• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 31
  • 11
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 174
  • 62
  • 27
  • 23
  • 17
  • 15
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Junction tuning by ferroelectric switching in silicon nanowire Schottky-barrier field effect transistors

Sessi, V., Mulaosmanovic, H., Hentschel, R., Pregl, S., Mikolajick, T., Weber, W. M. 07 December 2021 (has links)
We report on a novel silicon nanowire-based field effect transistor with integrated ferroelectric gate oxide. The concept allows tuning the carrier transport in a non-volatile approach by switching the polarization in the ferroelectric layer close to the source Schottky-junction. We interpret the results in terms of tuning the transmissibility of the Schottky-junction for charge carriers. The experimental results provide a first step towards the integration of memory-in-logic concepts with reconfigurable nanowire transistors.
132

Demonstration of versatile nonvolatile logic gates in 28nm HKMG FeFET technology

Breyer, E. T., Mulaosmanovic, H., Slesazeck, S., Mikolajick, T. 08 December 2021 (has links)
Logic-in-memory circuits promise to overcome the von-Neumann bottleneck, which constitutes one of the limiting factors to data throughput and power consumption of electronic devices. In the following we present four-input logic gates based on only two ferroelectric FETs (FeFETs) with hafnium oxide as the ferroelectric material. By utilizing two complementary inputs, a XOR and a XNOR gate are created. The use of only two FeFETs results in a compact and nonvolatile design. This realization, moreover, directly couples the memory and logic function of the FeFET. The feasibility of the proposed structures is revealed by electrical measurements of HKMG FeFET memory arrays manufactured in 28nm technology.
133

The Paradox of /ˈnɪɡə/: Ex·cite·able Acts, Ex·cess·able Moments

Maxwell, Joyce Annette January 2021 (has links)
As a historically racialized utterance, nigger has been a contested and despised word since the late 17th Century. Now, in the 21st Century, nigga is still considered one of the most impactful words in the English lexicon. This dissertation provides one situated and contingent analysis of nigga as a moment of excess in the Higher Education classroom. I wed Judith Butler’s theorizing of ex-citable speech via her analyses of J.L. Austin’s influential conceptualizations of speech acts and Louis Althusser’s interpellation to Henry Louis Gates’ theory of Signifyin(g) in order to interrogate the multitudinous articulations and appropriations of nigga as a Signifyin(g) performative. Through my theorizing of nigger-nigga as a Signifyin(g) performative, I interrogate the continuity and discontinuity of use specific to the English Composition and Literature classroom, as well as within multiple Higher Education classrooms and discussions. I interrogate use through the methodology of what I classify as Foucauldian-lite Discourse Analysis, in order to examine nigger and nigga as ex-citable speech. My intention is to interrogate how these utterances inflect and influence constructions of multiply conflicting and complimentary histories, identities, subjectivities and power relationships of professors and students in visible and invisible ways. The Untitled Supplemental Image is a metaphor for my methodology. The image is of my mother’s hands, which a woven throughout the dissertation, symbolically represents my memory of the first time I heard the utterance nigger.
134

Smart drug delivery systems designed to improve Inflammatory Bowel Disease therapy

