Spelling suggestions: "subject:"pump processes""
21 |
Completion Of A Levy Market Model And Portfolio OptimizationTurkvatan, Aysun 01 September 2008 (has links) (PDF)
In this study, general geometric Levy market models are considered. Since these models are, in general, incomplete, that is, all contingent claims cannot be replicated by a self-financing portfolio consisting of investments in a risk-free bond and in the stock, it is suggested that the market should be enlarged by artificial assets based on the power-jump processes of the underlying Levy process. Then it is shown that the enlarged market is complete and the explicit hedging portfolios for claims whose payoff function depends on the prices of the stock and the artificial assets at maturity are derived. Furthermore, the portfolio optimization problem is considered in the enlarged market. The problem consists of choosing an optimal portfolio in such a way that the largest expected utility of the terminal wealth is obtained. It is shown that for particular choices of the equivalent martingale measure in the market, the optimal portfolio only consists of bonds and stocks. This corresponds to completing the market with additional assets in such a way that they are superfluous in the sense that the terminal expected utility is not improved by including these assets in the portfolio.
|
22 |
Estimation of discretely sampled continuous diffusion processes with application to short-term interest rate modelsVan Appel, Vaughan 13 October 2014 (has links)
M.Sc. (Mathematical Statistics) / Stochastic Differential Equations (SDE’s) are commonly found in most of the modern finance used today. In this dissertation we use SDE’s to model a random phenomenon known as the short-term interest rate where the explanatory power of a particular short-term interest rate model is largely dependent on the description of the SDE to the real data. The challenge we face is that in most cases the transition density functions of these models are unknown and therefore, we need to find reliable and accurate alternative estimation techniques. In this dissertation, we discuss estimating techniques for discretely sampled continuous diffusion processes that do not require the true transition density function to be known. Moreover, the reader is introduced to the following techniques: (i) continuous time maximum likelihood estimation; (ii) discrete time maximum likelihood estimation; and (iii) estimating functions. We show through a Monte Carlo simulation study that the parameter estimates obtained from these techniques provide a good approximation to the estimates obtained from the true transition density. We also show that the bias in the mean reversion parameter can be reduced by implementing the jackknife bias reduction technique. Furthermore, the data analysis carried out on South-African interest rate data indicate strongly that single factor models do not explain the variability in the short-term interest rate. This may indicate the possibility of distinct jumps in the South-African interest rate market. Therefore, we leave the reader with the notion of incorporating jumps into a SDE framework.
|
23 |
Asymptotic methods for option pricing in finance / Méthodes asymptotiques pour la valorisation d’options en financeKrief, David 27 September 2018 (has links)
Dans cette thèse, nous étudions plusieurs problèmes de mathématiques financières liés à la valorisation des produits dérivés. Par différentes approches asymptotiques, nous développons des méthodes pour calculer des approximations précises du prix de certains types d’options dans des cas où il n’existe pas de formule explicite.Dans le premier chapitre, nous nous intéressons à la valorisation des options dont le payoff dépend de la trajectoire du sous-jacent par méthodes de Monte-Carlo, lorsque le sous-jacent est modélisé par un processus affine à volatilité stochastique. Nous prouvons un principe de grandes déviations trajectoriel en temps long, que nous utilisons pour calculer, en utilisant le lemme de Varadhan, un changement de mesure asymptotiquement optimal, permettant de réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options.Le second chapitre considère la valorisation par méthodes de Monte-Carlo des options dépendant de plusieurs sous-jacents, telles que les options sur panier, dans le modèle à volatilité stochastique de Wishart, qui généralise le modèle Heston. En suivant la même approche que dans le précédent chapitre, nous prouvons que le processus vérifie un principe de grandes déviations en temps long, que nous utilisons pour réduire significativement la variance de l’estimateur de Monte-Carlo des prix d’options, à travers un changement de mesure asymptotiquement optimal. En parallèle, nous utilisons le principe de grandes déviations pour caractériser le comportement en temps long de la volatilité implicite