231 |
Développement de microparticules bioadhésives pour l'administration vaginale de probiotiques / Development of bioadhesive microparticles for vaginal use of probioticsPliszczak, Dorothée 23 November 2011 (has links)
Lors d’infections vaginales, divers pathogènes se développent au détriment de la flore locale. L’utilisation de lactobacilles en traitement prophylactique et/ou curatif pourrait pallier ce problème. Le but de ce travail de thèse a été de développer des microparticules mucoadhésives à base de pectine et d’acide hyaluronique (HA) pour la libération intravaginale de probiotiques. Quatre souches probiotiques ont été associées à des prébiotiques afin d’obtenir un effet symbiotique. Les microparticules ont été formulées par émulsification-gélification ionique. Dans un premier temps, l’étude de l’influence de différents paramètres de procédé et de formulation a permis de définir les conditions opératoires pour l’obtention de microparticules d'environ 140 µm de diamètre encapsulant des probiotiques viables. Puis, les propriétés mucoadhésives des microparticules ont été évaluées in-vitro et ex-vivo par des mesures rhéologiques en mode dynamique et par des tests d’indentation. La présence d’HA entraine une augmentation importante du pouvoir bioadhésif des particules. Enfin, ces microparticules ont été incorporées dans des comprimés par un procédé de granulation humide. L’encapsulation des bactéries permet leur protection lors du procédé de compression. De plus, contrairement aux formes classiques d'administration des probiotiques, les microparticules permettent d'obtenir un profil de libération prolongée des bactéries sur environ 10h contre 1h dans le cas d’un comprimé comportant des probiotiques non encapsulés. Un début de prolifération bactérienne s’opère entre 16 et 24 heures. Le comprimé ainsi développé est tout-à-fait adapté à une application vaginale / More than 300 millions of women around the world have urinary or vaginal infections, including yeast vaginitis and bacterial vaginosis. Vaginal use of probiotics offers a potential alternative approach to health restoration and maintenance of the vaginal microflora. Moreover, prebiotics may be combined with probiotics to obtain a symbiotic effect. The aim of this work was to develop pro- and pre-biotics-loaded bioadhesive microparticles by using pectin and hyaluronic acid (HA). Four probiotic strains classically used in vaginal applications and one prebiotic have been selected. Microparticles were produced by emulsification/gelation method using calcium as cross-linking agent. The study of process and formulation parameters allowed obtaining microparticles with a mean diameter of 140 µm which encapsulated between 1010 to 1011 cfu/g of microparticles. Their mucoadhesive properties have been proved both by rheological and indentation measurements in in-vitro and ex-vivo conditions. Moreover, results have shown that HA addition in pectin solutions enhanced the bioadhesive properties of the gel-based microparticles. Afterwards, microparticles have been incorporated inside tablet by wet granulation. Microencapsulation of probiotics allowed protecting them during the compression process. The kinetic release of probiotics studies in in-vitro conditions exhibited a sustained release profile for 10 hours against 1h for unencapsulated probiotics. A beginning of probiotic strain proliferation was observed between 16 to 24 hours. The developed tablet is well-suited to vaginal application
|
232 |
MICRO/NANOPARTÍCULAS POLIMÉRICAS E BIODEGRADÁVEIS DE MESOCARPO DE BABAÇU: AÇÃO IMUNOMODULADORA NA POLARIZAÇÃO DE MACRÓFAGOS E EFEITO ANTI-LEISHMANIA / MICRO / POLYMERIC NANOPARTICLES AND BIODEGRADABLE OF MESOCARPO DE BABAÇU: IMMUNOMODULATORY ACTION IN POLARIZATION OF MACROPHAGES AND EFFECT ANTI-LEISHMANIASILVA, Mayara Cristina Pinto da 28 March 2017 (has links)
Submitted by Daniella Santos (daniella.santos@ufma.br) on 2017-08-29T16:11:39Z
No. of bitstreams: 1
MayaraSilva.pdf: 2720807 bytes, checksum: 1a7eeabdd7df89c4b7c0690e8136cb51 (MD5) / Made available in DSpace on 2017-08-29T16:11:39Z (GMT). No. of bitstreams: 1
MayaraSilva.pdf: 2720807 bytes, checksum: 1a7eeabdd7df89c4b7c0690e8136cb51 (MD5)