Hernández Teruel, Adrián 21 October 2019 (has links)
Tesis por compendio / [ES] La presente tesis doctoral titulada "Sistemas de liberacio'n controlada de fa'rmacos diseñados para mejorar el tratamiento de Enfermedad Inflamatoria Intestinal" se centra en el diseño, preparación, caracterización y evaluación in vivo de distintos sistemas de liberación controlada de fármacos en colon (CDDS, por sus siglas en inglés) utilizando como soporte micropartículas de silice mesoporosa, funcionalizadas con puertas moleculares. En conclusión, los estudios realizados demuestran que los materiales de silice mesoporosa, en combinación con puertas moleculares sensibles a estímulos específicos, tienen un gran potencial para el desarrollo de nuevos sistemas de liberación controlada de fármacos en el colon, dirigidos a mejorar el arsenal terapéutico disponible para el tratamiento de EII. La posibilidad de adaptar o personalizar la carga y las puertas moleculares hace que estos soportes de sílice mesoporosa sean una opción interesante para el desarrollo de nuevos sistemas de liberación controlada de fármacos en diferentes aplicaciones biomédicas. Finalmente, esperamos que los resultados obtenidos en esta tesis doctoral sirvan de inspiración para el desarrollo de sistemas de liberación controlada de fármacos innovadores y cada vez más inteligentes, para su aplicación tanto en medicina como en otras áreas. / [CA] La present tesi doctoral titulada "Sistemes d'alliberament controlat de farmacs dissenyats per a millorar el tractament de Malaltia Inflamatoria Intestinal" se centra en el disseny, preparacio, caracteritzacio i avaluacio in vivo de diferents sistemes d'alliberament controlat de farmacs en colon (*CDDS, per les seues sigles en angles) utilitzant com a suport microparticules de si'lice mesoporosa, funcionalitzades amb portes moleculars. En conclusio, els estudis realitzats demostren que els materials de si'lice mesoporosa, en combinacio amb portes moleculars sensibles a estimuls especifics, tenen un gran potencial per al desenvolupament de nous sistemes d'alliberament controlat de farmacs en el colon, dirigits a millorar l'arsenal terapeutic disponible per al tractament de MII. La possibilitat d'adaptar o personalitzar la carrega i les portes moleculars, fa que aquests suports de silice mesoporosa siguen una opcio interessant per al desenvolupament de nous sistemes d'alliberacio controlada de farmacs en diferents aplicacions biomediques. Finalment, esperem que els resultats obtinguts en aquesta tesi doctoral servisquen d'inspiracio per al desenvolupament de sistemes d'alliberament controlat de farmacs innovadors i cada vegada mes intel·ligents, per a la seua aplicacio tant en medicina com en altres arees. / [EN] This PhD thesis entitled "Smart drug delivery systems designed to improve Inflammatory Bowel Disease therapy" is focused on the design, synthesis, characterization and in vivo evaluation of several Colon Drug Delivery Systems (CDDS) using hybrid mesoporous silica microparticles as scaffolds containing molecular gates. In conclusion, the studies shown in this Thesis demonstrate that mesoporous silica materials in combination with responsive molecular gates have great potential in the design and preparation of new CDDS to improve the therapeutic options available for IBD. The possibility to adapt the cargo and the molecular gate makes mesoporous silica support especially appealing for similar controlled drug delivery applications in the biomedical field. We hope that the obtained results could inspire the development of new innovative smart drug delivery systems in this or other fields. / We thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. AHT thanks to the Spanish MEC for his FPU grant. We thank the Generalitat Valenciana (Project PROMETEO2018/024) / Hernández Teruel, A. (2019). Smart drug delivery systems designed to improve Inflammatory Bowel Disease therapy [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/129863 / TESIS / Compendio
135

Mormon Culture Meets Popular Fiction: Susa Young Gates and the Cultural Work of Home Literature