Black-Scholes des options sur panier.Dans le troisième chapitre, nous étudions la valorisation des options sur variance réalisée, lorsque la volatilité spot est modélisée par un processus de diffusion à volatilité constante. Nous utilisons de récents résultats asymptotiques sur les densités des diffusions hypo-elliptiques pour calculer une expansion de la densité de la variance réalisée, que nous intégrons pour obtenir l’expansion du prix des options, puis de leur volatilité implicite Black-Scholes.Le dernier chapitre est consacré à la valorisation des dérivés de taux d’intérêt dans le modèle Lévy de marché Libor qui généralise le modèle de marché Libor classique (log-normal) par l’ajout de sauts. En écrivant le premier comme une perturbation du second et en utilisant la représentation de Feynman-Kac, nous calculons explicitement l’expansion asymptotique du prix des dérivés de taux, en particulier, des caplets et des swaptions. / In this thesis, we study several mathematical finance problems, related to the pricing of derivatives. Using different asymptotic approaches, we develop methods to calculate accurate approximations of the prices of certain types of options in cases where no explicit formulas are available.In the first chapter, we are interested in the pricing of path-dependent options, with Monte-Carlo methods, when the underlying is modelled as an affine stochastic volatility model. We prove a long-time trajectorial large deviations principle. We then combine it with Varadhan’s Lemma to calculate an asymptotically optimal measure change, that allows to reduce significantly the variance of the Monte-Carlo estimator of option prices.The second chapter considers the pricing with Monte-Carlo methods of options that depend on several underlying assets, such as basket options, in the Wishart stochastic volatility model, that generalizes the Heston model. Following the approach of the first chapter, we prove that the process verifies a long-time large deviations principle, that we use to reduce significantly the variance of the Monte-Carlo estimator of option prices, through an asymptotically optimal measure change. In parallel, we use the large deviations property to characterize the long-time behaviour of the Black-Scholes implied volatility of basket options.In the third chapter, we study the pricing of options on realized variance, when the spot volatility is modelled as a diffusion process with constant volatility. We use recent asymptotic results on densities of hypo-elliptic diffusions to calculate an expansion of the density of realized variance, that we integrate to obtain an expansion of option prices and their Black-Scholes implied volatility.The last chapter is dedicated to the pricing of interest rate derivatives in the Levy Libor market model, that generaliszes the classical (log-normal) Libor market model by introducing jumps. Writing the first model as a perturbation of the second and using the Feynman-Kac representation, we calculate explicit expansions of the prices of interest rate derivatives and, in particular, caplets and swaptions
|
24 |
Deux études en gestion de risque: assurance de portefeuille avec contrainte en risque et couverture quadratique dans les modèles a sautsDe Franco, Carmine 29 June 2012 (has links) (PDF)
Dans cette thèse, je me suis interessé a deux aspects de la gestion de portefeuille : la maximisation de l'utilité e d'un portefeuille financier lorsque on impose une contrainte sur l'exposition au risque, et la couverture quadratique en marché incomplet. Part I. Dans la première partie, j' étudie un problème d'assurance de portefeuille du point de vue du manager d'un fond d'investissement, qui veut structurer un produit financier pour les investisseurs du fond avec une garantie sur la valeur du portefeuille a la maturité . Si, a la maturité, la valeur du portefeuille est au dessous d'un seuil x e, l'investisseur sera remboursé a la hauteur de ce seuil par une troisième partie, qui joue le rôle d'assureur du fond (on peut imaginer que le fond appartient à une banque et que donc c'est la banque elle même qui joue le rôle d'assureur). En échange de cette assurance, la troisième partie impose une contrainte sur l'exposition au risque que le manager du fond peut tolérer, mesurée avec une mesure de risque monétaire convexe. Je donne la solution complet e de ce problème de maximisation non convexe en marché complet et je prouve que le choix de la mesure de risque est un point crucial pour avoir existence d'un portefeuille optimal. J'applique donc mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence. Mots-cl es : Assurance de portefeuille ; maximisation d'utilité ; mesure de risque convexe ; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence. Part II. Dans la deuxième partie, je m'intéresse au problème de couverture quadratique en marché incomplet. J'assume que