'espace hyperbolique, en dimension quelconque. Nous utilisons l'espace des sphères pour la description des algorithmes. Nous étudions aussi les questions algébriques et arithmétiques et observons que les calculs effectués sont rationnels. Les démonstrations sont basées sur des raisonnements géométriques et n'utilisent aucune formulation analytique de la distance hyperbolique. Nous présentons une implantation complète, exacte et efficace en dimension deux. Le code est développé en vue d'une intégration dans la bibliothèque CGAL, qui permettra une diffusion à un large public. Nous étudions ensuite les triangulations de Delaunay des surfaces hyperboliques fermées. Nous définissons une triangulation comme un complexe simplicial afin de permettre l'adaptation de l'algorithme incrémentiel connu pour le cas euclidien. Le cœur de l'approche consiste à montrer l'existence d'un revêtement fini dans lequel les fibres définissent toujours une triangulation de Delaunay. Nous montrons une condition suffisante sur la longueur des boucles non contractiles du revêtement. Dans le cas particulier de la surface de Bolza, nous proposons une méthode pour construire un tel revêtement, en étudiant les sous groupes distingués du groupe fuchsien définissant la surface. Nous considérons des aspects liés à l'implantation. / We study triangulations of spaces of constant negative curvature -1 from both theoretical and practical points of view. This is originally motivated by applications in various fields such as geometry processing and neuro mathematics. We first consider Delaunay complexes and Voronoi diagrams in the Poincaré ball, a conformal model of the hyperbolic space, in any dimension. We use the framework of the space of spheres to give a detailed description of algorithms. We also study algebraic and arithmetic issues, observing that only rational computations are needed. All proofs are based on geometric reasoning, they do not resort to any use of the analytic formula of the hyperbolic distance. We present a complete, exact, and efficient implementation of the Delaunay complex and Voronoi diagram in the 2D hyperbolic space. The implementation is developed for future integration into the CGAL library to make it available to a broad public. Then we study the problem of computing Delaunay triangulations of closed hyperbolic surfaces. We define a triangulation as a simplicial complex, so that the general incremental algorithm for Euclidean Delaunay triangulations can be adapted. The key idea of the approach is to show the existence of a finite-sheeted covering space for which the fibers always define a Delaunay triangulation. We prove a sufficient condition on the length of the shortest non-contractible loops of the covering space. For the specific case of the Bolza surface, we propose a method to actually construct such a covering space, by studying normal subgroups of the Fuchsian group defining the surface. Implementation aspects are considered.
|
Page generated in 0.0549 seconds