Tait, Lisa Olsen 01 January 1998 (has links) (PDF)
The few studies of Mormon home literature that have been published to date dismiss it as inferior artistry, an embarrassing if necessary step in the progression towards true Mormon literature. These studies are inadequate, however, because they divorce the texts from their context, holding them up to standards that did not exist for their original audience. Jane Tompkins' theory of texts as cultural work provides a more satisfactory way of looking at these narratives. Home literature is thoroughly enmeshed in the cultural discourse of its day. Beneath the surface, these didactic stories about young Mormons finding love with their foreordained mates performed important cultural work by helping Mormons to think about their personal and collective identities, by co-opting mainstream fictional forms and giving them safe expression, and by reconceptualizing marriage in the wake of polygamy's demise. The stories of Susa Young Gates illustrate these functions well. Gates was a prominent youth leader and prolific home author during the 1890s. Her stories extend and enact Mormon cultural discourse of the time and point up the connections between Mormon fiction and mainstream models. The last decade of the nineteenth century marked the beginning of Mormonism's transition from an isolated separatist movement to a thoroughly assimilated and modem mainstream religion. As Mormons shifted away from the defining practices of polygamy, communal economics, and ecclesiastical dominance of politics, they sought for new ways to define themselves that would retain their sense of distinctness from a world they still viewed as sinful. The result was new emphasis on formerly dormant or relatively unemphasized practices such as the Word of Wisdom and the law of tithing. This emphasis shows up in the story "Donald's Boy" which repeatedly focuses on the necessity for Mormon youth to shun the corruptions of the world. "Seven Times," which ran in the 1893-94 volume of the Young Woman's Journal, shows Gates's debt to mainstream fiction in its extensive adoption of popular conventions, reworking such devices as the heroine's development, the divine child, the lecherous villain, and the sick bed ordeal into a Mormon conversion narrative. As in popular American fiction, the role of the narrator is central to the didactic intentions of the story. The narrator becomes the dominant personality of the text as she both creates and controls the emotion necessary to the formal and ideological demands of the narrative. Gates claimed to consider popular didactic fiction inconsequential, but her own comments and her wholesale use of its conventions suggests that her relationship with these novels was much more complex than she acknowledged. "John Stevens' Courtship" is Gates's most popular and ambitious work. Its setting in the early years of Mormon settlement in Utah at the time of the first large-scale influx of "outsiders" into Mormon society constructs an idealized view of early Mormon culture that contrasts with the diminished faithfulness Gates perceived in her day. Gates's artistic ambitions show up most clearly in her intense descriptions of her characters. These character descriptions draw on popular conventions to inscribe idealized gender constructs that interacted with Mormon ideology to remain in force in Mormon society long after they had faded elsewhere. Finally, Gates's emphasis on the idea of a foreordained mate replaces polygamy as the essential doctrine of marriage, an important shift in post-Manifesto Mormondom.
136

Why the Rise in Drones

Duffy, Sean David 01 September 2015 (has links)
No description available.
137

Quantum Information Processing with Color Center Qubits: Theory of Initialization and Robust Control

Dong, Wenzheng 21 May 2021 (has links)
Quantum information technologies include secure quantum communications and ultra precise quantum sensing that are significantly more efficient than their classical counterparts. To enable such technologies, we need a scalable quantum platform in which qubits are con trollable. Color centers provide controllable optically-active spin qubits within the coherence time limit. Moreover, the nearby nuclear spins have long coherence times suitable for quantum memories. In this thesis, I present a theoretical understanding of and control protocols for various color centers. Using group theory, I explore the wave functions and laser pumping-induced dynamics of VSi color centers in silicon carbide. I also provide dynamical decoupling-based high-fidelity control of nuclear spins around the color center. I also present a control technique that combines holonomic control and dynamically corrected control to tolerate simultaneous errors from various sources. The work described here includes a theoretical understanding and control techniques of color center spin qubits and nuclear spin quantum memories, as well as a new platform-independent control formalism towards robust qubit control. / Doctor of Philosophy / Quantum information technologies promise to offer efficient computations of certain algorithms and secure communications beyond the reach of their classical counterparts. To achieve such technologies, we must find a suitable quantum platform to manipulate the quantum information units (qubits). Color centers host spin qubits that can enable such technologies. However, it is challenging due to our incomplete understanding of their physical properties and, more importantly, the controllability and scalability of such spin qubits. In this thesis, I present a theoretical understanding of and control protocols for various color centers. By using group theory that describes the symmetry of color centers, I give a phenomenological model of spin qubit dynamics under optical control of VSi color centers in silicon carbide. I also provide an improved technique for controlling nuclear spin qubits with higher precision. Moreover, I propose a new qubit control technique that combines two methods - holonomic control and dynamical corrected control - to provide further robust qubit control in the presence of multiple noise sources. The works in this thesis provide knowledge of color center spin qubits and concrete control methods towards quantum information technologies with color center spin qubits.
138

Holonomic qutrit quantum gates in a tripod

Axelsson, Oskar, Henriksson Lindberg, Elias January 2024 (has links)
In this project a qutrit tripod system is studied to implement quantum gates using non-Abelian geometric phases, allowing for holonomic quantum computation which in turn results in more robust computations. First, a general foundation of the theory is presented. This includes the relevant theory of matrices in Hilbert space, as well as theory of the quantum mechanics used in the report. The method is then described in depth, showing how the pulse area is fixed. Using properties of the Hamiltonian as well as the time-evolution operator of the tripod system the computational subspace can be derived. These findings are combined to show how the computational subspace evolves in time, resulting in the unitary matrix used to form quantum gates. Using educated guesses to find the necessary parameters or utilizing iterative methods to find the parameters are the two main approaches used for constructing the considered gates. Three of the suggested quantum gates are successfully implemented through educated guesses, namely X, T and Z using an angle parametrization of the phase and amplitude of the pulses. The last desired gate is the Hadamard-gate, but the implementation of said gate required numerical approximation. The reasons as to why this is the case, are later discussed.
139