Previous issue date: 2017-03-28 / CNPq / CAPES / FAPEMA / There is an increasing interest to find new products with therapeutic potential to the treatment of leishmaniasis, due the high toxicity and resistance of the majority of available treatments. Our aim was to formulate, characterise and evaluate the antiLeishmania amazonensis activity of babassu loaded poly(lactic-co-glycolic acid) – PLGA microparticles. The PLGA microparticles were loaded with the aqueous extract of babassu mesocarp (MMP) and evaluated for size, zeta potential, drug content, encapsulation efficiency in comparison to unloaded microparticles (CMP). The antiLeishmania effect was evaluated to promastigotes forms or to amastigotes in Balb/c macrophage cells infected with Leishmania amazonensis. Following macrophage treatment with MMP the percent of infected cells was determined by Giemsa staining and compared with cells treated with CMP or with free babassu extract (MESO). To find the potential mechanisms of the activity of MMPs, TNF -α, IL-6, IL-10, hydrogen peroxide, arginase and accumulated nitrite in the culture supernatants of the treated and untreated cells were also measured by ELISA, and by colorimetric assays, respectivelly. The size range of the microparticles was between 3 and 6,4 μm with an average zeta potential of −25 mV and encapsulation efficiency of 45%. The antiLeishmania activity of babassu-loaded microparticles was 10-fold higher than MESO. MMP showed an overall bioavailability and hence were more effective in eliminating intracellular parasites than the other formulations. Babassu microparticles also reduced the ex vivo parasite infectivity and this effect seems to be directly related to a polarization of macrophages to the M1 phenotype with an increased production of nitric oxide, hydrogen peroxide and TNF-α. Interestingly, this overexpression of TNF-α didn’t impair cell viability, suggesting the anti-apoptotic effects of the MMP in infected macrophages. These findings indicate that babassu load microparticles may be useful for targeting for new drugs, due to the immunomodulatory effects of polarization to M1 macrophages, infected with L. amazonensis, and further provide motivations for future studies on human cels in vitro and in animal models of leishmaniasis in vivo. / A bioprospecção de produtos com potencial terapêutico no tratamento da leishmaniose tem despertado crescente interesse, pois as drogas atualmente utilizadas apresentam elevada toxicidade e, muitas vezes, os protozoários são resistentes, sobretudo nos tratamentos prolongados. Na perspectiva de desenvolver uma nova formulação com ação anti-Leishmania avaliou-se a atividade do extrato aquoso do mesocarpo de babaçu (Attalea speciosa Mart) encapsulado em micropartículas biodegradáveis de PLGA [poly(lactic-co-glycolic acid]. Inicialmente, foi realizado o estudo morfométrico e funcional das micropartículas. Em seguida foi avaliada a atividade anti-Leishmania por ação sobre as formas promastigotas, comparando os efeitos das micropartículas de PLGA carregadas com extrato do mesocarpo de babaçu (MMP) com o extrato livre (Meso) e com micropartículas sem o mesocarpo, utilizadas como controle negativo (CMP). Também avaliamos os efeitos de MMP em culturas de macrófagos peritoneais, de camundongos Balb/c, infectados ou não com formas amastigotas de Leishmania amazonensis. Os seguintes parâmetros foram investigados nos sobrenadantes das culturas de macrófagos: quantificação das citocinas IL-10, IL-6 e TNF-α por ELISA, detecção de peróxido de hidrogênio, óxido nítrico e atividade da arginase. Foi determinada a taxa de infecção e o percentual de células infectadas. O mesocarpo de babaçu apresentou forteinteração com antígenos de L. amazonensis. A caracterização das micropartículas mostrou que as MMP apresentaram diâmetro e potencial zeta compatíveis com as micropartículas controle (CMP) e a eficiencia de encapsulamento do extrato foi de 45%. As MMPs foram mais ativamente fagocitadas do que o extrato de babaçu livre, ocasionando aumento de 25% no índice fagocítico, após 24 horas de incubação. Além de baixa toxicidade para macrófagos peritoneais, o encapsulamento do mesocarpo de babaçu potenciou em quase 10 vezes a ação anti-Leishmania para as formas promastigotas de Leishmania amazonensis, quando comparado ao extrato livre. O tratamento com MMP reduziu o número de amastigotas e a taxa de infecção de macrófagos peritoneais, possivelmente por seu efeito imunomodulador na polarização de macrófagos para o fenótipo M1, resultando no aumento de TNF-α e óxido nítrico e na inibição da produção de IL-10. Concluímos que o microencapsulamento do mesocarpo de babaçu melhorou a ação anti-Leishmania do extrato, mas manteve o seu efeito imunomodulador o que contribuiu para o melhor efeito tanto sobre os protozoários como para as células infectadas, evitando a morte das células por necrose ou apoptose. Os dados em conjunto indicam que as micropartículas MMP podem ser fortes candidatas ao desenvolvimento de novos produtos, devido aos seus efeitos imunomoduladores na polarização de macrófagos infectados com L. amazonensis para um perfil M1 e, adicionalmente, estimulam novos estudos quanto ao seus efeitos sobre células humanas in vitro e em modelo animal da leishmaniose in vivo.
