81 |
Integration of inertial navigation with global navigation satellite system / Integration of inertial navigation with global navigation satellite systemŠtefanisko, Ivan January 2015 (has links)
This paper deals with study of inertial navigation, global navigation satellite system, and their fusion into the one navigation solution. The first part of the work is to calculate the trajectory from accelerometers and gyroscopes measurements. Navigation equations calculate rotation with quaternions and remove gravity sensed by accelerometers. The equation’s output is in earth centred fixed navigation frame. Then, inertial navigation errors are discussed and focused to the bias correction. Theory about INS/GNSS inte- gration compares different integration architecture. The Kalman filter is used to obtain navigation solution for attitude, velocity and position with advantages of both systems.
|
82 |
Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen FlugrobotersWunschel, Daniel 24 October 2011 (has links)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.
|
83 |
Inertialsensoren in der biomechanischen Gang- und Laufanalyse – Anforderungen an Sensoren und AlgorithmikMitschke, Christian 20 November 2018 (has links)
Im Fokus dieser kumulativ angefertigten Dissertation stehen vier methodenorientierte biomechanische Studien, in welchen die potentiellen Fehlerquellen analysiert werden, die beim Einsatz von Inertialsensoren in der biomechanischen Gang- und Laufanalyse auftreten können. In den einzelnen Beiträgen werden die Einflüsse der Inertialsensoraufnahmefrequenz (Studie I) und des Messbereichs der Beschleunigungssensoren (Studie II) auf die kinematischen, kinetischen und räumlich-zeitlichen Parameter systematisch untersucht. Des Weiteren wird sich kritisch mit der Genauigkeit verschiedener Detektionsmethoden des initialen Bodenkontaktes (Studie III) sowie mit der Aussagekraft der maximalen Eversionsgeschwindigkeit (Studie IV) auseinandergesetzt. Um ein umfassendes Bild der Einflussgrößen zu erhalten, wurde in den Studien II, III und IV untersucht, ob die Materialcharakteristik der Laufschuhsohle die Genauigkeit der biomechanischen Parameter beeinflusst. Zudem wurde in Studie III geprüft, welchen zusätzlichen Effekt der Laufstil (Vor- und Rückfußlaufen) auf die Genauigkeit der initialen Bodenkontaktbestimmung hat sowie welchen Einfluss die Bewegungsgeschwindigkeit (Gehen und Laufen) auf die maximale Eversionsgeschwindigkeit nehmen kann (Studie IV). Die Ergebnisse der vier Untersuchungen werden am Ende dieser Arbeit in einem gemeinsamen Kontext diskutiert. Auf Grundlage der Erkenntnisse konnte eine Übersicht erstellt werden, welche sowohl die Mindestanforderungen an Inertialsensoren als auch die Einflussgrößen auf die Genauigkeit der biomechanischen Parameter enthält. Mit diesem Überblick erhalten Nutzer von Inertialsensoren (z.B. Sportler, Trainer, Mediziner und Wissenschaftler) bei der Planung einer Bewegungsanalyse die Unterstützung, die Sensoren mit der passenden Sensorspezifikation in Kombination mit den präzisesten Auswertealgorithmen auszuwählen. Zudem können die Informationen aus dieser Dissertation dazu genutzt werden, Erkenntnisse bereits publizierter Studien kritisch zu hinterfragen. / In previous studies, inertial sensors were used to investigate kinematic, kinetic, and spatio-temporal parameters during walking and running. The present cumulative doctoral thesis consists of four methodological studies. Two of the studies examine the influence of inertial sensor sampling rate (study I) and accelerometer operating range (study II) on the accuracy of biomechanical parameters. Another study investigated whether different published foot strike detection methods can accurately detect the time of initial ground contact (study III). The final study examined whether a single gyroscope can be used to accurately determine peak eversion velocity (study IV). In order to obtain a comprehensive view of the influencing factors, studies II, III and IV also investigated whether the material characteristics of the running shoe sole also influence the accuracy of the biomechanical parameters. Additionally, the effect of running style (forefoot or rearfoot) on the accuracy of foot strike detection methods was investigated in study III, and the effect of locomotion speed (walking, running slow up to running fast) on the accuracy of peak eversion velocity was examined in study IV. The results of the four investigations will be summarized and discussed in a common context. Based on the findings, an overview was prepared which contains both the minimum requirements for inertial sensors and also the influencing variables on the accuracy of the biomechanical parameters. This overview may assist users of inertial sensors (e.g. athletes, trainers, physicians, or scientists) in planning gait and running analyses to select inertial sensors with the appropriate specification in combination with the most accurate algorithms. In addition, the information from this dissertation can be used to critically consider the findings of published studies.
|
84 |
Platform development of body area network for gait symmetry analysis using IMU and UWB technologyPersson, Anders January 2018 (has links)
Having a device with the capability of measure motions from gait produced by a human being, could be of most importance in medicine and sports. Physicians or researchers could measure and analyse key features of a person's gait for the purpose of rehabilitation or science, regarding neurological disabilities. Also in sports, professionals and hobbyists could use such a device for improving their technique or prevent injuries when performing. In this master thesis, I present the research of what technology is capable of today, regarding gait analysis devices. The research that was done has then help the development of a suggested standalone hardware sensor node for a Body Area Network, that can support research in gait analysis. Furthermore, several algorithms like for instance UWB Real-Time Location and Dead Reckoning IMU/AHRS algorithms, have been implemented and tested for the purpose of measuring motions and be able to run on the sensor node device. The work in this thesis shows that a IMU sensor have great potentials for generating high rate motion data while performing on a small mobile device. The UWB technology on the other hand, indicates a disappointment in performance regarding the intended application but can still be useful for wireless communication between sensor nodes. The report also points out the importance of using a high performance micro controller for achieving high accuracy in measurements.
|
85 |
Evaluation of Target Tracking Using Multiple Sensors and Non-Causal AlgorithmsVestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.
|
Page generated in 0.086 seconds