Estudo numÃrico do acoplador duplo simÃtrico de fibras Ãpticas operando com PPM e PAM para obtenÃÃo de portas lÃgicas / Numerical study of symmetrical double coupler for fiber optic operating with PPM and WFP to obtain gate

Alisson da ConceiÃÃo Ferreira 22 January 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Neste trabalho, foram investigadas as caracterÃsticas de operaÃÃo de um Acoplador Direcional NÃo-Linear(NLDC) Duplo SimÃtrico, trabalhando com pulsos de , em duas diferentes aplicaÃÃes: ObtenÃÃo de portas lÃgicas E e OU, sob ModulaÃÃo Por PosiÃÃo de Pulsos (PPM); obtenÃÃo de portas lÃgicas E e OU, sob ModulaÃÃo Por Amplitude de Pulsos (PAM). A investigaÃÃo à realizada, atravÃs de simulaÃÃes numÃricas, utilizando-se do mÃtodo de Runge Kutta de quarta ordem. Na primeira aplicaÃÃo, à analisada a possibilidade da realizaÃÃo de operaÃÃes lÃgicas pelo Acoplador Direcional NÃo-Linear (NLDC) Duplo SimÃtrico sem perda. Considerando a operaÃÃo das portas lÃgicas, foram utilizadas as quatro possÃveis combinaÃÃes para dois pulsos, nas fibras 1 e 2, modulados pela posiÃÃo temporal (PPM) nos nÃveis lÃgicos 0 ou 1. Foram investigados os efeitos de uma variaÃÃo no parÃmetro de ajuste da modulaÃÃo PPM, ou seja, no deslocamento inicial do pulso em relaÃÃo ao pulso referencial, ou informaÃÃo nÃo modulada, e na diferenÃa de fase entre os pulsos sÃlitons fundamentais de entrada devidamente modulados. Na segunda aplicaÃÃo, o NLDC duplo simÃtrico à submetido à modulaÃÃo PAM, utilizando-se tambÃm, das quatro combinaÃÃes possÃveis para os dois pulsos, nas fibras de entrada. Foram investigados os efeitos da variaÃÃo no parÃmetro de ajuste da modulaÃÃo PAM na amplitude inicial do pulso em relaÃÃo à amplitude de referÃncia, ou sinal sem modulaÃÃo, e tambÃm observada a amplitude de saÃda modulada versus uma diferenÃa de fase entre os pulsos sÃlitons fundamentais de entrada devidamente modulados. Nas duas aplicaÃÃes foram obtidas portas lÃgicas E e OU. / In this work, the performance study of a Symmetric Dual-Core Non-Linear Directional Coupler (NLDC), working with pulses of , in two different applications have been investigated: accomplishment of logical gates AND and OR, under Pulse Position Modulation (PPM); accomplishment of logical gates AND and OR, under Pulse Amplitude Modulation (PAM). The investigation is based in a numerical simulation study, using the fourth order Runge Kutta numerical method. In the first application, the possibility of the accomplishment of logical operations by Symmetric Dual-Core Non-Linear Directional Coupler (NLDC) without loss is analyzed. Considering the operation of the logical gates, the four possible combinations for two pulses, on the input fibers, modulated by the temporal PPM in the logical levels 0 or 1, were used. The effects of a variation in the coding parameter offset of the PPM modulation, that is, in the displacement of the input pulse relative to the reference time level, was investigated. In the second application, the symmetric dual-core NLDC is submitted to PAM modulation, using the four possible combinations for two pulses on the input fibers, were used, as well. The effects of a variation in the coding parameter offset of the PAM modulation relative to the reference amplitude, was investigated. The modulated output amplitude versus a phase difference between the input pulses , was also studied. On the two applications, logical gates AND and OR was observed.
140