le marché est d écrit par un processus Markovien tridimensionnel avec sauts. La premi ère variable d' état décrit l'actif - financier, échangeable sur le marché, qui sert comme instrument de couverture ; la deuxième variable d' état modélise un actif financier que intervient dans la dynamique de l'instrument de couverture mais qui n'est pas échangeable sur le march é : il peut donc être vu comme un facteur de volatilité de l'instrument de couverture, ou comme un actif financier que l'on ne peut pas acheter (pour de raisons légales par exemple) ; la troisième et dernière variable d' état représente une source externe de risque qui affecte l'option Européenne qu'on veut couvrir, et qui, elle aussi, n'est pas échangeable sur le marché. Pour résoudre le problème j'utilise l'approche de la programmation dynamique, qui me permet d' écrire l' équation de Hamilton-Jacobi- Bellman associé e au problème de couverture quadratique, qui est non locale en non linéaire. Je prouve que la fonction valeur associée au problème de couverture quadratique peut être caractérisée par un système de trois équations integro- différentielles aux dérivées partielles, dont l'une est semilinéaire et ne dépends pas du choix de l'option a couvrir, et les deux autres sont simplement linéaires , et que ce système a une unique solution r régulière dans un espace de Hölder approprié, qui me permet donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré lorsque le processus est non dégénéré (c'est a dire que la composante Brownienne est strictement elliptique) et lorsque le processus est a sauts purs. Je conclus avec une application de mes résultats dans le cadre du marché de l' électricité. Mots-cl es : Couverture quadratique ; modèle a sauts ; programmation dynamique ; équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-différentielles.
|
25 |
Stabilité pour des modèles de réseaux de neurones et de chimiotaxie / Stability for the models of neuronal network and chemotaxisWeng, Qilong 29 September 2017 (has links)
Cette thèse vise à étudier certains modèles biologiques dans le réseau neuronal et dans la chimiotaxie avec la méthode d’analyse spectrale. Afin de traiter les principaux problèmes, tels que l’existence et l’unicité des solutions et des états stationnaires ainsi que les comportements asymptotiques, le modèle linéaire ou linéarisé associé est considéré par l’aspect du spectre et des semi-groupes dans les espaces appropriés, puis la stabilité de modèle non linéaire suit. Plus précisément, nous commençons par une équation de courses-et-chutes linéaire dans la dimension d≥1 pour établir l’existence d’un état stationnaire unique, positif et normalisé et la stabilité exponentielle asymptotique dans l’espace L¹ pondéré basé sur la théorie de Kerin-Rutman avec quelques estimations du moment de la théorie cinétique. Ensuite, nous considérons le modèle du temps écoulé sous les hypothèses générales sur le taux de tir et nous prouvons l’unicité de l’état stationnaire et sa stabilité exponentielle non linéaire en cas sans ou avec délai au régime de connectivité faible de la théorie de l’analyse spectrale pour les semi-groupes. Enfin, nous étudions le modèle sous une hypothèse de régularité plus faible sur le taux de tir et l’existence de la solution ainsi que la même stabilité exponentielle sont généralement établies n’importe la prise en compte du délai ou non, au régime de connectivité faible ou forte. / This thesis is aimed to study some biological models in neuronal network and chemotaxis with the spectral analysis method. In order to deal with the main concerning problems, such as the existence and uniqueness of the solutions and steady states as well as the asymptotic behaviors, the associated linear or linearized model is considered from the aspect of spectrum and semigroups in appropriate spaces then the nonlinear stability follows. More precisely, we start with a linear runs-and-tumbles equation in dimension d≥1 to establish the existence of a unique positive and normalized steady state and the exponential asymptotic stability in weighted L¹ space based on the Krein-Rutman theory together with some moment estimates from kinetic theory. Then, we consider time elapsed model under general assumptions on the firing rate and prove the uniqueness of the steady state and its nonlinear exponential stability in case without or with delay in the weak connectivity regime from the spectral analysis theory for semigroups. Finally, we study the model under weaker regularity assumption on the firing rate and the existence of the solution as well as the same exponential stability are established generally no matter taking delay into account or not and no matter in weak or strong connectivity regime.
|
26 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
27 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
Page generated in 0.1153 seconds