|
233 |
Preparação e caracterização in vitro de micropartículas de heparina fracionada potencialmente aplicáveis ao tratamento da trombose venosa profunda / Preparation and in vitro characterization of microparticles containing fractionated heparin potentially applicable to treatment of deep vein thrombosis.Oliveira, Samantha Sant'Anna Marotta de 28 April 2009 (has links)
A trombose venosa profunda (TVP) é uma patologia grave de alta incidência mundial. Quando não diagnosticada precocemente e tratada adequadamente pode evoluir causando sérias complicações, como a embolia pulmonar e insuficiência venosa crônica, as quais são responsáveis por altas taxas de morbidade e mortalidade. Seu tratamento utiliza terapia com anticoagulantes pelas vias parenteral e oral (para manutenção) que estão associadas a prejuízos bem documentados limitando seu uso, além de resultar em baixa adesão do paciente ao tratamento. Os sistemas de liberação modificada de fármacos, tais como as micropartículas poliméricas, representam uma grande área em desenvolvimento, a qual tem recebido atenção de pesquisadores e indústrias de todo o mundo e recebido investimentos crescentes nas últimas três décadas. As micropartículas poliméricas possuem grande estabilidade, capacidade industrial e possibilitam ajustes para alcançar o perfil de liberação adequado e/ou o direcionamento para determinado sítio de ação. O estudo teve início com o desenvolvimento e validação do método analítico para a quantificação da enoxaparina sódica. A turbidimetria foi a técnica de escolha, pois os resultados utilizando CLAE não foram satisfatórios. Este estudo teve como objetivo a obtenção e caracterização físico-química de um sistema de liberação microparticulado para veiculação de uma heparina fracionada (HF), a enoxaparina sódica, muito utilizada no tratamento da TVP, visando um aumento da biodisponibilidade do fármaco com controle da sua biodistribuição. As micropartículas contendo a enoxaparina sódica foram preparadas utilizando o copolímero dos ácidos lático e glicólico (50:50) (PLGA), biodegradável, através do método da dupla emulsificação/ evaporação do solvente. As partículas obtidas foram caracterizadas pela técnica de microscopia eletrônica de varredura (MEV) e apresentaram forma esférica com superfície lisa e regular. As análises do tamanho e distribuição dos tamanhos de partícula foram realizadas por dispersão de luz laser e apresentaram perfil monomodal para a maioria das formulações. O perfil de liberação in vitro do fármaco encapsulado foi avaliado por 35 dias e apresentou cinética de liberação de pseudo ordem zero, modelo de Higuchi (1961), indicando que a difusão foi o principal mecanismo de liberação. A velocidade de degradação das micropartículas é, através da difusão do fármaco, um parâmetro muito importante e determinante da liberação in vivo. / Deep vein thrombosis (DVT) is a severe disease with high incidence worldwide. When it is not early diagnosed and properly treated it can develop and to cause serious complications, such as pulmonary embolism and chronic venous insufficiency, which are responsible for high morbidity and mortality rates. The treatment of DVT is accomplished with parenteral and oral (for maintenance) anticoagulants. They are associated to damage well documented that limit their use resulting in poor adherence of patients to treatment. Drug delivery systems, such as polymeric microparticles, represent a significant development area. It has received attention of researchers and industries around the world and increased investments in last three decades. The polymeric microparticles have great stability, industrial capacity and they allow adjustments to achieve the suitable release profile and / or direction for a particular site of action. The study started with development and validation from the analytical method to quantification of enoxaparin sodium. Turbidimetric technique was used because the results by HPLC were not satisfactory. The aim of this work was the preparation and physical-chemical characterization of a microparticle release system for delivery of a fractionated heparin (FH), enoxaparin sodium, widely used to the treatment of DVT to increase the drug bioavailability and control their biodistribution. The microparticles containing enoxaparin sodium were prepared from a biodegradable polymer poly (lactic-co-glycolic acid) (50:50) (PLGA) using double emulsification / evaporation of the solvent method. The particles obtained were characterized by scanning electron microscopy technique (SEM) and showed spherical shape with smooth and regular surface. The analysis of the size and distribution of particle sizes were performed by scattering of laser light and showed unimodal profile for the most of formulations. In vitro drug release profile from the microparticles was evaluated in 35 days showing pseudo zero order kinetics, Higuchi model (1961). This indicated that main mechanism of drug release was diffusion.