Quantum Information Processing By NMR : Quantum State Discrimination, Hadamard Spectroscopy, Liouville Space Search, Use Of Geometric Phase For Gates And Algorithms

Gopinath, T 07 1900 (has links)
The progess in NMRQIP can be outlined in to four parts.1) Implementation of theoretical protocols on small number of qubits. 2) Demonstration of QIP on various NMR systems. 3) Designing and implementing the algorithms for mixed initial states. 4) Developing the techniques for coherent and decoherent control on higher number(up to 15) of qubits. This thesis contains some efforts in the direction of first three points. Quantum-state discrimination has important applications in the context of quantum communication and quantum cryptography. One of the characteristic features of quantum mechanics is that it is impossible to devise a measurement that can distinguish nonorthogonal states perfectly. However, one can distinguish them with a finite probability by an appropriate measurement strategy. In Chapter 2, we describe the implementation of a theoretical protocol of programmable quantum-state discriminator, on a two-qubit NMR System. The projective measurement is simulated by adding two experiments. This device does the unambiguous discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and eillipitically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla quubit. The last step of any QIP protocol is the readout. In NMR-QIP the readout is done by using density matrix tomography. It was first proposed by Ernst and co-workers that a two-dimensional method can be used to correlate input and output states. This method uses an extra (aniclla) qubit, whose transitions indicate the quantum states of the remaining qubits. The 2D spectrum of ancilla qubit represent the input and output states along F1 and F2 dimensions respectively. However the 2D method requires several t1 increments to achieve the required spectral width and resolution in the indirect dimension, hence leads to large experimental time. In chapter 3, the conventional 2D NMRQIP method is speeded-up by using Hadamard spectroscopy. The Hadamard method is used to implement various two-, three-qubit gates and qutrit gates. We also use Hadamard spectroscopy for information storage under spatial encoding and to implement a parallel search algorithm. Various slices of water sample can be spatially encoded by using a multi-frequency pulse under the field gradient. Thus the information of each slice is projected to the frequency space. Each slice represents a classical bit, where excitation and no excitation corresponds to the binary values 0 and 1 respectively. However one has to do the experiment for each binary information, by synthesizing a suitable multi-frequency pulse. In this work we show that by recording the data obtained by various Hadamard encoded multi-frequency pulses, one can suitably decode it to obtain any birnary information, without doing further experiments. Geometric phases depend only on the geometry of the path executed in the projective Hilbert space, and are therefore resilient to certain types of errors. This leads to the possibility of an intrinsically fault-tolerant quantum computation. In liquid state NMRQIP. Controlled phase shift gates are achieved by using qubit selective pulses and J evolutions, and also by using geometir phases. In order to achieve higher number of qubits in NMR, one explores dipolar couplings which are larger in magnitude, yielding strongly coupled spectra. In such systems since the Hamiltonian consists of terms, it is difficult to apply qubit selective pulses. However such systems have been used for NMRQIP by considering 2n eigen states as basis states of an n-qubit system. In chapter 4, it is shown that non-adiabatic geometric phases can be used to implement controlled phase shift gates in strongly dipolar coupled systems. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Using such controlled phase shift gates, the implementation of Deutsch-Jozsa and parity algorithms are demonstrated. Search algorithms play an important role in the filed of information processing. Grovers quantum search algorithm achieves polynomial speed-up over the classical search algorithm. Bruschweiler proposed a Liouville space search algorithm which achieve polymonial speed-up. This algorithm requires a weakly coupled system with a mixed initial state. In chapter 5 we modified the Bruschweiler’s algorithm, so that it can be implemented on a weakly as well as strongly coupled system. The experiments are performed on a strongly dipolar coupled four-qubit system. The experiments from four spin-1/2 nuclei of a molecule oriented in a liquid crystal matrix. Chapter 6 describes the implementation of controlled phase shift gates on a quadrupolar spin-7/2 nucleus, using non-adiabatic geometric phases. The eight energy levels of spin-7/2 nucleus, form a three qubit system. A general procedure is given, for implementing a controlled phase shift gate on a system consisting of any number of energy levels. Finally Collin’s version of three-qubit DJ algorithm using multi-frequency pulses, is implemented in the spin-7/2 system.

Page generated in 0.0479 seconds