|
234 |
Study of interactions between endocrine and exocrine pancreas mediated by microparticles in cystic fibrosis : impact of infections and immunosuppressive drugs / Etude des interactions entre le pancréas endocrine et exocrine promus par les microparticules dans la mucoviscidose : impact des infections et des immunosuppresseursConstantinescu, Andrei 29 September 2014 (has links)
Ce travail scientifique a abordé la problématique de la communication cellulaire entre le pancréas exocrine et endocrine dans la mucoviscidose. La contribution des infections pulmonaires chroniques et des traitements immunosuppresseurs sur la dégénerescence pancréatique a été aussi étudiée. Les résultats obtenus ont montré que le LPS disséminé par des infections récurrentes peut cibler les cellules pancréatiques exocrines, en conduisant à la formation des microparticules membranaires qui sont nuisibles pour la survie et le fonctionnement des cellules endocrines. Dans cette communication intercellulaire, la protéine CFTR est un médiateur essentiel de la sévérité des signaux délivrés par les microparticules et de la réponse cellulaire à l'inflammation du pancréas, en participant à l'équilibre de la sécrétion d'insuline des cellules endocrines. En outre, les données ont mis en évidence que l'administration prolongée d’immunosuppresseurs chez les patients greffés pourrait différemment induire l'apoptose de manière dépendante de la mitochondrie, cela en favorisant l'entrée des cellules en sénescence prématurée, un état métabolique du dysfonctionnement cellulaire. / This scientific work tackled the issue of the communication between exocrine and endocrine pancreas in cystic fibrosis. Also, the contribution of recurrent lung infections and immunosuppressive therapy to the pancreatic cell degenerescence was studied in vitro. Results obtained showed that disseminated LPS released by recurrent infections could target pancreatic exocrine cells, leading to the formation of membrane microparticles that are deleterious for endocrine cell survival and function. In this intercellular cross-talk, CFTR is a critical mediator for the severity of the MP-delivered signals and for the pancreatic cell response to inflammation, also participating to the balance of insulin secretion of endocrine cells. Furthermore, data evidenced that long-term administration of immunosuppressive drugs in grafted patients may differently induce apoptosis in a mitochondrial-dependent fashion, possibly favoring cells to enter premature senescence, which is a metabolic state of cellular dysfunction.
|
235 |
Effects of Microparticulate Drug Delivery Systems : Tissue Responses and Transcellular TransportRagnarsson, Eva January 2005 (has links)
<p>Over the past decade, the development of macromolecular drugs based on peptides, proteins and nucleic acids has increased the interest in microparticulate drug delivery, i.e., the delivery of drug systems in the nanometer and micrometer ranges. However, little is known so far about the effect that microparticulate systems have on various tissues after administration. Additionally, the knowledge of mechanisms responsible for the uptake and transport of microparticles across the human intestine is incomplete and requires further investigation to improve both the safety profiles and the efficiency of these drug delivery systems.</p><p>This thesis is comprised of two parts. The first one investigates gene expression responses obtained from DNA arrays in local and distal tissues after microparticulate drug delivery. The second part focuses on the mechanisms responsible for the transport of microparticles across epithelial cells lining the intestine.</p><p>The results presented in the first part demonstrated that gene expression analysis offers a detailed picture of the tissue responses after intramuscular or pulmonary administration of microparticulate drug delivery systems compared to the traditional techniques used for such evaluations. In addition, DNA arrays provided a useful and sensitive tool for the initial characterization and evaluation of both local and distal tissue responses, making it possible to distinguish between gene expression patterns related to each studied delivery system.</p><p>The results presented in the second part demonstrated that the surface properties of the microparticle were important for the extent of transport across an <i>in vitro</i> model of the follicle-associated epithelium (FAE), comprised of intestinal epithelial cells specialized in particle transport (M cells). Another important finding was that the enteropathogen bacterium, <i>Yersinia pseudotuberculosis</i>, induced microparticle transport across the normal intestinal epithelium, represented by Caco-2 cells and excised human ileal tissue. This transport was most probably mediated by an increased capacity for macropinocytosis in the epithelial cells.</p>
|
236 |
Effects of Microparticulate Drug Delivery Systems : Tissue Responses and Transcellular TransportRagnarsson, Eva January 2005 (has links)
Over the past decade, the development of macromolecular drugs based on peptides, proteins and nucleic acids has increased the interest in microparticulate drug delivery, i.e., the delivery of drug systems in the nanometer and micrometer ranges. However, little is known so far about the effect that microparticulate systems have on various tissues after administration. Additionally, the knowledge of mechanisms responsible for the uptake and transport of microparticles across the human intestine is incomplete and requires further investigation to improve both the safety profiles and the efficiency of these drug delivery systems. This thesis is comprised of two parts. The first one investigates gene expression responses obtained from DNA arrays in local and distal tissues after microparticulate drug delivery. The second part focuses on the mechanisms responsible for the transport of microparticles across epithelial cells lining the intestine. The results presented in the first part demonstrated that gene expression analysis offers a detailed picture of the tissue responses after intramuscular or pulmonary administration of microparticulate drug delivery systems compared to the traditional techniques used for such evaluations. In addition, DNA arrays provided a useful and sensitive tool for the initial characterization and evaluation of both local and distal tissue responses, making it possible to distinguish between gene expression patterns related to each studied delivery system. The results presented in the second part demonstrated that the surface properties of the microparticle were important for the extent of transport across an in vitro model of the follicle-associated epithelium (FAE), comprised of intestinal epithelial cells specialized in particle transport (M cells). Another important finding was that the enteropathogen bacterium, Yersinia pseudotuberculosis, induced microparticle transport across the normal intestinal epithelium, represented by Caco-2 cells and excised human ileal tissue. This transport was most probably mediated by an increased capacity for macropinocytosis in the epithelial cells.
|
237 |
Crosstalk Between Activated Platelets and the Complement SystemHamad, Osama A. January 2010 (has links)
Several studies have shown that complement and thrombotic events co-exist. Platelets have been suspected to act as the bridge between the two cascade systems. To study the platelet-induced complement activation we developed a system in which platelets were activated by thrombin receptor activating peptide (TRAP) in platelet rich plasma (PRP) or whole blood anti-coagulated using the specific thrombin inhibitor, lepirudin. TRAP-activated platelets induced a fluid-phase complement activation measured as generation of C3a and sC5b-9, triggered by released chondroitin sulphate-A (CS-A) which interacted with C1q and activated the complement system through the classical pathway. Complement components C1q, C3, C4 and C9 were also shown to bind to TRAP-activated platelets but this binding did not seem to be due to a complement activation since blocking of complement activation at the C1q or C3 levels did not affect the binding of the complement proteins. The C3 which bound to activated platelets consisted of C3(H2O), indicating that bound C3 was not proteolytically activated. Binding of C1q was partially dependent on CS-A exposure on activated platelets. The abolished complement activation on the surface of activated platelets was suggested to be dependent on the involvement of several complement inhibitors. We confirmed the binding of C1INH and factor H to activated platelets. To this list we have added another potent complement inhibitor, C4BP. The binding of factor H and C4BP was shown to be dependent on exposure of CS-A on activated platelets. The physiological relevance of these reactions was reflected in an elevated expression of CD11b on leukocytes, and increased generation of platelet-leukocyte complexes. The platelets were involved in these events by at least two different mechanisms; generation of C5a which activated leukocytes and binding of C3(H2O)/iC3(H2O), a ligand to the intergrin CD11b/CD18 on their surface. These mechanisms add further to the understanding of how platelets interact with the complement system and will help us to understand the role of the complement system in cardiovascular disease and thrombotic conditions. / Platelet Mediated Complement Activation
|
238 |
Polyketals: a new drug delivery platform for treating acute liver failureYang, Stephen Chen 22 October 2008 (has links)
Acute liver failure is a major cause of death in the world, and effective treatments are greatly needed. Liver macrophages (Kupffer cells) play a major role in the pathology of acute liver failure, and drug delivery vehicles that can target therapeutics to Kupffer cells have great therapeutic potential for treating acute liver failure. Microparticles, formulated from biodegradable polymers, are advantageous for treating acute liver failure because they can passively target therapeutics to Kupffer cells. However, existing biomaterials are not suitable for the treatment of acute liver failure because of their slow hydrolysis and acidic degradation products. In this dissertation, I present the development of a new class of biodegradable materials, termed aliphatic polyketals, which have considerable potential as drug delivery vehicles for the treatment of acute liver failure because of their neutral degradation products and tunable hydrolysis kinetics. The anti-inflammatory enzyme, superoxide dismutase (SOD), was delivered using polyketal microparticles to the liver for treating acute liver Failure. Our results demonstrated that polyketal microparticles significantly improved the efficacy of SOD in treating LPS-induced acute liver damage in vivo, as evidenced by decreased levels of serum alanine transaminase, which corresponds to the extent of damage in the liver, and serum level of tumor necrosis factor-alpha, which corresponds to the secretion of pro-inflammatory cytokines. The completion of this thesis research demonstrates the ability of polyketal-based drug delivery systems for treating acute inflammatory diseases and creates a potential therapy for enhancing the treatment of acute liver failure.
|
239 |
Optically Active Chiral Mediums Fabricated with Glancing Angle DepositionYang, Jian 06 July 2012 (has links)
Optically active helical microparticles are studied in the forms of thin films, suspensions and powders. From fabricated helical porous thin films, microparticle suspensions are obtained by removing the microparticles (film columns) from their substrates and dispersing them into water. For removing microparticles, four methods are explored and compared: sacrificial NaCl layer, gold (Au) layer, buffered oxide etching, and direct ultrasonic agitation. The primary film material studied in this work is amorphous silicon (Si). Physical morphology of the microparticles is examined with scanning electron microscopy (SEM). Methods employed to characterize optical activity of the microparticles include: polarimetry, spectrophotometry, and spectroscopic ellipsometry (SE). The produced chiral microparticles exhibit optical activity: optical rotation (OR) and circular dichroism (CD - in the form of differential circular transmission (DCT)). Significant findings include: (a) we observe the largest optical rotatory power ever reported in scientific literature, 11◦/μm at 610 nm wavelength for a Si film; (b) for the helical thin films, there is one dominant DCT band in the measured wavelength range; however for microparticle suspensions and powders, there exist two DCT bands: one broad band at long wavelengths, and one narrow band in the short wavelength range; compared to their thin film forms, microparticle suspensions and powders have inverted sign for the broad DCT band. A discrete dipole approximation (DDA) model is employed to calculate optical response (e.g. extinction, scattering, and absorption cross-sections) of the microparticles, so as to enable us to understand the effects of different structural parameters of the microparticles on their optical response. Calculation confirms that optical activity of chiral microparticles is due to coherent light scatterings with the chiral structures of the particles. The inversion in sign of the broad DCT bands of microparticle suspensions and powders is likely due to the averaging effect from random orientation of the helical microparticles, as is indicated both from experimental results and from calculation. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-07-06 09:59:20.751
|
240 |
Nanotechnological delivery systems for the oral administration of active molecules : Polymeric microparticles and microemulsions applied to anti-inflammatory and anti-infectious drugsEduardo Da Silva, Acarilia 05 April 2013 (has links) (PDF)
This thesis was devoted to the development of innovative oral delivery systems for two different molecules. In the first part, microparticles (MPs) based on xylan and Eudragit® S-100 were produced and used to encapsulate 5-aminosalicylic acid for colon delivery. Xylan was extracted from corn cobs and characterized in terms of its physicochemical, rheological and toxicological properties. The polymeric MPs were prepared by interfacial cross-linking polymerization and spray-drying and characterized for their morphology, mean size and distribution, thermal stability, crystallinity, entrapment efficiency and in vitro drug release. MPs with suitable physical characteristics and satisfactory yields were prepared by both methods, although the spray-dried systems showed higher thermal stability. In general, spray-dried MPs would be preferable systems due to their thermal stability and absence of toxic agents used in their preparation. However, drug loading and release need to be optimized. In the second part of this thesis, oil-in-water microemulsions (O/W MEs) based on medium-chain triglycerides were formulated as drug carriers and solubility enhancers for amphotericin B (AmB). Phase diagrams were constructed using surfactant blends with hydrophilic-lipophilic balance values between 9.7 and 14.4. The drug-free and drug-loaded MEs presented spherical non-aggregated droplets around 80 and 120 nm, respectively, and a low polydispersity index. The incorporation of AmB was high and depended on the volume fraction of the disperse phase. These MEs did not reduce the viability of J774.A1 macrophage-like cells for concentrations up to 25 µg/mL of AmB. Therefore, O/W MEs based on propylene glycol esters of caprylic acid may be considered as suitable delivery systems for AmB.
|
Page generated in 0.0811 seconds